Enantioselective Pd-Catalyzed Allyl-Allyl Cross Coupling

Ping Zhang, Laura A. Brozek, James P. Morken*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467

Supporting Information

Table of Contents

GENERAL INFORMATION	S-2
EXPERIMENTAL PROCEDURES	S-3
Preparation of Allylic Carbonates	S-3
Characterization of Allylic Carbonates	S-4
Preparation of Substituted AllylB(pin)	S-10
Characterization of Substituted AllylB(pin)	S-10
Representative Procedure for Allyl-Allyl Cross Coupling	S-11
Characterization and Proof of Stereochemistry	S-12
Deuterium-Labeling Study	S-28
SPECTRAL DATA	S-29

General Information

¹H NMR spectra were recorded on either a Varian Gemini-400 (400 MHz), a Varian Gemini-500 (500 MHz) or a Varian Inova-500 (500 MHz) spectrometer. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, br = broad, m = multiplet, app = apparent), coupling constants (Hz), and assignment. ¹³C NMR spectra were recorded on either a Varian Gemini-400 (100 MHz), or a Varian Gemini-500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: 77.0 ppm). Infrared (IR) spectra were recorded on a Bruker alpha spectrophotometer, v_{max} cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). High resolution mass spectrometry (ESI) was performed at the Mass Spectrometry Facility, Boston College.

Liquid Chromatography was performed using forced flow (flash chromatography) on silica gel (SiO₂, 230×450 Mesh) purchased from Silicycle. Thin Layer Chromatography was performed on 25 μ m silica gel plates purchased from Silicycle. Visualization was performed using ultraviolet light (254 nm) or potassium permanganate (KMnO₄) in water. Analytical chiral gas-liquid chromatography (GLC) was performed on a Hewlett-Packard 6890 Series chromatograph equipped with a split mode capillary injection system, a flame ionization detector, and a Supelco β -Dex 120 column or a Supelco Chiraldex G-TA with helium as the carrier gas. Analytical chiral supercritical fluid chromatography (SFC) was performed on a Berger Instruments Supercritical Chromatograph equipped with an Alcott auto sampler and a Knauer UV detector with methanol as the modifier. Analytical high performance liquid chromatography (HPLC) was performed on an Agilent 1120 compact chromatograph equipped with gradient pump and variable wavelength detector. Optical rotations were measured on a Rudolph Analytical Research Autopol IV Polarimeter.

All reactions were conducted in oven- or flame-dried glassware under an inert atmosphere of nitrogen or argon. Tetrahydrofuran (THF) was purified using a Pure Solv MD-4 solvent purification system from Innovative Technology Inc. Ethyl acetate was purified by drying with calcium hydride and distilled under N₂. Tris(dibenzylideneacetone) dipalladium(0) [Pd₂(dba)₃], (R,R)-(-)-2,3-bis(*tert*-butylmethylphosphino)quinoxaline [(R,R)-QuinoxP*] and (R)-(+)-2,2'-bis(di-2-furanylphosphino)-6,6'-dimethoxy-1,1'-biphenyl [(R)-MeO-Fur-BIPHEP] as well as all the achiral bisphosphine ligands were purchased from Strem Chemicals, Inc. Allylboronic acid pinacol ester [allylB(pin)] was generously donated by Frontier Scientific, Inc. All other reagents were purchased from either Fisher or Aldrich and used without further purification.

Experimental Procedures

Preparation of Allylic Carbonates

Representative Procedure A:¹ A round-bottomed flask with stir bar was charged with *p*-trifluoromethylcinnamyl alcohol (480 mg, 2.37 mmol) and methylene chloride (2 mL). To the resulting solution was added Boc₂O (570 mg, 2.61 mmol) and Bu₄NHSO₄ (16.0 mg, 0.047 mmol) at room temperature. The solution was cooled to 0 °C and aqueous NaOH (1.2 mL, 30% solution) was added dropwise. The solution was allowed to stir overnight. The reaction mixture was diluted with diethyl ether and water, and was then extracted into diethyl ether three times. The combined organics were washed with 1M HCl, water, then brine, and dried over MgSO₄, filtered, then concentrated *in vacuo*. The crude reaction mixture was purified on silica gel (22:1 hexanes: ethyl acetate) to afford 512 mg (72%) of a white solid. $R_f = 0.28$ (22:1 hexanes: ethyl acetate, stain in KMnO₄).

