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Text S1.
Bayesian estimation of ITN coverage

1 Introduction

This Web appendix describes our application of Bayesian inference to impute missing data for ITN
coverage. The challenge we face is to devise an objective and replicable method for estimating survey-
based measurements of coverage of ITN ownership, and also to appropriately represent the uncertainty
in these estimates. Bayesian inference is well-suited for this task [1–5], and we use it together with a
stock-and-flow model of the ITN supply chain to resolve the issue that data from manufacturers, agencies,
and households measure different points along the supply and distribution chain.

We face extreme missingness, where no survey measurement of coverage is available for 75% of country-
years. Standard approaches to missing data, such as multiple imputation [6] or bi-directional distance
dependent regression [7], are unable to cope with this level of missingness. We triangulate all relevant data
and incorporate expert prior beliefs by designing a deterministic compartmental model of the LLIN supply
chain, and then using Bayesian inference to combine data derived from direct and indirect measurements
of the stocks and flows in the compartmental model. This permits us to generate harmonized estimates
incorporating the survey data that does exist, expert priors, reports from manufacturers and National
Malaria Control Programs (NMCPs) on the LLIN supply chain, and empirical priors on how LLINs are
retained.

The compartmental model we develop defines precise relationships between net supply, distribution,
and ownership over time; for example, for a net to be used in a household today, it must have been
obtained by the household sometime previously, and, before that, it must have been manufactured and
delivered for distribution. We formalize this via a compartmental model with parameters describing
the supply, distribution, ownership, and loss of nets by households. The model uses a discrete one-year
time step and allows flows into a compartment to be part of flows out of the compartment for the same
year. This approach ensures that our estimates of supply, distribution, ownership, and loss of nets are
consistent over time.

We use Bayesian inference to estimate the parameters of the model from all available data. This
requires specifying a data likelihood function for the observations as a function of the model parameters,
and then inverting this probability with Bayes’ theorem and specified prior distributions to obtain the
parameter posterior distributions. We accomplish this task computationally with a Markov Chain Monte
Carlo (MCMC) algorithm as implemented by the Python package PyMC [8].

The remainder of this document is organized as follows: Section 2 describes the compartmental
model of the ITN supply chain. Section 3 describes the statistical model, which allows us to perform
Bayesian inference on the deterministic model from Section 2. Section 4 concludes with an explanation
of the computational approach we use for Bayesian inference, which is to draw samples from the model
posterior distribution with the popular Markov Chain Monte Carlo (MCMC) technique.

2 Compartmental model

This section describes our deterministic model of the ITN distribution system within a single country
c. It is based on a five compartment model, depicted in Figure 1, which shows how LLINs arrive in the
country from manufacturers and are then distributed to households, where they are used and eventually
discarded (or cease to be ITNs). The model uses discrete one-year time steps, which matches the available
data. The model allows flows into a compartment to contribute to flows out of the compartment during
the same year.

To make this exposition as simple as possible, the model is introduced in three parts. Section 2.1
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Figure 1. Stock-and-flow model of the ITN distribution system within country c at time t.
Stocks (denoted by capital Greek letters) are included for the LLINs in the country but not yet in
households (Ψc,t), and the LLINs that have been in households for y years (Θ1,c,t,Θ2,c,t,Θ3,c,t). Flows
(denoted by lower-case Greek) are included for LLINs sent to the country (µc,t), LLINs distributed to
households (δc,t), and LLINs discarded by households after (i − 1) to i years (λ1,c,t, λ2,c,t, λ3,c,t).

defines the stock-and-flow parameters in the model, and Section 2.2 defines how these stocks and flows
are related temporally. Section 2.3 defines and justifies additional model parameters that we use to map
from LLIN household stock to LLIN and ITN coverage. Section 2.4 uses some examples to illustrate the
power of this compartmental model.

