**Supplemental data** "Freezing tolerance and flowering regulation in cereals: the *VRN-1* connection"

| Gene   | Forward primer<br>(5'-3')  | Reverse primer<br>(5'-3') | Prod.<br>bp <sup>1</sup> | Eff.<br>(%) <sup>2</sup> |
|--------|----------------------------|---------------------------|--------------------------|--------------------------|
| CBF12  | GTCCCACTCCCACTCACAG        | ACATGTCGTGGCACAATGC       | 74                       | 95                       |
| CBF14  | CCACCAAATATGGGAGGAAA       | GCTTTCACAATGAACGAGCA      | 73                       | 92                       |
| CBF15  | CATGTTCGAGCTGGATATGTCCGGGG | GGGAACAGCTTCGGTTTGTTCATGC | 213                      | 100                      |
| CBF16  | GCGGCATGCCTCCAACAGCGCAG    | ACGTGCCCAGGTCCATCTCCCCG   | 200                      | 93                       |
| CBF13  | TGGACATCGACATGTTCAGGCTTG   | CAGAGCAGAATCAGATGGGGAATC  | 214                      | 91                       |
| CBF10  | TGTTCAGTAGGCTTGACTTGTTCCCG | GCAGAATCGGCTACAAGCTCCAG   | 180                      | 86                       |
| CBF3   | GCGGTGGACACCGATATGTTCAG    | GCGAGGGGAATTATCGACTGTAC   | 204                      | 87                       |
| CBF17  | GAGTTCGACTTGGAGCTGGA       | CGAAATCCGCGTAGTAGGAG      | 67                       | 96                       |
| CBF9   | CCAGCAGCAGCAGATCATT        | CGCCGGAAGACATGTAAAAC      | 65                       | 92                       |
| CBF4   | GCTGTTCTCCATGTCGTCAG       | GTAGTACGACCCGGCAACC       | 82                       | 94                       |
| CBF2   | GTCCATCACCTCCAACGACT       | GCGCCAAGTTTGCGTAGTA       | 89                       | 86                       |
| COR14b | GAGCGACTCCTGCTAACGAC       | CTACCGCCTCCTGTACCTTG      | 135                      | 96                       |
| ACTIN  | ACCTTCAGTTGCCCAGCAAT       | CAGAGTCGAGCACAATACCAGTTG  | 91                       | 98                       |
| TEF1   | GCCCTCCTTGCTTTCACTCT       | AACGCGCCTTTGAGTACTTG      | 91                       | 99                       |

<sup>1</sup> PCR product size in base pairs. <sup>2</sup> Primers efficiency.

**Figure S1**. Dominant *VRN-1* molecular marker used to classify segregating plants into homozygous mutants (mvp/mvp) and heterozygous plus homozygous wild type (Mvp/-) classes. The borders of the deletion are currently unknown.



*Methods for Fig. S1*: This dominant marker uses three primers in the PCR reaction. Primers MVP\_F-18 and MVP\_R-22 amplify a 172-bp band in both the mutant and non-mutant lines that is used as an amplification control, whereas primers MVP\_F-18 and MVP\_R-23 amplify a 340-bp band that is only present in the non-mutant lines. PCRs were carried out in a 20 µl volume using 500 p moles each of MVP\_R22 and MVP\_R23, and 750 p moles of MVP\_F18.

## **Primers:**

MVP\_F-18: 5'-AGCCACAAGAACCGGGACTA-3' MVP\_R-22: 5'-ATTCAAGCCCCAATGTTCTC-3' MVP\_R-23: 5'-CCCAAACTTTGCGGTGTATC-3'

## **PCR conditions:**

40 cycles of: 94°C-20 s, 60°C-20 s, 72°C-15 s.

**Figure S2:** Apices of *Mvp-2/-* and *mvp-2/mvp-2* plants before and after cold acclimation in the freezing tolerance test described in Figure S3 (-12 °C). Apices were photographed after 35 days at 20 °C and again after additional 18 days of cold hardening at 4 °C before the freezing experiment. The apices from the *mvp-2/mvp-2* mutant plants were at the vegetative stage whereas those from *Mvp-2/-* plants were at the double ridge stage (dr).