$$\begin{array}{c} OH \\ R \end{array} \xrightarrow{1. \ ^{n}\text{BuLi, THF, -78 \ ^{o}\text{C}}} \\ \hline 2. \ \text{Boc}_{2}\text{O, -78 \ ^{o}\text{C to rt}} \end{array} \xrightarrow{OBoc} \\ \end{array}$$

Representative Procedure B:¹ To a flame-dried round-bottomed flask with stir bar was added 1-(naphthalen-1-yl)prop-2-en-1-ol (530 mg, 2.88 mmol) and THF (7 mL). The solution was cooled to -78 °C (dry ice/acetone) and 1.18 mL (2.88 mmol) of a 2.45 M solution of butyllithium in hexane was added, dropwise. The solution was stirred for 30 minutes at -78 °C, Boc₂O (629 mg, 2.88 mmol) in 4 mL THF was added. The reaction was allowed to warm to room temperature, stirring overnight. The reaction mixture was diluted with 10 mL of diethyl ether and 7 mL of water, and the mixture was stirred 15 minutes. The organic layer was separated and the aqueous layer was extracted into diethyl ether three times. Combined organics were washed with brine then dried over MgSO₄, filtered, then concentrated *in vacuo*. The crude reaction mixture was purified on silica gel (24:1 hexanes: ethyl acetate) to afford 691 mg (84%) of a clear, colorless oil. $R_f = 0.38$ (20:1 hexanes: ethyl acetate, stain in KMnO₄).

¹ Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem. Int. Ed. 2002, 41, 1059.

Representative Procedure C:² A flame-dried round-bottomed flask with stir bar was charged with (*E*)-dec-2-en-1-ol (1.56 g, 10.0 mmol), methylene chloride (20 mL) and pyridine (1.19 g, 15.0 mmol). The resulting solution was cooled to 0 °C (ice-water) and then methyl chloroformate (570 mg, 2.61 mmol) was added dropwise. The reaction was allowed to stir at this temperature for an hour and then warm up to room temperature for another 12 hours. At this time, water was added, and the organic layer was washed with methylene chloride three times. The combined organic layers were then washed with saturated CuSO₄, followed by saturated NH₄Cl and dried over Na₂SO₄, filtered, then concentrated. The crude reaction mixture was purified on silica gel (50:1 hexanes: ethyl acetate) to afford 2.10 g (99%) of a light yellow oil. $R_f = 0.45$ (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of tert-butyl cinnamyl carbonate (Table 1; Table 2, entry 1; Scheme 5). From commercially available cinnamyl alcohol, procedure A was followed. Spectral data is in accordance with literature.¹

Preparation of cinnamyl methyl carbonate (Table 2, entry 2; Scheme 3). From commercially available cinnamyl alcohol, procedure C was followed. Spectral data is in accordance with literature.³

Preparation of tert-butyl (1-phenylallyl) carbonate (Table 2, entry 3). From commercially available 1-phenylprop-2-en-ol, procedure B was followed. Spectral data is in accordance with literature.¹

² Gnamm, C.; Frank, G.; Miller, N.; Stork, T.; Brödner, K.; Helmchen, G. Synthesis **2008**, 20, 3331.

³ Su, Y.; Jiao, N. Org. Lett. 2009, 11, 2980.

Preparation of (E)-tert-butyl (3-(4-chlorophenyl)allyl) carbonate. From allylic alcohol (S-1), synthesized as shown below,⁴ procedure A was followed.