2.1 Stock-and-flow parameters

Our compartmental model has the following stock parameters for each time t from 1999 to 2009:

Ψc,t = number of LLINs in country c available for distribution or purchase by households

at the start of year t

Θ1,c,t = number of LLINs that have been in households for 0 to 1 year at the start of year t

Θ2,c,t = number of LLINs that have been in households for 1 to 2 years at the start of year t

Θ3,c,t = number of LLINs that have been in households for 2 to 3 years at the start of year t

The model also includes the following flow parameters for each one-year time period t from 1999 to
2008:

µc,t = number of LLINs sent to country c during year t

δc,t = number of LLINs distributed to households during time period t

λi,c,t = number of (i − 1)- to i-year-old LLINs discarded by households

during time period t for i = 1, 2, 3

2.2 Stock-and-flow dynamics

This section describes a set of straightforward relationships between the stock and flow parameters over
time. Ψc,t denotes the number of LLINs in the country but not in households at the start of year t. The
number of LLINs at the start of the next year differs from Ψc,t according to µc,t, the number of LLINs
sent to the country during year t, and δc,t, the number of LLINs distributed to households during that
same period:

Ψc,t+1 = Ψc,t + µc,t − δc,t.

Note that this formulation permits nets to be distributed during the year they are received. Perfect
throughput would yield δc,t = µc,t and Ψc,t = 0.
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Θ1,c,t denotes the number of LLINs that have been in households for 0 to 1 year at the start of year
t. It is precisely the number of LLINs distributed to households during the previous year:

Θ1,c,t+1 = δc,t.

For i > 1, Θi,c,t denotes the number of LLINs that have been in households for (i − 1) to i years at the
start of year t, and is given by

Θi,c,t+1 = Θi−1,c,t − λi−1,c,t for i = 2, 3.

These model dynamics enforce one major assumption in the compartmental model, which is about
LLIN lifetime: LLINs cease to be effective after three years. At all times, the 3-plus-year-old LLIN stock
is 0.

2.3 Additional model parameters

This section describes some additional model parameters, which complement the stock and flow param-
eters introduced above, and allow us to meld additional relevant data. We begin with the parameters we
use in mapping between LLIN stock and LLIN coverage (defined as the fraction of households with at
least one net).

We model the distribution of nets in households as a negative binomial distribution, which fits all
available data with RMSE below the survey sampling error (Figure 2 shows this graphically).

The negative binomial distribution is controlled by its mean and its dispersion, and we parametrize
it by introducing coverage parameter ηc and dispersion parameter αc and taking ηcΘc,t/popc,t to be the

mean of the negative binomial and αc to be the dispersion (where Θc,t =
∑3

i=1 Θi,c,t is the LLIN stock
in country c at time t). The probability that a negative binomial with these parameters is 0 is then

Pr
[

NegativeBinomial
(

ηcΘc,t/popc,t

)

= 0
]

=

(

αc

ηcΘc,t/popc,t +αc

)αc

.

We introduce ∆c,t to denote the LLIN coverage in country c at time t, and then the negative binomial
model implies that

∆c,t = 1 −

(

αc

ηcΘc,t/popc,t +αc

)αc

.

In order to define an analogous formula for ITN coverage (which includes non-LLINs as well as LLINs),
we use parameter Ωc,t to denote the non-LLIN ITN stock in country c at time t. Then, using Σc,t to
denote the ITN coverage in country c at time t, we have:

Σc,t = 1 −

(

αc

ηc(Θc,t + Ωc,t)/popc,t +αc

)αc

.

2.4 Examples: inferences from consistency of the compartmental model

The compartmental model above is simple, but it has direct implications on the consistent set of parameter
values. For example, the number of LLINs that have been in households for 1 to 2 years in 2009 is at
most the number of LLINs that have been in households for 0 to 1 year in 2008. Or, in other words,
Θ2,2009 ≥ Θ1,2008.

