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SIMULATION EXPERIMENTS

We conducted simulation experiments to investigate whether the approach to fitting de-

scribed in the “Parameter Estimation” subsection yields valid (i.e., approximately unbi-

ased) estimates when the true variant of the ACE model is fitted. In addition, the simula-

tion experiments investigated whether LRTs and AIC (see “Inference” subsection) permit

identification of the true ACE variant.

The experiments were designed to mimic the Austrian case-control family study of MDD

described in the “Austrian Case-Control Family Study” section, which is at the small end

of case-control family studies. We created seven fictional populations, each with a different

combination of additive genetic and shared family environmental effects. Each population

contained approximately 500, 000 individuals, a number that corresponds roughly to the

number of 18 − 70 years olds living in the Tyrol region of Austria in 2003, the catchment

area for the Austrian study [Statistik Austria, 2003]. For each population, we generated

data for approximately 125, 000 families by following three steps in order: (a) we generated

family sizes (from 2 to 9 members) based roughly on the distribution of family sizes in the

Austrian data; (b) we generated the relationships between and sexes of family members

based on the distribution of family relationships and sex in the Austrian data and the
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percentage of females (50.5%) between 18 and 70 years old in the Tyrolean population

in 2003, and; (c) we used the ACE model for binary family data described in the “ACE

Model for Binary Family Data” section to generate lifetime disease statuses for the family

members conditional on their sexes and relationships, for various combinations of a2 and

c2. In step (c), we allowed prevalence to differ by gender, using values (5.9% for males

and 11.5% for females) similar to those obtained by applying Equation (10) to the actual

Austrian data. Also, we assumed that shared family environmental correlations equaled 1

for siblings and 0 for all other relatives pairs. Finally, we set a2 equal to one of four values

(0, 0.20, 0.40, or 0.70) and c2 equal to one of two values (0 or 0.20), for a combination of

seven different populations (the eighth combination, where a2 = 0.7 and c2 = 0.2, was not

used because it seemed unrealistic). The values for the variance components were chosen

to make our simulation experiments comparable to those of Kuhnert and Do [2003], who

compared the performance of various methods for fitting ACE models to binary twin data.

Next, we sampled 1, 000 small case-control family datasets from each of the seven fic-

tional populations. Each dataset was formed by selecting 64 case probands and 58 control

probands (the numbers in the Austrian study), and then including all of the probands’

first-degree family members. For each sampled dataset, Equations (10) and (12) were used

to estimate the male and female prevalences and thresholds, and then the ACE, AE, CE

and E models were fitted to the data using the approach described in the “Parameter

Estimation” subsection.

In the 7, 000 case-control family datasets sampled, the number of sampled individu-

als (relatives plus probands) ranged between approximately 340 and 440. Even for this

relatively small sample size, the population was not sufficiently large to ensure single ascer-
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tainment, but the extent of multiple ascertainment was extremely small (only about 0.05%

of the sampled families were multiply ascertained). In these instances, the first family

member to be selected as a proband was retained as the sole proband for his or her family.

Although ignoring proband status can result in biases, we felt comfortable doing so here

because the number of doubly-ascertained families was so small.

Results for the simulation experiments can be seen in Supplementary Table 1. We first

examine the estimates of the variance components in the second vertical section of the

table. Beginning with the bold numbers, which are estimates produced using the variant

of the ACE model from which the data were generated (the ‘true model’), we see that our

fitting approach yields approximately unbiased estimates of the variance components when

the true variant is fitted, even for a case-control family dataset as small as the Austrian

dataset. Furthermore, in simulation experiments performed with a larger population size

(approximately 2, 000, 000 members) and a larger sample size (150 case and 150 control

probands), estimates (not reported here) of the variance components were even less biased.

For example, for a2 = 0.2 and c2 = 0.2, the resulting estimates of a2 and c2 were 0.205 and

0.198, respectively, in the larger simulation experiments, compared to 0.231 and 0.185 in

the smaller simulation experiments presented here. Turning to the un-italicized numbers,

which are estimates produced using the incorrect variant of the ACE model, we see that

fitting the incorrect model yields biased estimates of the remaining (non-zero) variance

components, as would be expected.

Turning to model selection, we first examine the bold numbers in Supplementary Table

1’s third vertical section, which correspond to LRTs where the true model is the null

hypothesis (e.g., for a2 = 0.4 and c2 = 0, the test of H0: AE vs H1: ACE). As noted
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in the “Inference” subsection, these numbers suggest that using half the standard p-value

yields appropriate rejection levels when comparing the AE model versus the ACE model,

whereas using the standard p-value (unhalved) yields appropriate rejection levels when

comparing the CE model versus the ACE model or the E model versus either the AE or

CE models. Second, we examine the bold-italicized numbers in Supplementary Table 1’s

third vertical section, which correspond to LRTs where the true model is the alternative

hypothesis (e.g., for a2 = 0.4 and c2 = 0, the test of H0: E vs H1: AE). These numbers

suggest that power to detect non-zero variance components is low for small (e.g., 0.2) or

even moderate (e.g., 0.4) effects, especially for shared family environmental effects. Third,

the bold numbers in Supplementary Table 1’s fourth vertical section, which correspond to

the percentage of times that AIC identified the true model, suggest that AIC does very well

at identifying true AE models with large a2 (e.g., 0.7), and reasonably well at identifying

true AE and CE models with small to moderate a2 or c2 and true E models. However, AIC

does poorly at identifying true ACE models, unless both a2 and c2 are large. The finding

that LRTs and AIC have limited power to detect ACE models with small to moderate a2

and c2 is not surprising, especially for such small datasets. In fact, Kuhnert and Do [2003,

p. 441] found that, for binary twin data with 1000 monozygotic and 1000 dizygotic pairs,

both a Bayesian fitting method and a maximum likelihood fitting method “had difficulty

in detecting the correct model when the additive genetic effect was low (between 10 and

20%) or of moderate range (between 20 and 40%). Furthermore, neither method could

adequately detect a correct model that included a modest common environmental effect

(20%) even when the additive genetic effect was large (50%).”
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ĉ2

â
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