 $\begin{array}{c} \textbf{(E)-tert-butyl (3-(4-chlorophenyl)allyl) carbonate (Table 2, entry 4). ^1H NMR (500 MHz, CDCl_3): \delta 1.50 (9H, s, OC(CH_3)_3), 4.71 (2H, dd, <math>J = 6.5$ Hz, 1.5 Hz, CH₂OBoc), 6.27 (1H, dt, J = 16.0 Hz, 6.5 Hz, ArCH=CH), 6.62 (1H, d, J = 16.0 Hz, ArCH=CH), 7.28-7.32 (4H, m, ArH); ¹³C NMR (125 Hz, CDCl_3): δ 27.8, 67.2, 82.3, 123.7, 127.8, 128.8, 133.0, 133.8, 134.7, 153.3; IR (neat): 2980.9 (w), 1738.6 (s), 1491.6 (w), 1369.6 (m), 1252.8 (s), 1158.4 (s), 1117.2 (m), 1089.6 (m), 967.5 (w), 846.7 (m), 792.0 (w) cm⁻¹; HRMS (ESI+) for C₉H₈Cl [M-OBoc]: calculated: 151.0309, found: 151.0317; The crude reaction mixture was purified on silica gel (20:1 hexanes: ethyl acetate) to afford a clear, colorless oil (83%). R_f = 0.30 (20:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of tert-butyl (1-(napthalen-1-yl)allyl) carbonate. From allylic alcohol (S-2), synthesized as shown below, procedure B was followed.

OBoc

tert-butyl (1-(napthalen-1-yl)allyl) carbonate (Table 2, entry 5). ¹H NMR (500 MHz, CDCl₃): δ 1.48 (9H, s, OC(CH₃)₃), 5.30 (1H, app dt, J = 10.5 Hz, 1.5 Hz, COCH=CH_{cis}), 5.35 (1H, app dt, J = 17.0 Hz, 1.5 Hz, COCH=CH_{trans}), 6.21 (1H, ddd, J = 17.0 Hz, 10.5 Hz, 5.5 Hz,

COCH=CH₂(H, d, J = 5.5 Hz, ArCH), 7.46-7.56 (3H, m, ArH), 7.62 (1H, d, J = 7.0 Hz, ArH), 7.83 (1H, d, J = 8.0 Hz, ArH), 7.87 (1H, dd, J = 7.5 Hz, 1.5 Hz, ArH), 8.12 (1H, d, J = 8.5 Hz, ArH); ¹³C NMR (125 Hz, CDCl₃): δ 27.8, 76.3, 82.4, 117.5, 123.6, 125.1, 125.3, 125.7, 126.3, 128.8, 128.9, 130.6, 133.8, 134.4, 135.8, 152.9; IR (neat): 2980.0 (w), 1736.1 (s), 1368.6 (w), 1271.4 (s), 1250.1 (s), 1154.7 (s), 1101.1 (m), 1082.8 (m), 965.0 (m), 930.1 (m), 882.7 (m), 846.4 (m), 775.2 (s), 435.4 (w) cm⁻¹; HRMS (TOF MS ES+) for C₁₈H₂₀O₃Na [M+Na]: calculated: 307.1310, found: 307.1314; The crude reaction mixture was purified on silica gel (25:1 hexanes: ethyl acetate) to afford a clear, colorless oil (84%). R_f = 0.38 (20:1 hexanes: ethyl acetate, stain in KMnO₄).

⁴ Penjšević, J.; Šukalović, V.; Andrić, D.; Kostić-Rajačić, S.; Šoškic, V.; Roglić, G. Arch. *Pharm. Chem. Life. Sci.* **2007**, *340*, 456.

Preparation of (E)-3-(benzo[d][1,3]dioxol-5-yl)allyl tert-butyl carbonate. From allylic alcohol (S-3), synthesized as shown below,⁴ procedure A was followed.

(E)-3-(benzo[d][1,3]dioxol-5-yl)allyl tert-butyl carbonate $(Table 2, entry 6). ¹H NMR (500 MHz, CDCl₃): <math>\delta$ 1.50 (9H, s, OC(CH₃)₃), 4.68 (2H, dd, J = 6.5 Hz, 1.5 Hz, CH₂OBoc), 5.96