This sort of reasoning can be quantitative as well. For example, if there are 1 million LLINs in the
country but not in households at the start of 2008, .5 million LLINs are sent to the country during 2008,
and 1.2 million LLINs are distributed to households during 2008, then there are Ψ2008 +µ2008−δ2008 = .3
million LLINs in the country but not in households at the start of 2009.

In order to systematically leverage consistency conditions like these, the next section connects the
model parameters to observed data through a Bayesian statistical model.
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Figure 2. Validation of the negative binomial model for fraction of nets in households.
Blue bars show the fraction of households from survey data, and green bars show the negative binomial
distribution that fits the data with minimum RMSE. The root mean squared survey error is larger than
the fit error for all surveys.
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Data Source Observed Value Expectation Standard Deviation
Manufacturer LLIN Supply log mc,t log µc,t σmc

NMCP LLIN Distribution log dr
c,t log(δc,t) + εc σdr

c

Survey ITN Coverage ITNc,t Σc,t σITNc,t

Survey LLIN Coverage LLINc,t ∆c,t σLLINc,t

Survey LLIN in Households sc,t Θc,t σsc,t

Survey LLIN Distribution dc,t δc,t · (1 − πc)
ts−(t+.5) σdc,t

(1 + σdc
)

Survey Report ITN Coverage ITNr
c,t Σc,t σITNc,t

γc

Table 1. Country-specific data sources for country c, together with their expectations and
standard deviations. In this table, all data values are normalized, i.e., instead of listing
log-normally-distributed data mc,t, we list normally distributed data log(mc,t).

3 Bayesian Statistical Model

This section takes the model parameters from the compartmental model in Section 2 and connects them to
all relevant sources of data using Bayesian inference. The data sources are the following: manufacturers’
reports on LLINs sent to the country during a year (mc,t); NMCP reports on LLINs distributed to
households through public health programs (rc,t); survey reports on ITN coverage (ITNr

c,t); household
survey data on ITN coverage (ITNc,t), LLIN coverage (LLINc,t), the number of LLINs in households
(Nc,t), and the number of LLINs distributed to households during one-year time periods dc,t. Table 1
lists these data types and their model-based expectations and standard deviations.

This section is divided into three parts. Section 3.1 addresses how we model the data likelihood for
each type of data to be melded. Section 3.2 and 3.3 define and justify the prior probabilities selected for
the model parameters, which we inform with an empirical Bayes approach whenever possible.

3.1 Data Likelihoods

In order to apply Bayesian inference, we must define the data likelihood as a function of the model param-
eters. There are several types of data we will use to estimate consistent parameters for the compartmental
model from the previous section, and we must define a joint likelihood function for all of them. We as-
sume that this joint likelihood factors, and model it as the product of the individual likelihood described
below. This assumption implies that, conditioned on the model parameters, the values of manufacturer,
NMCP, and household surveys and reports are all independent.

Manufacturers’ reports provide information about the number of LLINs sent to the country during
a given year. We model the manufacturer-reported number as a log-normally distributed realization of
the model parameter µc,t. We introduce an additional parameter σmc

to represent the dispersion of the
log-normal, which will be fit from the data together with µc,t and the other model parameters. Thus, a
report that mc,t LLINs were sent to the country during year t has likelihood given by

log(mc,t) ∼ Normal
(

log(µc,t), σ
2
mc

)

.

In the absence of data, we select the following prior for the dispersion parameter, based on expert
judgment:

σmc
∼ Lognormal(log(.05), .52)

