Online Supplement

Wave Reflection And Arterial Stiffness In The Prediction Of 15-Year All-Cause And Cardiovascular Mortalities: A Community-Based Study

Kang-Ling Wang^a, Hao-Min Cheng^b, Shih-Hsien Sung^a, Shao-Yuan Chuang^c,

Cheng-Hung Li^a, Harold A. Spurgeon^d, Chih-Tai Ting^e, Samer S. Najjar^d, Edward G. Lakatta^d, Frank C.P. Yin^f, Pesus Chou^h, Chen-Huan Chen^{b,g,h,i}

^aDepartment of Medicine and ^bDepartment of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; ^cInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; ^dthe Laboratory of Cardiovascular Science in the National Institute on Aging Intramural Research Program in Baltimore, MD, USA; ^eCardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; ^fDepartment of Biomedical Engineering, Washington University, St Louis, MO, USA; ^gCardiovascular Research Center, and ^hDepartment of Public Health, National Yang-Ming University, Taipei, Taiwan

Short title: Wave reflections and cardiovascular mortality

Table S1. Age-stratified hazard ratios and 95% confidence intervals per one-standard deviation increment of each variable for 15-year all-cause and cardiovascular moralities by univariate analysis

	All-cause	mortality	Cardiovascular mortality		
Parameters	Age < 55	Age \geq 55 (n=	Age < 55	Age \geq 55 (n=	
	(n=727)	545)	(n=727)	545)	
PWV	1.33 (1.07-1.60)	1.38 (1.22-1.56)	1.51 (1.10-2.07)	1.50 (1.21-1.87)	
AI	1.40 (1.03-1.91)	0.95 (0.82-1.10)	1.74 (0.98-3.08)	1.26 (0.96-1.66)	
Pi	1.03 (0.76-1.39)	1.37 (1.20-1.55)	1.49 (0.91-2.45)	1.51 (1.20-1.90)	
Pa	1.43 (1.15-1.76)	1.07 (0.92-1.23)	1.67 (1.21-2.32)	1.34 (1.06-1.71)	
RWTT	1.02 (0.75-1.38)	1.06 (0.93-1.21)	0.61 (0.27-1.39)	0.67 (0.40-1.12)	
RI	1.19 (0.86-1.62)	0.93 (0.81-1.07)	1.71 (0.91-3.22)	1.31 (0.97-1.77)	
Pf	1.20 (0.90-1.61)	1.32 (1.16-1.50)	1.54 (0.93-2.54)	1.47 (1.17-1.86)	
Pb	1.33 (1.03-1.73)	1.25 (1.09-1.43)	1.83 (1.24-2.71)	1.61 (1.26-2.05)	

Numbers in bold letters indicate statistical significance.

AI = carotid augmentation index; Pi = incident pressure wave height; Pa = augmented pressure; Pb = backward pressure amplitude; Pf = forward pressure amplitude; PWV = carotid-femoral pulse wave velocity; RI = reflection index; RWTT = reflected wave transit time.

Table S2. Central blood pressure and wave reflection measures derived from carotid pressure

Parameters	Women (n= 598)	Men (n= 674)	P values			
Calibrated by seated brachial MBP and DBP						
Central SBP, mmHg*	129 ± 26	126 ± 22	0.048			
Central PP, mmHg*	44 ± 17	39 ± 14	< 0.001			
Pi, mmHg	34 ± 12	35 ± 11	0.189			
Pa, mmHg	10 ± 9	5 ± 6	< 0.001			
Pf, mmHg	33 ± 12	34 ± 11	0.168			
Pb, mmHg	17 ± 7	14 ± 6	< 0.001			
Calibrated by supine central SBP and DBP [†]						
Central SBP, mmHg	139 ± 26	135 ± 20	0.009			
Central PP, mmHg	66 ± 18	62 ± 15	< 0.001			
Pi, mmHg	52 ± 13	55 ± 13	< 0.001			
Pa, mmHg	14 ± 12	7 ± 8	< 0.001			
Pf, mmHg	47 ± 14	52 ± 16	< 0.001			
Pb, mmHg	22 ± 7	19 ± 7	< 0.001			

waveform calibrated by seated brachial MBP and DBP or supine central SBP and DBP

*: cited from J Hypertens. 2009;27:461-467.