(2H, s, OCH₂O), 6.12 (1H, dt, J = 15.5 Hz, 6.5 Hz, ArCH=CH), 6.57 (1H, d, J = 15.5 Hz, ArCH=CH), 6.75 (1H, d, J = 8.0 Hz, ArH), 6.82 (1H, dd, J = 8.0 Hz, 1.5 Hz, ArH), 6.92 (1H, d, J = 1.5 Hz, ArH); ¹³C NMR (100 Hz, CDCl₃): δ 27.8, 67.5, 82.2, 101.1, 105.8, 108.3, 121.0, 121.5, 130.6, 134.3, 147.6, 148.0, 153.3; IR (neat): 2979.3 (w), 1734.7 (s), 1490.1 (m), 1445.0 (m), 1368.6 (m), 1271.7 (s), 1245.5 (s), 1155.5 (s), 1124.0 (w), 1036.2 (s), 963.0 (m), 925.8 (m), 855.1 (s), 792.2 (m), 611.5 (w), 418.3 (w) cm⁻¹; HRMS (ESI+) for C₁₀H₉O₂ [M-OBoc]: calculated: 161.0597, found: 161.0604; The crude reaction mixture was purified on silica gel (20:1 hexanes: ethyl acetate) to afford a colorless oil (66%). R_f = 0.12 (20:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of (E)-tert-butyl (3-(pyridin-3-yl)allyl) carbonate. From allylic alcohol (S-4), synthesized as shown below, procedure A was followed.

(*E*)-tert-butyl (3-(pyridin-3-yl)allyl) carbonate (Table 2, entry 7). ¹H NMR (400 MHz, CDCl₃): δ 1.44 (9H, s, OC(CH₃)₃), 4.73 (2H, dd, *J* = 6.4 Hz, 1.2 Hz, CH₂OBoc), 6.36 (1H, dt, *J* = 16.0 Hz, 6.0 Hz,

ArCH=CH), 6.65 (1H, d, J = 16.0 Hz, ArCH=CH), 7.23-7.26 (1H, m, ArH), 7.69 (1H, app dt, J = 8.0 Hz, 1.6 Hz, ArH), 8.48 (1H, dd, J = 4.8 Hz, 1.6 Hz, ArH), 8.60 (1H, s, ArH); ¹³C NMR (100 Hz, CDCl₃): δ 27.8, 66.9, 82.5, 123.4, 125.4, 130.4, 131.8, 133.0, 148.5, 149.1, 153.2; IR (neat): 1736.2 (s), 1369.1 (m), 1251.6 (s), 1157.4 (s), 1114.9 (m), 968.2 (m), 861.5 (m), 791.8 (m), 707.0 (m) cm⁻¹; HRMS (ESI+) for C₁₃H₁₈NO₃ [M+H]: calculated: 236.1287, found: 236.1290; The crude reaction mixture was purified on silica gel (4:1 hexanes: ethyl acetate with 2% triethylamine) to afford a clear, colorless oil (55%). R_f = 0.12 (4:1 hexanes: ethyl acetate with 2% triethylamine, visualize by UV).

Preparation of (E)-tert-butyl(3-(4-(trifluoromethyl)phenyl)allyl) carbonate. From allylic alcohol (S-5), synthesized as shown below, procedure A was followed.

 $F_{3}C$ (E)-tert-butyl(3-(4-(trifluoromethyl)phenyl)allyl) carbonate $(Table 2, entry 8). ¹H NMR (400 MHz, CDCl_3): <math>\delta$ 1.51 (9H, s, OC(CH₃)₃), 4.74 (2H, dd, J = 6.4 Hz, 1.6 Hz, CH₂OBoc), 6.38

(1H, dt, J = 16.0 Hz, 6.0 Hz, ArCH=CH), 6.70 (1H, d, J = 16.0 Hz, ArCH=CH), 7.48 (2H, d, J = 8.4 Hz, ArH), 7.58 (2H, d, J = 8.0 Hz, ArH); ¹³C NMR (100 Hz, CDCl₃): δ 27.8, 66.9, 82.5, 125.6 (q, J = 3.7 Hz) 125.7, 126.8, 129.7, 130.0, 132.5, 139.7, 153.3; IR (neat): 2981.7 (w), 1738.3, (s), 1615.8 (w), 1370.0 (w), 1323.7 (s), 1272.0 (s), 1251.8, (s), 1156.5 (s), 1117.7 (s), 1066.3 (s), 968.5 (m), 953.1 (m), 930.9 (w), 852.6 (m), 791.8 (m), 756.1 (w), 597.9 (w) cm⁻¹; HRMS (ESI+) for C₁₀H₈F₃ [M-OBoc]: calculated: 185.0573, found: 185.0579; The crude reaction mixture was purified on silica gel (22:1 hexanes: ethyl acetate) to afford a white solid (72%). R_f = 0.28 (22:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of 1-(furan-2-yl)prop-2-en-1-ol. (Table 2, entry 9). The allylic alcohol was synthesized as shown below. Spectral data is in accordance with the literature.⁵