This corresponds to a standard error of 5% in the manufacturers’ data and a standard deviation of 5% in
this standard error. In other words, the manufacturers’ reports for the country being 5% or 15% higher
or lower is likely, but being 30% higher or lower is unlikely.
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NMCP reports provide information about the number of LLINs distributed in each country. These
numbers were reported to WHO by NMCPs and, like the manufacturers’ reports, they also do not include
a measure of uncertainty. They are subject to bias, as described in the methods section of the paper.
For this reason, and because comparing the NMCP report data with survey data on LLINs distributed
during the same time period shows that there are systematic differences (as well as random variation)
between these data sources, we model the NMCP-reported numbers as log-normally distributed random
variables that are not centered on the model parameter distribution δc,t, but on a systematically biased
function of this parameter. To implement this, we introduce two parameters, εc and σdr

c
, to represent the

offset and dispersion of the NMCP report data; these parameters are fit together with δc,t and the other
model parameters. An NMCP report that dr

c,t LLINs were distributed during year t then has likelihood
given by:

log(dr
c,t) ∼ Normal

(

log(δc,t) + εc, σ
2
dr

c

)

.

Empirical priors for εc and σdr
c

are fit from the NMCP data and survey data, as described in Section 3.3.
Household survey data on LLIN stocks provide the most direct estimate of a parameter in the compart-

mental model. This information comes from household surveys, where an interviewer directly observes
the number of nets and the brand of each net to determine if it is an LLIN. In addition to an estimate
of total LLINs in households, the survey design provides a rigorous uncertainty interval around the esti-
mate. We model the household survey data on LLIN stock at time t as normally distributed with mean
Θc,t =

∑4
i=1 Θi,c,t and standard deviation given by the standard error of the household survey.

To accommodate the fact that no survey is instantaneous, we use the mean survey date (in years)
for t. Mean survey dates do not correspond with the time step in the compartmental mode (i.e., they
are not Jan. 1), so we use linear interpolation to estimate stock values at intermediate times within a
year. For example, a survey in Congo was conducted during 2008 that has mean survey date August 30,
2008; for this, we model the observed value at the value three-quarters of the way from 2008 to 2009, i.e.,
t = 2008.75 and sc,t is a normally distributed realization of (.25)ΘCongo,2008+(.75)ΘCongo,2009. In general,
if t = btc+ r, where btc is the largest integer less-than-or-equal-to t, and r is the residual r = t− btc, we
have Θc,t = (1 − r)Θc,btc + rΘc,btc+1. The likelihood of a household survey finding LLINs stock of sc,t

with standard error σsc,t
is thus given by:

sc,t ∼ Normal
(

Θc,t, σ
2
sc,t

)

.

Household survey data on LLIN distribution can also be extracted from the DHS, MICS, and MIS
surveys used for measuring household LLIN stock. These interviews include questions about how long ago
each net was acquired, and this constitutes a direct measurement of the number of LLINs in households at
the time of the survey that were received during time period t for 2 or 3 time periods before the survey was
conducted. These are not direct measurements of the quantity δc,t, however, because some LLINs have
been discarded in the period of time between receipt and the survey interview. For a survey conducted at

time ts, the tally of LLINs distributed during time period t is a measurement of δc,t −
∑ts−t

i=1 λi,c,t+i. We
model net loss as a constant rate, i.e. λi,c,t = πcΘi,c,t for all i and t, and LLIN acquisition at mid-year,
so the expected value above simplifies to δc,t · (1 − πc)

ts−(t+.5). However, the survey responses are also
subject to recall bias. To account for this, we introduce a recall bias parameter σrbc

, and model the
dispersion of the LLIN distribution survey data as the sampling error of the survey scaled up by a factor
of 1 + σrbc

. All together, this yields the following likelihood for observing dc,t LLINs in households at
time ts that were distributed during time period t with standard error σdc,t

:

dc,t ∼ Normal
(

δc,t · (1 − πc)
ts−(t+.5),

(

σdc,t
(1 + σrbc

)
)2

)

.

An empirical prior for πc is developed from published studies on bed net retention behaviors, as described
in Section 3.3. For the recall bias parameter, we choose a prior of

σrbc
∼ Lognormal(log(.0)5, .52),
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which corresponds to a belief that recall bias contributes about an additional 10% error beyond the survey
sampling error and about a 5% standard deviation in this standard error. In other words, it would be
likely to find that recall bias increases the error by 5% or by 15%, but it would be unlikely to learn that
recall bias increases the error by 30%.

