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1 Analysis of the semi-linear Hebbian model

In this section, we mathematically analyze the properties of the Hebbian learning rule of
Eq. 6, and illustrate, with a simple semi-linear model (linear except for hard upper and lower
bounds on weights) the stability or instability of contra-dominated, equalized, and open-eye-
dominated patterns under normal conditions and under MD.

1.1 Analytical Framework

Let �w(x) =

(
wI(x)
wC(x)

)
be the vector of synaptic weights and �h(x) =

(
hI

hC

)
be the input

vector. To begin with, the output firing rate of a neuron at cortical position x is described
by

r(x) =
∑

a=C,I

wa(x)ha +

∫
dx′M(x− x′)r(x′)

=

∫
dx′K(x− x′)�hT �w(x), (S1)

where K(x) = 1
2π

∫
dkeikx 1

1−M̃(k)
and M̃ is the Fourier transformation of the function describ-

ing intracortical connectivity. Note that the half rectification function in Eq. 1 is omitted here
so that the equation will be linear and amenable to analysis. We assume that the input mean

has the form 〈�h〉 =

(
1
ε

)
and the input covariance matrix has the form

〈(�h− 〈�h〉)(�h− 〈�h〉)T 〉 = q

(
1 cε
cε ε

)
(S2)

with covariance strength q > 0, MD factor 0 ≤ ε ≤ 1 and between-eye correlation 0 ≤ c ≤ 1.
Here, ε = 1 corresponds to normal development while smaller values of ε model monocular
deprivation.
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Setting S = 1
2

(
1 −1
−1 1

)
, the average changes of synaptic weights according to the

Hebbian learning rule with subtractive normalization is described by

∆�w(x) = α〈(r(x) − ρr̄(x))S�h〉 (S3)

= α〈(δr(x) + (1− ρ)r̄(x))S�h〉

= α

∫
dx′K(x− x′)S

[
〈(�h− 〈�h〉)(�h − 〈�h〉)T 〉+ (1− ρ)〈�h〉〈�h〉T

]
�w(x′)

along with the saturation condition of synapses, 0 ≤ wa(x) ≤ wmax. Equation S3 becomes

∆�w(x) = α

∫
dx′K(x− x′)A�w(x), (S4)

where we have defined the matrix A = S
[
〈(�h− 〈�h〉)(�h− 〈�h〉)T 〉+ (1− ρ)〈�h〉〈�h〉T

]
=

(
u v
−u −v

)

with u = q(1− cε)/2 + (1− ρ)(1− ε)/2 and v = −qε(1− c)/2 + (1− ρ)ε(1− ε)/2. The eigen-
value decomposition of this matrix is written as A = PΛP−1 where the columns of P are the
eigenvectors of A and Λ is a diagonal matrix whose diagonal entries are the corresponding
eigenvalues of A. We find that

P =
1

λ1

(
−v 1
u −1

)
(S5)

and

Λ =

(
0 0
0 λ1

)
, (S6)

where λ1 = u − v. Then, if �e0 and �e1 are the two eigenvectors of P, we can decompose
�w(x) = z0(x)�e0 + z1(x)�e1 where z0(x) and z1(x) are given by

(
z0(x)
z1(x)

)
= P−1�w(x) =

(
1 1
u v

)(
wI(x)
wC(x)

)
. (S7)

We can then reexpress Eq. S4 in terms of the dynamics of z0 and z1:

∆z0(x) = 0,

∆z1(x) = αλ1

∫
dx′K(x− x′)z1(x). (S8)

Note that z0(x) = wI(x)+wC(x) does not change in time because of the imposed subtractive
normalization constraint, i.e, the sum of contra-eye and ispi-eye synapses should be constant.
The saturation condition of synapses is now described by

0 ≤ −vz0(x) + z1(x) ≤ λ1wmax,

0 ≤ uz0(x)− z1(x) ≤ λ1wmax. (S9)

The learning dynamics of Eq. S8 has an energy function

E = −
1

2

∫ ∫
dxdx′z1(x)K(x− x′)z1(x

′). (S10)
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The direction of flow at z = (z0(x), z1(x)) is described by the negative gradient of E.
We assume K(x) is symmetric about zero, K(x) = K(−x), so that its Fourier transform

is real. Because K̃(k) = 1/(1 − M̃(k)) and we assume we are working in a regime in which
cortical dynamics are stable, meaning M̃(k) < 1 for all k, the Fourier spectrum of K is always
positive, i.e., K̃(k) > 0.