Preparation of (E)-tert-butyl (3-cyclohexylallyl) carbonate. (Table 2, entry 10). From allylic alcohol (S-6), synthesized as shown below, procedure A was followed. Spectral data is in accordance with the literature.⁶

⁵ Krauss, J.; Unterreitmeier, D. Arch. Pharm. Chem. Life. Sci. 2005, 338, 44.

⁶ Weix, D.J.; Markovi, D.; Ueda, M.; Hartwig, J. F. Org. Lett. 2009, 11, 2944.

Preparation of tert-butyl (1-cyclohexylallyl) carbonate. From allylic alcohol (S-7), synthesized as shown below, procedure B was followed.

OBoc

tert-butyl (1-cyclohexylallyl) carbonate (Table 2, entry 11). ¹H NMR (400 MHz, CDCl₃): δ 0.88-1.30 (6H, m, Cy-H), 1.46 (9H, m, OC(CH₃)₃), 1.46-1.80 (5H, m, Cy-H), 4.67 (1H, app t, *J* = 7.2 Hz, CyCHO), 5.19 (1H, dt, *J* = 10.4, 1.2 Hz, CH=CH_{cis}), 5.22 (1H, dt, *J* = 17.2, 1.2 Hz, CH=CH_{trans}),

5.75 (1H, ddd, J = 17.2, 10.4, 7.2 Hz, CH=CH₂); ¹³C NMR (100 Hz, CDCl₃): δ 25.8, 25.9, 26.3, 27.8, 28.4, 28.5, 41.5, 81.6, 82.2, 117.7, 135.0, 153.2; IR (neat): 2980.5 (w), 2927.2 (m), 2854.3 (w), 1737.2 (s), 1451.4 (w), 1368.2 (w), 1272.7 (s), 1250.6 (s), 1160.9 (s), 958.3 (m), 855.0 (m), 792.1 (m) cm⁻¹; HRMS (ESI+) for C₉H₁₅ [M-OBoc]: calculated: 123.1174, found: 123.1169; The crude reaction mixture was purified on silica gel (50:1 hexanes: ethyl acetate) to afford a clear, light yellow oil (48%). R_f = 0.52 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of (E)-dec-2-enyl methyl carbonate. From commercially available *trans-2-* decen-1-ol, procedure C was followed.

(*E*)-dec-2-enyl methyl carbonate (Table 2, entry 12). ¹H NMR (400 MHz, CDCl₃): δ 0.86 (3H, t, J = 6.8 Hz, CH₂CH₃), 1.25-1.39 (10H, m, CH₃(CH₂)₅), 2.03 (2H, q, J = 7.2 Hz,

CH₂CH₂CH=CH), 3.75 (3H, s, OCH₃), 4.54 (2H, dd, J = 6.8, 0.8 Hz, CH=CHCH₂O), 5.55 (1H, dtt, J = 15.6, 6.4, 1.2 Hz, CH=CHCH₂O), 5.79 (1H, dt, J = 15.6, 7.8 Hz, CH=CHCH₂O); ¹³C NMR (100 Hz, CDCl₃): δ 14.0, 22.6, 28.7, 29.02, 29.04, 31.7, 32.2, 54.5, 68.6, 123.1, 137.5, 155.6; IR (neat): 2955.9 (w), 2925.4 (m), 2855.0 (w), 1747.2 (s), 1441.6 (m), 1379.7 (w), 1252.5 (s), 943.0 (s), 792.0 (m) cm⁻¹; HRMS (ESI+) for C₁₀H₁₉ [M-OCO₂Me]: calculated: 137.1487, found: 139.1484; The crude reaction mixture was purified on silica gel (50:1 hexanes: ethyl acetate) to afford a clear, light yellow oil (99%). R_f = 0.45 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of (E)-tert-butyl 4-(tert-butyldimethylsilyloxyl)but-2-enyl carbonate. From allylic alcohol (S-8), synthesized as shown below, procedure A was followed.