Household survey data on ITN and LLIN coverage also measures an important and relevant quantity
that does not appear directly in the compartmental model. Predicting the percentage of households
with at least 1 ITN is the primary objective of this analysis. Fortunately, there is a strong correlation
between the number of ITNs in households and ITN coverage. Since coverage cannot exceed 100%, we
do not model this as a linear relationship. Instead we use the 2 parameter non-linear function described
in Section 2.3 to map household stocks to household coverage: we model the fraction of households with

at least one LLIN as ∆c,t = 1 −
(

αc

ηcΘc,t/ popc,t +αc

)αc

, where ηc and αc are country-specific coverage

parameters, and popc,t is the population of country c at time t. To model the fraction of households
with at least one ITN, we introduce an additional parameter Ωc,t to represent the non-LLIN ITN stock
in country c at time t, and then, similar to the LLIN case above, we model the fraction of households

with at least one ITN as Σc,t = 1 −
(

αc

ηc(Θc,t+Ωc,t)/ popc,t +αc

)αc

, where ηc, αc and popc,t are the same as

above. With these models in hand, the survey-based direct measurements of ITNc,t and LLINc,t with
standard errors σITNc,t

and σLLINc,t
are modeled as

LLINc,t ∼ Normal
(

∆c,t,
(

σLLINc,t

)2
)

ITNc,t ∼ Normal
(

Σc,t,
(

σITNc,t

)2
)

Survey reports on coverage provide similar information to the household survey coverage measure-
ments, but often without information to quantify the survey design effects on uncertainty. We model the
data from these reports by introducing a survey design effect parameter γc. If the report says that the
sample size is Nc,t, then we calculate the raw sampling error as σITNr

c,t
= ITNr

c,t(1− ITNr
c,t)/

√

Nc,t, and
model the likelihood as

ITNr
c,t ∼ Normal

(

Σc,t,
(

σITNr
c,t

· γc

)2
)

.

An empirical prior for γc is selected by comparing the sampling error assuming simple random sampling
to the sampling error taking into account the complex survey design for the surveys where we have
microdata available, as described in Section 3.3.

3.2 Bayesian Priors

In order to fit the model with Bayesian inference, we must specify priors on the parameters of the
compartmental model. In data-rich settings, the model estimates will be driven by the data, and the
prior values will not make an appreciable difference. In settings where there is not much data available, the
noninformative priors will lead to credible estimates that have appropriately wide uncertainty intervals.

We use the following noninformative priors:

log µc,t ∼

{

Normal
(

log
(

.001 popc,t

)

, 22
)

, if t ≥ 2004;

Normal
(

log
(

.001 popc,t

)

, .22
)

, if t ≤ 2003;

log δc,t ∼

{

Normal
(

log
(

.001) popc,t

)

, 22
)

, if t ≥ 2004;

Normal
(

log
(

.001) popc,t

)

, .22
)

, if t ≤ 2003;

log Ωc,t ∼ Normal
(

log
(

.001 popc,t

)

, 22
)
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Parameter Value Prior Expectation Prior Standard Deviation
LLIN Discard Rate πc .051 .026
NMCP Flow Bias εc .92 .22
NMCP Flow Error σdr

c
1.4 .17

ITN Coverage Parameter ηc 4.0 .12
ITN Dispersion Parameter αc 3.0 1.2

Survey Design Error γc 1.9 .37

Table 2. Empirical priors, together with their expectations and standard deviations.

