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1. Supplementary Methods 
 
1.1 Relationship between mean squared error and correlation 
 
Let the LFP (L(t)) and its estimate (Lest(t)) both have a mean of zero and a variance of 

1. The mean squared error between the and its estimate is defined by:  

� 

ε2 =< (L(t) − Lest (t))
2 >  

where <> denote the mean over the entire recording trial. 

The Pearson correlation coefficient between L(t) and Lest(t) is defined by: 

� 

r = < L(t)Lest (t) > − < L(t) >< Lest (t) >
< (L(t)− < L(t) >)2 > < (Lest (t)− < Lest (t) >)2 >

 

Throughout  the  text,  we  subtract  the  mean  and  set  the  standard  deviation  to  1 

(

� 

< L(t) >=< Lest (t) >= 0   and 

� 

< (L(t)− < L(t) >)2 >=< (Lest (t)− < Lest (t) >)2 >=1). 

Therefore, we have: 

� 

ε2 = 2(1− r)  

This  relationship between r  and ε2  is  illustrated  for  the actual data  in Figure S1F. 

Throughout the text, we report r and we refer to this measure of how close Lest(t) is 

to L(t) as the “estimation accuracy”. 

 

1.2 Derivation of the general W­K filter (hmean) 

We  consider  a  situation  where  we  have N  recordings.  These N  recordings 

could  come  from  N  separate  trials  for  the  same  electrode  or  from  N  different 

electrodes.  In  each  of  these  recordings,  we  have  a  spike  train,  xj(t),  and  the 

corresponding LFP, Lj(t).  The  signals  are normalized  so  that  they have  zero mean 



and a standard deviation of 1. We aim to find a filter that minimizes the sum of the 

mean squared errors in the LFP estimations: 

� 

ε2 = 1
N

dt L j (t) − h(t − τ )x j (τ )dτ∫[ ]2∫
j=1

N

∑  

Rewriting Lj(t), h and xj(t)  in terms of their Fourier transforms (

� 

ˆ L j , 

� 

ˆ h  and 

� 

ˆ x j), the 

expression in the square bracket can be written as: 

� 

dkeikt ˆ L j (k)∫ − dτ dk' dk ' 'eik'(t−τ )eik''τ ˆ h (k') ˆ x j (k' ')∫∫∫[ ]. dpeipt ˆ L j ( p)∫ − dτ ' dp' dp' 'eip '(t−τ ' )eip ''τ ' ˆ h (p') ˆ x j (p' ')∫∫∫[ ]
This can in turn be expanded into: 

� 

dk dpei(k + p )t ˆ L j (k) ˆ L j (p)∫∫ − dτ dk ' dk' ' dp∫∫ eik'( t−τ )eik''τeipt ˆ h (k') ˆ x j (k' ') ˆ L j ( p)∫∫ − 

� 

− dτ ' dp' dp' ' dk∫∫ eikteip '(t−τ ' )eip ''τ ' ˆ h (p') ˆ x j (p' ') ˆ L j (k)∫∫ +  

� 

+ dτ dτ ' dk ' dk' '∫ dp' dp' '∫∫∫ eik'(t−τ )eik''τeip '(t−τ ' )eip ''τ ' ˆ h (p') ˆ x j (p' ') ˆ h (k ') ˆ x j (k ' ')∫∫  

Solving the integrals in t, τ and τ’ and simplifying, we obtain: 

� 

ε2 = 1
2πN

dk ˆ L j (k) − ˆ h (k) ˆ x j (k)( ). ˆ L j (k) − ˆ h (k) ˆ x j (k)( )*
=∫

j=1

N

∑ 1
2πN

dkη(k)∫   

where 

� 

η(k) = ˆ L j (k) − ˆ h (k) ˆ x j (k)
2

j=1

N

∑  

To find the optimal filter, we minimize ε2, which is equivalent to minimizing η: 

� 

dη
dh

= d
dh

ˆ L j (k) − ˆ h (k) ˆ x j (k)
2

j=1

N

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= d
dh

( ˆ L j − ˆ h ̂  x j )( ˆ L j − ˆ h ̂  x j )
*[ ]

j=1

N

∑  

Setting the derivative to 0 and simplifying, we obtain: 

� 

ˆ h (k) =
ˆ x j

* ˆ L j
j=1

N

∑

ˆ x j
* ˆ x j

j=1

N

∑
=

jΦLx (k)
j=1

N

∑

jΦxx (k)
j=1

N

∑
 

where 

� 

ΦLx   is  the  cross‐power  spectrum between  the  LFP  and  the  spike  train  and 

� 

Φxx   is the power spectrum of the spike train. This corresponds to Eq. 8 in the main 

text. 