TBSO OBoc (*E*)-tert-butyl 4-(tert-butyldimethylsilyloxyl)but-2-enyl carbonate (Table 2, entry 13). ¹H NMR (400 MHz, CDCl₃): δ 0.03 (6H, Si(CH₃)₂), 0.87 (9H, s, SiC(CH₃)₃), 1.45 (9H, s, OC(CH₃)₃), 4.14-4.16 (2H, m, SiOCH₂CH=CH), 4.52 (2H, d, *J* = 4.8 Hz, CH=CHCH₂OBoc), 5.75-5.87 (2H, m, CH=CH); ¹³C NMR (100 Hz, CDCl₃): δ -5.4, 18.3, 25.8, 27.7, 62.7, 66.8, 81.9, 123.2, 134.4, 153.3; IR (neat): 2954.8 (w), 2930.6 (w), 2886.3 (w), 2857.0 (w), 1740.1 (s), 1462.0 (w), 1391.7 (w), 1368.6 (m), 1274.2 (s), 1161.9 (s), 1106.7 (s), 1050.4 (m), 833.6 (s), 774.7 (s) cm⁻¹; HRMS (ESI+) for C₁₀H₂₁OSi [M-OBoc]: calculated: 185.1362, found: 185.1363; The crude reaction mixture was purified on silica gel (35:1 hexanes: ethyl acetate) to afford a clear, light yellow oil (83%). R_f = 0.41 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of 5-(benzyloxy)pent-1-en-3-yl tert-butyl carbonate. From allylic alcohol (S-9), synthesized as shown below, procedure B was followed.

Representative Procedure for the Synthesis of Substituted AllylB(pin):⁷

$$\begin{array}{c|c} \mathsf{R} & & \mathsf{Pd_2dba_3, B_2(pin)_2} \\ \hline & & \mathsf{DMSO, 60 \ ^{\circ}C} \end{array} \\ \end{array} \\ \begin{array}{c} \mathsf{R} & & \mathsf{B(pin)} \\ \end{array} \\ \end{array}$$

А flame dried round-bottomed flask with stir bar was charged with tris(dibenzylideneacetone) dipalladium(0) (69.0 mg, 0.075 mmol) and B₂(pin)₂ (1.70 g, 6.60 mmol) in a dry-box under an argon atmosphere. The flask was sealed with a septum, and removed from the dry-box. Under an atmosphere of nitrogen, freshly distilled DMSO (18 mL) was added by syringe, followed by methallyl acetate (342 mg, 3.00 mmol). The reaction mixture was then heated to 60 °C in an oil bath for 12 hours. The reaction was diluted with diethyl ether and brine, and the aqueous layer was washed with diethyl ether three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude reaction mixture was purified on silica gel (30:1 pentane: diethyl ether) to afford 338 mg (62%) of a clear, colorless oil. $R_f = 0.35$ (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Preparation of 4,4,5,5-tetramethyl-2-(2-methallyl)-1,3,2-dioxaborolane. From commercially available methallyl acetate.

4,4,5,5-tetramethyl-2-(2-methallyl)-1,3,2-dioxaborolane (Scheme 5, equation 1). ¹H NMR (500 MHz, CDCl₃): δ 1.25 (12H, s, (C(CH₃)₂)₂), 1.73 (2H, s, BCH₂), 1.77 (3H, m, CH₂=CCH₃), 4.66 (1H, m, C=CH₄H_B), 4.68 (1H, m, C=CH₄H_B); ¹³C NMR (125 Hz, CDCl₃): 24.5,

24.6, 24.7, 83.3, 110.2, 142.9; IR (neat): 3414.2 (br), 2978.8 (m), 2929.3 (w), 1647.6, (w), 1475.2 (m), 1455.2 (m), 1372.3 (s), 1325.6 (s), 1272.3 (m), 1143.8, (s), 982.1 (m), 881.4 (m), 849.5 (s) cm⁻¹; HRMS (ESI+) for $C_{10}H_{20}BO_2$ [M+H]: calculated: 183.1556, found: 183.1558; The crude reaction mixture was purified on silica gel (50:1 pentane: ether) to afford 336 mg of a clear, colorless oil (62% yield). $R_f = 0.35$ (30:1 pentane: ether, stain in KMnO₄).