For stocks, we start the system dynamics model in 1999, before LLINs were introduced, and we impose
a restriction that stock variables are never negative:

log Ψc,1999 = 0

log Θc,1999 = 0

Ψc,t,Θc,t,Ωc,t ≥ 0

We include three additional priors that encode beliefs about time-trends in the distribution system.
A “proven capacity” prior captures the belief that, if a given quantity of nets was distributed during
a given year, this is evidence that the supply chain can distribute this many nets, and so it is unlikely
for many less to be distributed in subsequent years (provided nets are available for distribution). We
approximate flow by mid-year stock for non-LLIN ITNs, and formalize this prior as:

(

log(Ωc,t+.5 + δc,t) − max
t′<t

log (Ωc,t′+.5 + δc,t′)

)−

∼ Normal(0, .52),

where (x)− =

{

x, if x < 0;

0, otherwise.

An “ITN composition” prior captures the expert knowledge that LLINs became more prevalent than
non-LLIN ITNs as they became available. We formulate this in terms of household ownership stock:

Θc,t

Θc,t + Ωc,t
∼

{

Normal(0, .52) if t ≤ 2001;

Normal(1, .52) if t ≥ 2005.

A “coverage smoothing” prior represents the expert belief that coverage levels do not change drastically
year-to-year. This is formalized as:

log Σc,t − log Σc,t−1 ∼ Normal(0, .52).

3.3 Empirical Bayesian Priors

Whenever possible, we use data-based estimates to select the Bayesian parameters in the statistical model
above. This empirical-Bayes approach typically takes the form of fitting a mixed effects model across all
country-years where a direct measurement of the quantity of interest can be made, and using the results
to select priors for the country-specific model described above. Table 2 summarizes the results of this
approach.

To select a prior for the LLIN Discard Rate (πc), we pool six studies on LLIN retention (listed in Web
Appendix C), each of which reports the fraction of nets remaining in households (ri) after some follow-up
time period has elapsed (Ti). We model the observed value as

ri ∼ Normal
(

(1 − πc)
Ti , σ2

)

,
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Figure 3. Empirical prior for LLIN Discard Rate (πc). Dashed green curve is the hyper-prior,
black vertical lines represent the data, cyan histogram shows the hyper-posterior, and the solid blue
curve shows the empirical prior, which is used for Bayesian inference in the compartmental model.

where σ is an additional parameter introduced to model the dispersion of the studies. To complete the
model, we select uninformative (hyper)-priors for πc and σ,

πc ∼ Beta(1, 2)

σ ∼ InverseGamma(11, 1)

Sampling the posterior distribution with MCMC (220000 samples, of which the first 20000 were
discarded and the remaining 20000 were thinned by a factor of 20) yields a posterior distribution of πc

with mean .051 and standard deviation .026, so we use the Beta distribution with this mean and standard
deviation as an empirical prior,

πc ∼ Beta(3.6, 68).

This empirical prior is summarized in Figure 3.
We next select priors for bias and error in NMCP LLIN distribution data (εdr

and σdr
). These are

obtained by pooling data for the 17 country-years (c, t) where both survey distribution data dc,t and
NMCP distribution data dr

c,t are available, and fitting a 2 parameter model consistent with the models
for the likelihoods of NMCP LLIN flow data and survey LLIN flow above:

log(dr
c,t) ∼ Normal

(

log(dc,t/(1 − πc)
ts−(t+.5)) + εc,

(

σdr
c

)2
+

(

(1.1)σdc,t

)2
)

.

To complete the model, we select uninformative hyper-priors

εc ∼ Normal(0, 1)

σdr
c
∼ Exp(1)

Sampling the posterior distribution with MCMC (220000 samples, of which the first 20000 were discarded,
and the remaining were thinned by a factor of 20) yields a marginal posterior distribution of εc with mean
.92 and standard deviation .22 and of σdr

c
with mean 1.4 and standard deviation .17. We use normal

distributions as empirical priors for εc and σdr
c

with these parameters. In other words, as empirical priors
for each country-specific model above, we take

εc ∼ Normal
(

.92, .222
)

σdr
c
∼ Normal

(

1.4, .172
)
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Figure 4. Empirical prior for NMCP Flow Bias and Error (εc and σdr
c
). Dashed green curves

are the hyper-prior, cyan histogram shows the hyper-posterior, and the solid blue curve shows the
empirical prior which is used for Bayesian inference in the compartmental model.