From the positivity of the Fourier spectrum of K, we can show that all the stable fixed
points of the dynamics satisfy z1(x) = zmax or z1(x) = zmin, where all the components of
wa(x) are saturated. Note that zmax = uwmax, zmin = vwmax if v < 0 and zmin = 0 if v > 0.
To show this, we show there cannot be a stable fixed point z∗ = (z∗0(x), z∗1(x)) of the dynamics
that has a non-saturated component. First, if we perturb z around that stable fixed stable
point by δz = (δz0(x), δz1(x)), the energy function changes by

δE = −

∫
dxδz1(x)v∗1(x)−

1

2

∫ ∫
dxdx′δz1(x)K(x− x′)δz1(x

′), (S11)

where the negative gradient of E at z∗ is described by v∗1(x) =
∫

dx′K(x−x′)z∗1(x′). Because
the fixed point is stable, any allowed perturbation (meaning any perturbation that does
not carry synapses past their weight limits) must yield a positive δE. The second term of
Eq. S11 is always negative because the Fourier spectrum of K is all positive (analogous to
a positive definite matrix in a discrete case). Therefore, the first term must be positive for
any allowed perturbation. However, if at least one component of z1(x) has not saturated, we
can always choose a non-zero δz1(x) to be perpendicular to v∗1(x), i.e.,

∫
δz1(x)v∗1(x) = 0,

by perturbing only the non-saturated component of z1(x). The gradient of E at z∗ must be
zero in the direction of any nonsaturated component of z∗, because otherwise z∗ would not
be a fixed point. This is contradictory because, then, the energy function is decreased by the
perturbation δz, so z∗ is not stable. Therefore, all the components of z1(x) are either zmax or
zmin at stable fixed points.

1.2 Stability of contra-dominated, equalized, and open-eye-dominated pat-
terns under the covariance learning rule

In the main text, we explained that the initially contralaterally-dominated pattern stayed in-
tact under the covariance learning rule with subtractive normalization until cortical inhibition
matured (Fig. 2C). This contralaterally-dominated pattern was destabilized with the matu-
ration of inhibition that initiates the CP and the equalized pattern became stable (Fig. 2D).
Subsequently, if the contra-eye was closed, an MD shift to the open-eye-dominated pattern
occurred in the presence of large noise (Fig. 2E), but the equalized pattern remained stable
against MD without the noise. Here, we explain these results using the linear analysis de-
scribed in section 1.1. In particular, the maturation of inhibition changes K from a more
low-pass to a more band-pass filter (as shown in Fig. S1A), and we show that this destabilizes
the contralaterally-dominated pattern. We also show that closing the contra-eye after the
equalization of OD columns does not cause an MD shift without noise, because the equalized
pattern remains stable.

From the analysis in the section 1.1, the dynamics of the covariance learning under sub-
tractive normalization are described by Eq. S8, and the z1(x) are equal to either zmax or
zmin at stable fixed points. Hence, in order for z1(x) to be a stable fixed point, its flow,
∆z1(x) ∝

∫
K(x − x′)z1(x

′)dx′, should be positive at x where z1(x) = zmax and negative
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at x where z1(x) = −zmin. We simulated Eq. (S8), starting from the same initial condi-
tion described in Fig. 2B. In Figure S1B, each panel shows z1 (red lines) and the corre-
sponding

∫
K(x − x′)z1(x

′)dx′ (blue lines) under a different condition. The top-left panel
shows the contralaterally-dominated pattern of z1 before the CP and the corresponding flow,∫

K(x− x′)z1(x
′)dx′ (blue lines). Before the CP, K is essentially a low-pass filter but with a

delta-peak at the center. Hence, ∆z1(x) is a superposition of z1(x) itself and its low-passed
or smoothed version. We can see from the figure that this z1 is stable, having two peaks
inherited from z1(x); the stability of z1(x) is essentially due to the delta-peak of K. The
top-right panel shows the same pattern z1, along with the new flow

∫
K(x − x′)z1(x

′)dx′

induced after the maturation of inhibition that initiates the CP. Now, K is more a band-pass
filter, and this creates another positive peak of ∆z1 in between the two peaks of z1, making
this pattern unstable. This shows how the maturation of inhibition destabilizes the initial,
contralaterally-dominated condition.