 



1.3  Relationship  between  the  spike­LFP  coherence  and  the  mean  squared 

error 

 

For a single spike train, the optimum linear estimator is given by: 

� 

ˆ h (k) = ΦLx (k)
Φxx (k)

 

and the mean squared error between the LFP and its estimate can be written as: 

� 

ε2 = 1
2π

dk ˆ L j (k) − ˆ h (k) ˆ x j (k)
2

∫  

Several  investigators  in  the  field have used  the coherence between the spike  train 

and the LFP, C, defined as: 

� 

C(k) = ΦLx (k)
Φxx (k)ΦLL (k)

 

We can rewrite ε2 in terms of the coherence: 

� 

ε2 = 1
2π

dk 1− C(k) 2[ ]ΦLL (k)∫  

The  coherence,  weighted  by  the  power  spectrum  of  the  LFP  determines  the 

minimum error in the linear estimation of the LFP. 

 



Supplementary Figures Legends 

 

Figure S1: LFP and spike train power spectral densities 

(A) Normalized LFP power spectral density of 3 example electrodes in V1 from one 

monkey during spontaneous activity. Here we show the power spectral density, in log-log 

scale, averaged across 5 “trials” after normalization by the maximum. The dashed line is 

a linear fit, s indicates the slope for the linear fit. 

(B) Normalized spike train power spectral density of the same 3 example electrodes 

shown in part A. The three spike trains correspond to multi-unit activity. 

(C) Average normalized LFP power spectral density for all the electrodes and trials 

recorded from one monkey (including the 3 electrodes shown in part A). Error bars 

indicate one SEM (n=35). The dashed line is a linear fit, the s value is the slope. 

(D) Average normalized spike train power spectral density for all the electrodes and trials 

recorded from the same monkey in part (C). 

(E) Disitibution of linear fit slopes computed as indicated in part A for all the trials and 

electrodes. Bin size = 0.1. The arrow indicates the mean of the distribution. 

(F) Relationship between the summed squared error (ε2) and the correlation coefficient 

between L(t) and Lest(t) for all the electrodes in part E (n=109). Under the assumptions in 

the text (<L(t)>=<Lest(t)>=0 and var[L(t)]=var[Lest(t)]=1), there is a simple linear 

relationship between these two metrics comparing the LFP and its estimate (see 1.1). 

 

Figure S2: Dependence on nfft and distribution of estimation accuracies 

(A) Dependence of the estimation accuracy on the number of points used to compute the 

convolutions and Fourier transforms (nfft). The gray bars indicate the estimation 

accuracies while the black squares indicate the reconstruction accuracies. The 

reconstruction accuracies use the same data segment to estimate the W-K filter and to 

estimate the LFP whereas the estimation accuracies use separate data. Throughout the 

text, all the figures, analyses and conclusions are based on the estimation accuracies 

computed using nfft=2048 (arrow). The black triangles indicate the estimation accuracies 

obtained under the null hypothesis (using spike trains with the same firing rates as the 

experimental spike trains but with random Poisson statistics, see Methods).  



(B) Estimation accuracy (r) distribution based on single trials (“trial-specific” W-K 

filters) for all V1 electrodes during spontaneous activity. The black arrow indicates the 

mean of the distribution. The gray curve shows the distribution of the reconstruction 

accuracy values (using the same spike/LFP data to compute the W-K filter and to 

compute the estimate; see Methods); the black arrow shows the mean of the estimation 

accuracies and the gray arrow shows the mean of the reconstruction accuracies. The 

dashed line shows the mean estimation accuracy under the null hypothesis (generating a 

Poisson spike train with the same number of spikes as the experimental spike trains) and 

the dotted lines show the range of the estimation accuracies under the null hypothesis. 

 

Figure S3: Example LFP estimates 

Examples of LFP recordings and LFP estimates from two different electrodes in two 

monkeys  (spontaneous activity, V1). The  format  is  the  same as  in Figure 2  in  the 

main text. The electrode shown in B is the same one shown in Figure 2A in the main 

text. For each electrode, here we show 6 different 1‐second samples. The interval of 

1  second  is  used here  for  illustration purposes only  and  is  not  used  in  any of  the 

computations. The 6  segments  are  shown  in  the  actual  occurrence order but  they 

are  not  consecutive.  For  each  sample,  we  indicate  the  number  of  spikes  (n)  to 

illustrate the variability in spike counts across different 1‐second samples. The solid 

line  indicates  the LFP  recording  and  the dashed  line  shows  the LFP estimate  (see 

scale bar below the last segment). The “electrode‐specific” W‐K filters are shown at 

the  bottom of  the  figure. We  show  the  filter  only  for  time  lags  between  ‐800  and 

+800 ms (the actual number of points in the filter was nfft+1 where nfft=2048).  

 
Figure S4: Correlation between estimation accuracy and firing rate, CV, and LFP 

power 

(A) For each electrode recorded in V1 during spontaneous activity (n=109) we show the 

“trial-specific” estimation accuracy (average across all trials) as a function of the firing 

rate (computed over the entire trial and averaged across all trials). The dashed line shows 

a linear fit (correlation coefficient = 0.49). 



(B) For each electrode, the estimation accuracy is shown as a function of the total power 

of the normalized LFP. The format is the same as in part A (correlation coefficient = 

0.44). 