This empirical prior is summarized in Figure 4, and the data on which these priors are based is shown
as a scatter plot in Figure 5.

To select empirical priors for the ITN coverage parameter and ITN dispersion parameter (ηc and αc),
we pool all data for country-years (c, t) where survey data provide estimates of both LLIN stock (sc,t)
and LLIN coverage (LLINc,t). Both of these measurements have reliable estimates of uncertainty (σsc,t

and σLLINc,t
), which we also make use of. We obtain empirical priors on ηc and αc by fitting a model

with latent Θc,t parameters:

Θc,t ∼ Normal
(

sc,t,
(

σsc,t

)2
)

LLINc,t ∼ Normal
(

∆c,t,
(

σLLINc,t

)2
)

To fit this model, we specify uninformative (hyper)-priors on ηc and αc:

ηc ∼ Normal(5, 32)

αc ∼ Exp(1)

Sampling the posterior distribution with MCMC (220000 samples, of which the first 20000 were discarded,
and the remaining were thinned by a factor of 20) yields a marginal posterior distribution of ηc with mean
4.0 and standard deviation .12 and of αc with mean 3.0 and standard deviation 1.2. We use a normal
distribution for the empirical prior for ηc and a gamma distribution for the empirical prior for αc, with
parameters to match these means and standard deviations. In other words, as empirical priors for each
country-specific model above, we take

ηc ∼ Normal
(

4.0, .122
)

αc ∼ Gamma (6.3, 2.1)
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Figure 5. Data on LLINs distributed to households in country c during year t, as
estimated from household surveys and NMCP reports. The dashed line shows the identity
y = x, where points should fall if the household survey data and NMCP reports match.
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Figure 6. Empirical prior for Coverage Parameter and Dispersion Parameter (ηc and αc).
Dashed green curves are the hyper-prior, cyan histogram shows the hyper-posterior, and the solid blue
curve shows the empirical prior which is used for Bayesian inference in the compartmental model.

These empirical priors are summarized in Figure 6.
Finally, to select the empirical prior for the survey design effect, we compare the sampling error

assuming simple random sampling to the sampling error taking into account the complex survey design.
This yields enough high-quality data that we simply use the mean and variance of the survey design effect
to select the empirical prior:

γc ∼ Normal(1.90, .372)

Figure 7 summarizes this.

4 MCMC approach to Bayesian inference

The previous sections completely defined the system dynamics model and statistical model used to har-
monize all relevant sources of ITN data. This section describes the computational approach used to fit
the model parameters.

We used the Python package PyMC [8], which performs Markov Chain Monte Carlo (MCMC) to
draw samples from the model’s posterior distribution. We ran a separate chain for each country model
for 5, 250, 000 steps, discarding the first 250, 000 steps as a “burn-in” period, and thinning the remaining
samples by a factor of 1000 to ensure independence. This yields 5000 draws from the posterior distribution,
from which we estimate the marginal mean and 95% uncertainty intervals of all model parameters of
interest. For example, Figure 8 summarizes the posterior distributions of the exponentiated NMCP Flow
Bias parameters (exponentiating the parameter maps it to a scale that is easier to interpret, as a bias
factor).

Before this calculation is run, the empirical priors are generated, also by MCMC. These smaller models
do not require as much burn-in or thinning, as described in Section 3.3 above.
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Figure 7. Empirical prior for Survey Design Effect (γc). Cyan histogram shows the survey
design effect observed distribution, and the solid blue curve shows the empirical prior used for Bayesian
inference in the compartmental model.
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Figure 8. Posterior distributions for exponentiated NMCP Flow Bias parameters (eεc)
plotted by country. The empirical prior distribution shown first, for comparison.


