

Supplemental Figure S1. Genotyping and detection of cat2 and sid2 mutations.

A, Genotyping of *cat2* T-DNA insertion. WP (wild-type primers), primer combination to detect the wild-type *CAT2* allele. The T-DNA insertion falls within the region amplified by the primer combination. MP (mutant primers), primer combination to detect the T-DNA insertion in the mutant allele (*cat2-1*). *cat2* homozygotes (genotyope 1) show only the MP band (T-DNA insertion is present). For wild-type segregants (genotype 3), only the WP band is detected. Heterozygous plants such as genotype 2 show both WP and MP bands.

B, Genotyping of the *sid2-1* allele of ICS1. To detect *sid2-1* a PCR was performed on double mutants that yielded a predicted 243 bp amplicon. Further digestion with *Tru9I* cut the *sid2-1* allele (89+154 bp) but not the *SID2* allele as seen on the gel.

Primer sequences are given in Supplemental Table S4.

Supplemental Figure S2. Phenotypes of Col-0, *sid*2, *cat*2 and *cat*2 *sid*2 grown at high CO₂. A, Photographs of plants after 3 weeks growth at 3000 μ L L⁻¹ CO₂. Two representative plants of each genotype are shown.

B, Rosette fresh weights (g) after 5 weeks growth in the same conditions. Data are means ± SE of 9 plants.

Supplemental Figure S3

Supplemental Figure S3. Rescue of lesion formation in *cat2 sid2* in long days by complementation with exogenous salicylic acid.

A, Rosette phenotypes in plants grown in long days and sprayed with 1 mM SA or with H_2O . Trypan blue staining for lesions in SA-treated plants is shown at the right. B, Effect of SA treatment on leaf glutathione contents. White bars, GSH. Black bars, GSSG. Data are means \pm SE of three independent leaf extracts taken from different plants.