(C) For each spike train, we computed the coefficient of variation of the interspike 

interval distribution (CV). Note that many of these values are >1 because the spike train 

comes from multiple-unit activity (MUA). The format is the same as in part A 

(correlation coefficient = 0.59). 

(D-F) Correlation between estimation accuracy and firing rate (D), normalized LFP 

power (E) and interspike interval coefficient of variation (F) for individual trials. The 

format is the same as in part A except for the lack of averaging across trials. 

 

Figure S5: Correlation between estimation accuracy for spontaneous activity and 

stimulus-driven activity 

There  was  a  strong  correlation  between  the  estimation  accuracy  (r)  computed 

during spontaneous activity (x‐axis) and the estimation accuracy computed during 

stimulus‐driven  activity  (y‐axis).  The  gray  dashed  line  shows  the  linear  fit  (n=71 

electrodes; correlation coefficient ρ=0.64). 

 

Figure S6: LFP estimations from nearby LFP recordings 

(A) We estimated the LFP time course from LFPs recorded from nearby electrodes using 

the same procedure described in Eqs. 2-4 to estimate the LFP from spike trains. Here we 

show a 1 second sample of an LFP recording (L(t), solid line) and its estimate (Lest(t), 

dashed line) using the LFP recorded from a separate electrode located 1 mm away. 

(B) W-K filter for the example LFP estimation in part A.  

(C) Using the same approach used when estimating LFPs from spike trains, we measured 

the accuracy in the estimation by computing the correlation coefficient between the LFP 

and its estimate. Here we show the average estimation accuracy (r) as a function of the 

distance between electrodes (bin size = 1 mm). The error bars denote one SEM.  The 

squares indicate the average reconstruction accuracies (using the same data to compute 

the W-K filter and to estimate the LFP). 

 



Figure S7: LFP estimation using the spike-triggered average 

(A) Average “electrode-specific” spike-triggered average (STA) of the LFP over all the 

electrodes recorded in V1 (spontaneous activity, n=88 electrodes). 

(B) Average “electrode-specific” W-K filter over all the electrodes recorded in V1 

(spontaneous activity, n=88 electrodes). 

(C) Estimation accuracy (r) using the W-K filter (gray) or the spike-triggered-average 

(STA) of the LFP (black). The estimation accuracies were averaged for all electrodes in 

each monkey. Error bars indicate one SEM. The squares indicate the reconstruction 

accuracies. The triangles indicate the estimation accuracies obtained under the null 

hypothesis. 

 

Figure S8: Estimating the LFP in the LGN 

(A) Example showing one second of an LFP recording in the LGN during spontaneous 

activity (solid line) and its estimation (dashed line). The estimation accuracy was 0.01. 

(B) W-K filter for the electrode shown in part A (compare with the typical W-K filters 

shown in Figures 2-4). 

(C) Estimation accuracy for all the electrodes in the LGN in 2 monkeys (spontaneous 

activity). The bars indicate the “electrode-specific” estimation accuracies (see Methods). 

The squares show the reconstruction accuracies (using the same data to compute the W-K 

filter and to estimate the LFP) and the triangles indicate the estimation accuracies under 

the null hypothesis (Poisson spike trains with the same spike counts). Only one of the 

electrodes showed statistically significant estimation accuracy (p<0.01, two-tailed t-test 

comparing against the null hypothesis) but even for this electrode, the estimation 

accuracy was quite poor compared with the values reported for V1 (cf. Figure S2B). 

 
Figure S9: Single unit activity versus multi-unit activity 

(A) Dependence of the estimation accuracy on the spike quality threshold for recordings 

during visual stimulation in V1. The “quality threshold” refers to the number of standard 

deviations above the high-pass filtered extracellular signal noise used as a threshold to 

determine the MUA spike occurrence times. The format and conventions are the same as 

the ones in Figure 3; squares indicate the reconstruction accuracy and the triangles 



indicate performance under the null hypothesis (n=88 electrodes). The weak decrease in 

estimation accuracy with quality threshold is due to the decrease in the total number of 

spikes. The dashed line indicates the estimation accuracy obtained upon normalizing the 

number of spikes across all threshold values by randomly subsampling the spike trains. 

The values reported throughout the text correspond to a quality threshold of 5. (B) The 

waveforms surrounding the thresholded high-pass filtered extracellular signals (3 ms 

around the action potential peak) were used as input to a spike sorting algorithm (Quian 

Quiroga et al 2004). This algorithm separates the spike waveforms into clusters and 

assigns these clusters to multi-units (MUA) or single-units (SUA). Here we show the 

estimation accuracy using all the spikes from those electrodes that contained single-unit 

clusters (labeled “ALL(SUA)”), using all the spikes from those electrodes that contained 

multi-unit clusters (labeled “ALL(MUA)”), from the single-unit spikes (“SUA”) and 

from the multi-unit spikes (“MUA”). The conventions are the same as in part (A). (C) 

Wiener-Kolmogorov filters for the MUA (light gray) and for the SUA (dark gray). The 

W-K filters shown here correspond to the average over 13 electrodes (SUA) and 21 

electrodes (MUA).  
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