⁷ Ishiyama, T.; Ahiko, T.; Miyaura, N. Tetrahedron Lett. 1996, 37, 6889.

Preparation of 4,4,5,5-tetramethyl-2-(2-methyleneoctyl)-1,3,2-dioxaborolane. From 2-methyeneoctyl acetate, synthesized as shown below.

Representative Procedure for Pd-Catalyzed Allyl-Allyl Cross Coupling

An oven-dried 2-dram vial equipped with a magnetic stir bar was charged with tris(dibenzylideneacetone) dipalladium(0) (4.6 mg, 0.005 mmol), (R)-(+)-2,2'-bis(di-2-furanylphosphino)-6,6'-dimethoxy-1,1'-biphenyl (5.4 mg, 0.010 mmol), and 0.20 mL of THF in a dry-box under an argon atmosphere. The vial was capped and stirred for 5 minutes, then *tert*-butyl cinnamyl carbonate (23.4 mg, 0.100mmol) was added, followed by allylboronic acid pinacol ester (20.1 mg, 0.120 mmol). The vial was sealed, removed from the dry-box, and allowed to stir at 60 °C for 12 hours. After this time period, the reaction vial was cooled to ambient temperature, diluted with diethyl ether, filtered through a plug of silica gel and concentrated *in vacuo*. Analysis of the unpurified reaction mixture using ¹H NMR was used to determine the branched to linear product ratio. Silica gel chromatography (pentane) afforded 11.4 mg (72%) of a colorless oil of the allyl-allyl coupling product as a mixture of isomers.

Characterization and Proof of Stereochemistry

(*S*)-hexa-1,5-dien-3-ylbenzene. ¹H NMR (500 MHz, CDCl₃): δ 2.47-2.51 (2H, m, CHCH₂CH=CH₂), 3.36 (1H, app q, *J* = 7.5 Hz, CHCH₂CH=CH₂), 4.96-5.07 (4H, m, CHCH=CH₂ & CH₂CH=CH₂), 5.73 (1H, ddt, *J* = 17.0 Hz, 10.0 Hz, 7.5 Hz, CH₂CH=CH₂), 5.98 (1H, ddd, *J* = 17.0 Hz, 10.0 Hz, 7.5 Hz, CHCH=CH₂), 7.19-7.22 (3H, m, PhH), 7.29-7.32 (2H, m, PhH); ¹³C NMR (100 MHz, CDCl₃): δ 39.7, 49.6, 114.4, 116.1, 126.3, 127.7, 128.4, 136.6, 141.6, 143.7; IR (neat): 3078.0 (w), 3028.0 (w), 3003.9 (w), 2977.9 (w), 2924.3 (w), 1631.0 (s), 1601.2 (w), 1492.2 (s), 1452.0 (s), 1415.0 (w), 1073.2 (w), 991.4 (m), 910.2 (s), 753.1 (m), 697.6 (s) cm⁻¹; HRMS (ESI+) for C₁₂H₁₅ [M+H]: calculated: 159.1174, found: 159.1176; [α]²⁰_D = +12.237 (*c* = 0.44, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (11.4 mg, 72% yield). R_f = 0.38 (pentane, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allylallyl coupling reaction. Absolute stereochemistry was determined by converting the allylallyl coupling product to a dibenzoate by ozonolysis/reduction and benzoate protection of the corresponding diol, as shown below. *Via* chiral HPLC, the resulting dibenzoate was compared to authentic (*S*)-2-phenylbutane-1,4-diyl dibenzoate, which was derived from commercially available (*S*)-2-phenylsuccinic acid.