The bottom-left panel shows the equalized pattern of z1 that forms during the CP and the
corresponding flow

∫
K(x−x′)z1(x

′)dx′. This equalized pattern is stable given the maturation
of inhibition. Under the subsequent MD condition, zmax and zmin change their values because
of the change in the closed-eye input strength, ε. The bottom-right panel shows the equalized
pattern of z1 after MD – the same pattern as in the lower left panel, except that the values of
zmax and zmin are changed to reflect the MD – along with the corresponding flow. The flow
is barely changed, so that the equalized pattern remains stable under MD. This small change
of ∆z1(x) after MD can be understood from the fact that the change in z1 is an almost equal
increase across all x, that is, it represents the addition of a DC (spatially invariant) component;
and K has a very small DC component, K̃(0), due to the strong cortical inhibition. Even
though z1 is uniformly pushed toward more positive or less negative values, almost half of
cortical areas still have negative ∆z1(x), preventing the MD from destabilizing the equalized
condition.

2 Parameter Dependence of Model Results

As described in the main text, both the Hebbian learning rule with subtractive weight normal-
ization (“Hebbian rule”) and the Hebbian learning rule with homeostatic regulation (“home-
ostatic rule”) explained the equalization of OD columns by the maturation of inhibition and
the OD shift under subsequent MD. However, the outcome of the Hebbian rule was more
sensitive to intracortical connectivity and noise levels than the homeostatic rule. While the
homeostatic rule robustly shows equalization and an MD shift with parameter set 1 as well
as with parameter set 2, the Hebbian rule does not equalize with parameter set 2 (Fig. S2).

As shown in Fig.7, the depression of closed-eye synapses is conditioned on the monocular
deprivation factor fMD. The precise fMD value at which closed-eye depression behavior
switches to closed-eye homeostatic potentiation depends on the decay coefficient γ for active
synapses; small γ makes the closed-eye-potentiating domain larger (Fig. S3)

3 Comparison of our Model to That of Swindale (1980)

As we discuss briefly in the main text, Swindale (1980, Appendix A) also addressed the
problem of equalization and MD. Here we further discuss how these models differ.
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Figure S1: (A) The function describing intracortical connections, M (Top), and the resulting
linear filter K (Bottom). The amount of cortical inhibition is increased af the onset of the CP.
(B) Each panel shows the non-trivial eigen mode z1 (red) and

∫
K(x − x′)z1(x

′)dx′ (blue),
which up to a proportionality constant is the derivative ∆z1. Stability requires that regions
where z1 is positive have positive derivative, and negative regions have negative derivative.
Top-left: The contralaterally-dominated pattern is stable before the maturation of inhibition.
Top-right: The contralaterally-dominated pattern becomes unstable after the maturation
of inhibition. Bottom-left: The equalized pattern becomes stable after the maturation of
inhibition. Bottom-right: The equalized pattern remains stable under MD.

We define a variable wD(x) = wC(x)−wI(x) representing the difference between contralateral-
eye (wC) and ipsilateral-eye (wI) input to cortical position x. Equalization means that
w̃D(0) ∝

∫
∞

−∞
dxwD(x) = 0 where w̃D(0) is the Fourier transform of wD(x) at frequency

0, or the “DC” pattern of wD. An ocular dominance shift toward the ipsi eye due to MD of
the contra eye will manifest as w̃D(0) < 0. We also define a variable wS(x) = wC(x) + wI(x).
Due to our normalization constraint, this is equal to a constant, wS(x) = cs for all x and all
times. Swindale (1980, Appendix A) made a similar assumption.

