
Supplementary Methods

The data and the selection of AIMs

We studied a previously described dataset of 1385 individuals from 37 European populations [1].

(Actually, the dataset studied in [1] included 1387 samples; however, in the latest release two

samples were omitted from the dataset due to privacy concerns and thus are not included in

our study.) These samples are a subset of the Population Reference Sample (POPRES) [2] and

were selected using stringent criteria to guarantee their European ancestry; see [1] for details.

The samples were genotyped on approximately 450, 000 SNPs and we kept 447, 212 SNPs, after

removing markers with more than 10% missing entries. Unlike [1] we decided to retain all

SNPs, even those that are in high LD with each other. The reason behind our decision is

two-fold: first, [1] removed a large number of markers to avoid artifacts that might be due to

genomic regions that exhibit high LD in the results of Principal Components Analysis. However,

since both [1] and [3] convincingly argue that PCA does reproduce geographic structure, we do

not need to omit any markers in this work. It is worth noting that the correlation coefficient

between the top two principal components using all available markers and the top two principal

components using only the markers selected in [1] is very high (above 0.975). Second, [1] omitted

genomic regions such as the one surrounding the LCT gene in order to avoid confounding the

PCA results. However, for our purposes, those regions are particularly important since they

correlate (and predict) well the north-to-south European axis. As a second dataset we also

studied SNPs for the selected ancestry informative panels from the HapMap Phase 3 data on the

CEPH European (CEU) and the Tuscan Italian population (TSI) [4, 5, 6]. For both datasets we

only considered SNPs on autosomal chromosomes in our analysis.

For more details on encoding the data numerically in order to apply the Singular Value

Decomposition (SVD) and Principal Components Analysis (PCA) see below. In order to select

ancestry informative markers (AIMs), we used a previously described procedure in [7, 8] that

returns the so-called PCA Informative Markers or PCAIMs for short. The PCAIM selection

algorithm uses the geographically significant eigenSNPs (in this case two) and then assigns a score

to each SNP. Higher scores correspond to SNPs that correlate well with geography. The algorithm

returns the top scoring SNPs, and we have demonstrated that these PCAIMs are very efficient

for ancestry prediction [7]. It is worth noting that the method does not take any special measures

1



in order to avoid redundancy in the set of identified markers. Such redundancy, especially in

the case of dense sets of SNP markers, is typically due to tight linkage disequilibrium. In [8]

we proposed a linear-algebraic method to remove redundancy from the selected PCAIMs. Our

methodology was based on reducing the redundancy removal problem to the so-called Column

Subset Selection Problem (CSSP) and on leveraging algorithms and software that are available

for the latter problem. This redundancy removal step was employed in our work here.

Encoding the data and handling missing entries

The proportion of missing entries in the POPRES dataset after our quality control step was

approximately 2.496%. It is worth emphasizing that all our computations ignore missing entries

and thus we do not need to fill in such entries in any manner. We then transformed the raw

data to numeric values, without any loss of information, in order to apply our linear algebraic

methods. Consider a dataset of a population X consisting of m subjects and assume that for

each subject n biallelic SNPs have been assayed. Thus, we are given a table TX , consisting of

m rows and n columns. Each entry in the table is a pair of bases, ordered alphabetically. We

transform this initial data table to an integer matrix AX which consists of m rows – one for each

subject – and n columns – one for each SNP. Each entry of AX will be −1,0, +1, or empty. Let

B1 and B2 be the bases that appear in the j-th SNP (in alphabetical order). If the genotypic

information for the j-th SNP of the i-th individual is B1B1 the (i, j)-th entry of AX is set to +1;

else if it is B1B2 the (i, j)-th entry of AX is set to 0; else if it is B2B2 the (i, j)-th entry of AX

is set to -1 [7, 8].

The Singular Value Decomposition (SVD) and Principal Components
Analysis (PCA)

We briefly describe the Singular Value Decomposition (SVD) of matrices and the related Principal

Components Analysis (PCA). Given m subjects and n SNPs, let the m × n matrix A denote

the subject-SNP matrix encoded as described above. After mean-centering the columns (SNP

genotypes) of A, the SVD of the matrix returns m pairwise orthonormal vectors ui, n pairwise

orthonormal vectors vi, and m non-negative singular values σi such that σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0.