**Figure S3. A)** Average freezing scores using a scale from = dead plants to 5= undamaged plants. The -8 °C experiment included 22 *mvp-1/mvp-1* homozygous mutants (black bars) and 35 *Mvp-1/-* plants (gray bars) carrying at least one functional *VRN-1* copy. The -12 °C experiment used 24 *mvp-2/mvp-2* homozygous mutants and 65 *Mvp-2/-* plants. Plants were 35 days old before the cold acclimation treatment. *P* values correspond to ANOVAS comparing *mvp/mvp* (black bars) and *Mvp/-* (gray bars) plants. **B)** Average relative conductivity (ion leakage) of leaf segments from *mvp-2/mvp-2* and *Mvp-2/-* plants. Error bars represent standard errors of the means (SE) based on 9 replications per genotype / temperature combination.



## Material and Methods used for Figure S3:

A) **Regrowth.** Seeds were germinated in Petri dishes and seedlings were transplanted to wooden boxes (42 cm long x 30 cm wide x 14 cm high) with 9 cm of soil depth. Soil consisted of 4:1 soil to sand. Plants were grown for 35 days in a Conviron growth chamber using a light intensity of 260  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>, constant temperature of 20°C, and 75 % relative humidity. Plants were genotyped with the marker described above in Fig. S1.

After 35 days temperature was decreased 4°C per day until the temperature reached 4°C, which was then held constant for 18 d. Both growth and cold hardening were carried out under long day conditions 16/8 hours (day/night). This was followed by acclimation at -2°C of 6h and 17h (separated by +2°C for 7 hours), and at -4°C for 22 h. Ice nucleation was induced by spraying the leaves with water. Temperature was then lowered 1°C/h to the target temperatures of -9°C, -  $12^{\circ}$ C, and - $13^{\circ}$ C, which were held for 24 h.

After the freezing treatment temperature was increased  $2^{\circ}$ C per h to  $17^{\circ}$ C under a light intensity of 260 µmol m<sup>-2</sup> s<sup>-1</sup>, a 16 h/8 h light/dark photoperiod cycle and 75% RH. After two days the leaves were cut several cm above the soil. Regrowth was scored after 14 days of recovery.

**B)** Electrolyte leakage assay: Electrolyte leakage assays from plants treated at -9, -12 and -13 °C (Fig. S3B) utilized the middle one-third section of the oldest leaf. After removal from the plant, the weight and length of this leaf section was determined. Leaf sections were rinsed with  $DI-H_2O$ , and then incubated overnight in 10 ml of  $DI-H_2O$  in tubes, during which time they were gently shaken.

Maximum ion leakage was determined by boiling three independent *mvp/mvp* homozygous mutant class leaf samples and three independent *Mvp/*- leaf samples for 20 minutes. Conductance was measured using a MultiSample Conductometer (Mikro KKt., Hungary) in an average of 9 plants per genotype temperature combination. Relative conductance was calculated using the equation, Relative conductance = (Measured conductance – Average conductance of di-H<sub>2</sub>O)/ (Average maximum conductance - Average conductance of di-H<sub>2</sub>O)\* 100.

**Fig. S4**. Quantitative RT-PCR analysis of transcript levels of the *CBF* genes present at the *FR-2* locus. Values are expressed relative to the *TEF1* endogenous control (*COR14b* transcript levels are included as reference). Leaf samples were collected from 8-weeks old plants 8 h after transferring plants from 20 °C to 4 °C. Values in the Y axes were normalized and calibrated using the  $2^{-\Delta\Delta CT}$  method (Livak and Schmittgen 2001). The same calibrator was used for all genes to ensure scales are comparable across genes. Homozygous *mvp-1/mvp-1* plants are indicated in black and those of *Mvp-1/-* plants carrying 1 or 2 functional *VRN-1* copies in gray. Values are averages of 10 biological replications ± SE of the means. The inset shows the *CBF* genes with relatively lower transcript levels using a different scale. *P* values were calculated using ANOVA of log(n+1)transformed values \*: *P*<0.05 and \*\*: *P*<0.01.