The analysis of equalization and MD in Swindale (1980, Appendix A) considered a linear
model of the dynamics of wD. Such a model applies when the dynamics have a stable fixed
point, and deviations from that fixed point are sufficiently small. A linear version of our
model means that we are ignoring the nonlinearity represented by the []+ in Eq. 1, and
ignoring nonlinearities associated with saturation of weights at maximal or minimal allowed
values. When treated as linear equations, both our model and the model of Swindale (1980,
Appendix A) yield an equation for w̃D(0) of the form

d

dt
w̃D(0) = P̃D(0)w̃D(0) + Z (S12)

In (Swindale 1980, Appendix A), P̃D(0) is the Fourier transform at zero frequency of PD(x) =
PCC(x)+P II(x) where pXY (x) is a phenomonological interaction between a synapse from eye
X (contra or ipsi) and a synapse of eye Y separated across cortex by a distance x, and Z is
cs times the Fourier transform at zero frequency of PCC(x)− P II(x) ((which is proportional
to the integral of this quantity). In our model, P̃D(0) =

(
CCC + CII − (CIC + CCI)

)
K̃(0),
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Figure S2: Development of OD columns under the homeostatic plasticity rule with the pa-
rameter set 1 (A) and under the pure Hebbian plasticity rule with the parameter set 2 (B).
Panels plot synaptic strengths in color as a function of cortical position, x, and simulated
timestep as in Fig. 2A or Fig. 4A. While the homeostatic learning rule show similar behavior
for the two parameter sets, the pure Hebbian plasticity rule is sensitive to parameter choices
and does not equalizes with the parameter set 2.

where CXY describes the correlation between the activities of inputs serving eye X and eye
Y and K̃(0) = (1− M̃ (0))−1 where M̃(0) is proportional to the integral of the function M(x)
describing intracortical connectivity, and Z = cs

(
CCC − CII + (CCI − CIC)

)
K̃(0). In both

models Z = 0 if the two eyes have equal activities, while if the ipsi (contra) eye is deprived
Z becomes negative (positive).

The models differ in the sign of P̃D(0). Swindale assumed that this was negative. Then
w̃D(0) = Z/|P̃D(0)| is a stable fixed point. In our model, P̃D(0) is always positive: increasing
the strength of inhibition makes M̃(0) more and more negative but this makes P̃D(0) smaller
and smaller while keeping it positive. (Note that stability of the activity dynamics requires
that M̃(0) < 1, and in turn is required for the expression of the growth rate in terms of
K̃(0) to be valid, so K̃(0) can never be negative). The result is that w̃D(0) = −Z/P̃D(0)
is an unstable fixed point, and a linear model cannot be sufficient to describe the dynamics.
Equalization occurs because a periodic pattern of wD grows sufficiently faster than the DC
pattern in the linear regime that, in the nonlinear regime in which synapses are saturating,
the DC pattern is suppressed.

In practice, the key differences between the models involve recovery from saturated initial
conditions. In our model, both equalization and monocular deprivation begin from a con-
dition in which most synapses are saturated, and as a result it can be difficult for the eye
whose representation should expand (the open eye under monocular deprivation; the weaker
ipsilateral eye in the case of equalization) to activate the cells that they would have to take
over to expand. For example, in the case of monocular deprivation, as we discuss in the text,
the saturated condition when MD is initiated means that the open-eye synapses are both near
their maximal possible value in open-eye-dominated regions and near their minimal possible
value in closed-eye-dominated regions. This, along with mature inhibition, means that stim-
ulation of the open eye largely or only inhibits the cells dominated by the closed eye. As
a result, the open eye has difficulty taking over the cells initially dominated by the closed
eye without an additional mechanism, e.g. homeostatic plasticity, to allow weak synapses to
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Figure S3: The precise fMD value that yields switching from closed-eye depression to
closed-eye homeostatic potentiation during MD depends on the decay coefficient γ for active
synapses. With γ = 5Hz for ha > 1Hz, the switching behavior occurs at around fMD = 0.3
(c.f. Fig. 7).

recover and compete. Similar considerations apply to the case of equalization. In contrast, in
a linear model, at the stable fixed point preceeding initiation of MD, ocular dominance varies
in a sinusoidal rather than square-wave pattern. Thus, the open eye can activate cells in the
closed-eye dominated regions near the borders of the regions, allowing the open eye to take
over these cells and expand its representation under MD.
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