The matrix A may be written as a sum of outer products as

A =
m∑
i=1

σiu
ivi

T
. (1)
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Each triplet (σi, u
i, vi) may be used to form a principal component of A. Formally, the i-th most

significant principal component of a matrix A is the rank-one matrix that is equal to σiu
ivi

T
. In

our setting, the left singular vectors (the ui’s) are linear combinations of the columns (SNPs) of

A and will be called eigenSNPs [9]. Notice that a principal component is a matrix, whereas an

eigenSNP is just a column vector. PCA is a well-known dimensionality reduction technique that,

in this case, represents all subjects with respect to a small number of eigenSNPs, corresponding to

the top few principal components. All further analysis is then performed on this low-dimensional

representation.

Selecting the PCA Informative Markers and removing redundancy

In order to select ancestry informative markers (AIMs), we used a previously described procedure

in [7, 8] that returns the so-called PCA Informative Markers or PCAIMs for short and is based

on the well-documented fact that PCA reveals population structure [10, 11, 12, 13, 14, 7]. The

PCAIM selection algorithm first determines the number of significant principal components (and

thus the number of informative eigenSNPs) in the data and then assigns a score to each SNP. In

our setting, we are looking to predict an individual’s ancestry by predicting his or hers coordinates

of origin, and thus we will only use the top two eigenSNPs, since they are clearly correlated with

longitude and latitude as shown in prior work [1, 3]. Our methods return SNPs that correlate well

with all informative eigenSNPs and we have demonstrated that the selected PCAIMs are very

efficient for ancestry prediction [7]. Since the method takes no special measures in order to avoid

redundancy in the set of identified markers, we will use the linear-algebraic redundancy removal

technique that we proposed in [8]. Our methodology was based on reducing the redundancy

removal problem to the so-called Column Subset Selection Problem (CSSP) and on leveraging

algorithms and software that are available for the latter problem.

Coordinate prediction via Nearest Neighbors

We model ancestry prediction using panels of AIMs as the following task: given a dataset of

m individuals of known coordinates (longitude and latitude) of origin, genotyped on a panel of

k AIMs, and a new individual of unknown coordinates of origin genotyped on the same panel,

we seek to predict the coordinates of origin of the new sample. This is a standard classification

problem and in order to address it we chose to use a simple Nearest Neighbors (NN) approach.
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NN-type algorithms first compute the distance of the new sample from the m individuals in the

database and then identify the n nearest neighbors of the new sample. In order to predict the

coordinates of the new sample, we simply report the average of the coordinates of its n nearest

neighbors.

In all our experiments our distance metric was the standard Euclidean (ℓ2) distance. The

distance was computed on the projection of the genotypic data on their top two principal com-

ponents. We experimented with different values of n (the number of nearest neighbors) ranging

from ten up to 20 in increments of one, but we did not observe a consistent advantage in using

any value above ten. Thus, we chose to fix n to ten. Similarly, we experimented with various

schemes using weighted averages of the coordinates of the top n nearest neighbors (for example,

the contribution of the coordinates of a neighbor to the final prediction could be weighted by –

some power – of the inverse of its distance to the new sample); once more, we did not observe

a consistent advantage in using such schemes. While we can not rule out that more advanced

classification methodologies and/or better distance metrics might be applicable in order to im-

prove prediction accuracy, it is quite interesting and exciting that standard, simple methods are

quite accurate and useful.

Alternative AIM selection algorithms

It is worth noting that we also experimented with a number of different schemes for selecting

AIMs in order to improve our longitude predictions. In particular, we tried selecting only the

markers that are directly correlated with the second principal component (ie., the component

that is most directly related to longitude). Towards that end, we first selected the 5,000 markers

that are most correlated with the second principal component only (note that our PCAIMs are

selected using a score that depends on both top two principal components) and then selected

panels of 500 and 1000 AIMs using our redundancy removal algorithms. The results were not

particularly encouraging: for example, for the TSI crossvalidation experiment, the average error

was 4.02 degrees with a standard deviation of 3.964 degrees; this is not considerably better

than using the top 1,000 PCAIMs where the error was on average 3.88 degrees with a standard

deviation of 4.85 degrees. Keeping 500 SNPs resulted to an average error of 4.66 degrees with a

standard deviation of 4.95 degrees, which once more is not a worthwhile improvement.
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