†: Supine brachial blood pressure was taken immediately after the carotid tonometry by a computer-controlled sphygmomanometer (CardioSpec 2000, SRD Medical, Shorashim, Israel).
Blood pressure measurements taken by such device have been shown to be close to the invasive aortic blood pressure measurements (correlation coefficient of 0.98 and a standard error of the estimate of 6.1 mmHg for both systolic and diastolic blood pressure). [Hypertension 1993;21:74-82]

DBP = diastolic blood pressure; MBP = mean blood pressure; Pi = incident pressure waveheight; Pa = augmented pressure; Pb = backward pressure amplitude; Pf = forward pressureamplitude; PP = pulse pressure; SBP = systolic blood pressure.

Darameters	Women (n= 598)			Men (n= 674)				
	LVMI	IMT	eGFR	PWV	LVMI	IMT	eGFR	PWV
Calibrated by	y seated br	achial MB	P and DBP					
Central	0.51‡	0.33‡	-0.23‡	0.49‡	0.32‡	0.20‡	-0.19‡	0.38‡
SBP								
Central PP	0.46‡	0.34‡	-0.28‡	0.45‡	0.30‡	0.23‡	-0.19‡	0.36‡
Pi	0.36‡	0.28‡	-0.22‡	0.39‡	0.21‡	0.14‡	-0.11†	0.29‡
Pa	0.41‡	0.29‡	-0.25‡	0.37‡	0.31‡	0.27‡	-0.24‡	0.28‡
Pf	0.41‡	0.28‡	-0.26‡	0.40‡	0.21‡	0.16‡	-0.10†	0.26‡
Pb	0.47‡	0.34‡	-0.25‡	0.44‡	0.32‡	0.22‡	-0.22‡	0.33‡
Calibrated by supine central SBP and DBP*								
Central	0.50‡	0.25‡	-0.12†	0.46‡	0.29‡	0.14‡	-0.10†	0.31‡
SBP								
Central PP	0.44‡	0.24‡	-0.12†	0.41‡	0.25‡	0.14‡	-0.06	0.22‡
Pi	0.27‡	0.11†	0.00	0.27‡	0.11†	0.00	0.08	0.09§
Pa	0.40‡	0.26‡	-0.20‡	0.36‡	0.30‡	0.27‡	-0.23‡	0.25‡
Pf	0.25‡	0.08	-0.06	0.24‡	0.00	-0.04	0.14‡	-0.02
Pb	0.43‡	0.27‡	-0.11†	0.40‡	0.30‡	0.17‡	-0.16‡	0.26‡

Table S3. Sex-stratified Pearson correlation coefficients of parameters of blood pressure, aortic stiffness and wave reflection with various target-organ indices

†: *P* value <0.01

‡: *P* value < 0.001

*: Supine brachial blood pressure was taken immediately after the carotid tonometry by a computer-controlled sphygmomanometer (CardioSpec 2000, SRD Medical, Shorashim, Israel). Blood pressure measurements taken by such device have been shown to be close to the invasive aortic blood pressure measurements (correlation coefficient of 0.98 and a standard error of the estimate of 6.1 mmHg for both systolic and diastolic blood pressure). [Hypertension 1993;21:74-82]

DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; IMT = intimamedia thickness; LVMI = left ventricular mass index; MBP = mean blood pressure; Pi = incident pressure wave height; Pa = augmented pressure; Pb = backward pressure amplitude; Pf = forward pressure amplitude; PP = pulse pressure; PWV = carotid-femoral pulse wave velocity; SBP = systolic blood pressure.

Parameters	All-cause mortality		Cardiovascular mortality				
	Women (n= 598)	Tomen (n=598) Men $(n=674)$ Women $(n=598)$		Men (n= 674)			
Calibrated by seated brachial MBP and DBP							
Central SBP	1.79 (1.48-2.17)	1.23 (1.05-1.45)	2.76 (1.96-3.90)	1.68 (1.26-2.22)			
Central PP	1.99 (1.68-2.37)	1.54 (1.35-1.75)	2.69 (2.01-3.61)	1.62 (1.28-2.06)			
Pi	1.99 (1.69-2.35)	1.41 (1.24-1.61)	2.69 (2.01-3.54)	1.30 (0.99-1.71)			
Pa	1.49 (1.26-1.76)	1.48 (1.31-1.68)	1.70 (1.28-2.26)	1.80 (1.47-2.21)			
Pf	1.96 (1.66-2.32)	1.40 (1.22-1.61)	2.49 (1.88-3.30)	1.36 (1.04-1.78)			
Pb	1.83 (1.54-2.18)	1.55 (1.35-1.77)	2.48 (1.85-3.31)	1.75 (1.37-2.22)			
Calibrated by supine central SBP and DBP*							
Central SBP	1.65 (1.38-1.98)	1.11 (0.94-1.32)	2.43 (1.80-3.26)	1.69 (1.27-2.25)			
Central PP	1.83 (1.53-2.19)	1.27 (1.09-1.50)	2.50 (1.87-3.35)	1.49 (1.11-1.99)			
Pi	1.66 (1.40-1.98)	1.01 (0.85-1.20)	2.24 (1.70-2.96)	0.93 (0.67-1.30)			
Pa	1.45 (1.21-1.73)	1.40 (1.24-1.59)	1.70 (1.25-2.30)	1.67 (1.38-2.01)			
Pf	1.35 (1.19-1.54)	0.89 (0.75-1.07)	1.47 (1.22-1.78)	0.79 (0.55-1.14)			
Pb	1.64 (1.36-1.97)	1.35 (1.16-1.57)	2.34 (1.73-3.16)	1.67 (1.28-2.16)			

Table S4. Hazard ratios and 95% confidence intervals per one-standard deviation increment of each variable for 15-year all-cause and cardiovascular moralities by univariate analysis

Numbers in bold letters indicate statistical significance.

*: Supine brachial blood pressure was taken immediately after the carotid tonometry by a computer-controlled sphygmomanometer (CardioSpec 2000, SRD Medical, Shorashim, Israel). Blood pressure measurements taken by such device have been shown to be close to the invasive aortic blood pressure measurements (correlation coefficient of 0.98 and a standard error of the

estimate of 6.1 mmHg for both systolic and diastolic blood pressure). [Hypertension 1993;21:74-82]

DBP = diastolic blood pressure; MBP = mean blood pressure; Pi = incident pressure waveheight; Pa = augmented pressure; Pb = backward pressure amplitude; Pf = forward pressureamplitude; PP = pulse pressure; SBP = systolic blood pressure.

Figure S1: Pf and Pb calculated by using the triangular-shaped flow wave (Pf tri and Pb tri, respectively) have been compared with those calculated by using the true aortic flow wave derived from Doppler echocardiography (Pf echo and Pb echo, respectively) in another 30 subjects in our laboratory. The figure shows the Bland-Altman analysis. Panel A, agreement between Pf tri and Pf echo; Panel B, agreement between Pb tri and Pb echo. Dashed lines indicate the boundaries of 2 standard deviations of the differences. Solid lines indicate the mean of the differences.

Figure S2, Wang et al

Figure S2: To explore the age-related effects on carotid-femoral PWV and carotid pressure waveform analysis variables, regression equations were derived for each gender with first- or second-order polynomial models. The figure shows non-linear and linear regression curves representing the effects of age on PWV (A), AI (B), Pa (C), and Pb (D) respectively, for women (solid lines) and men (dashed lines).