Chiral GLC (CD-GTA, Supelco, 60 °C, 25 psi) - analysis of title compound

Chiral HPLC (OD-R, Chiralcel, 1 mL/min, 1% isopropanol, 254 nm) – analysis of 2-phenylbutane-1,4-diyl dibenzoate

(S)-2-phenylbutane-1,4-diyl dibenzoate (S)-2-phenylbutane-1,4-diyl dibenzoate + racemic

(*S*)-1-chloro-4-(hexa-1,5-dien-3-yl)benzene. ¹H NMR (500 MHz, CDCl₃): δ 2.46 (2H, app dtd, J = 21.5 Hz, 14.0 Hz, 7.5 Hz, ArCHCH₂CH=CH₂), 3.34 (1H, app q, J = 7.5 Hz, ArCHCH=CH₂), 4.96-5.08 (4H, m, CH₂CH=CH₂ & ArCHCH=CH₂), 5.69 (1H, app ddt, J = 17.0 Hz, 10.0 Hz, 7.0 Hz, CH₂CH=CH₂), 5.94 (1H, ddd, J = 17.5, 10.5, 7.5 Hz, ArCHCH=CH₂), 7.12 (2H, app dt, J = 8.5 Hz, 2.5 Hz, ArH), 7.27 (2H, app dt, J = 9.0 Hz, 2.5 Hz, ArH); ¹³C NMR (125 Hz, CDCl₃): δ 39.6, 48.9, 114.8, 116.5, 128.5, 129.1, 132.0, 136.2, 141.1, 142.1; IR (neat): 3078.8 (w), 2978.4 (w), 2925.5 (w, br), 1640.1 (w), 1490.9 (s), 1406.8 (w), 1091.7 (s), 1014.4 (m), 922.2 (m), 913.9 (s), 826.9 (m), 523.8 (w) cm⁻¹; HRMS (ESI+) for C₁₂H₁₄Cl [M+H]: calculated: 193.0784, found: 193.0793; [α]²⁰_D = +24.816 (c =0.64, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (17.9 mg, 59% yield). R_f = 0.6 (pentane, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral GLC (CD-GTA, Supelco, 80 °C for 60 min, ramp 3 °C/min to 120 °C, 25 psi) – analysis of the title compound.

Racemic

Reaction Product

Peak	RetTime	Type	Width	Area	Height	Area
ŧ	[min]		[min]	[pA*s]	[pA]	8
1		I I				1
1	64.917	MM	0.7236	2868.11475	66.06399	94.96504
2	66.898	MM	0.4733	152.06499	5.35460	5.03496

(*S*)-1-(hexa-1,5-dien-3-yl)naphthalene. ¹H NMR (500 MHz, CDCl₃): δ 2.66-2.69 (2H, m, ArCHCH₂CH=CH₂), 4.23 (1H, app q, J = 7.0 Hz, ArCHCH=CH₂), 4.99-5.14 (4H, m, CH₂CH=CH₂ & ArCHCH=CH₂), 5.83 (1H, app ddt, J = 17.0 Hz, 10.0 Hz, 7.0 Hz, CH₂CH=CH₂), 6.12 (1H,

ddd, J = 17.0, 10.5, 7.0 Hz, ArCHCH=CH₂), 7.40 (1H, d, J = 7.0 Hz, ArH), 7.44-7.54 (3H, m, ArH), 7.74 (1H, d, J = 8.0 Hz, ArH), 7.87 (1H, dd, J = 7.0 Hz, 0.5 Hz, ArH), 8.12 (1H, d, J = 8.0 Hz, ArH); ¹³C NMR (100 Hz, CDCl₃): δ 39.3, 43.9, 115.0, 116.2, 123.4, 124.2, 125.4, 125.5, 125.8, 126.9, 128.9, 131.6, 134.0, 136.8, 139.7, 141.1; IR (neat): 3090.1 (w), 1638.2 (w), 992.1 (w), 911.9 (m), 796.3 (w), 776.4 (s) cm⁻¹; HRMS (ESI+) for C₁₆H₁₇ [M+H]: calculated: 209.1330, found: 209.1334; $[\alpha]^{20}{}_{D} = +26.602$ (c = 0.89, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (27.1 mg, 87% yield). R_f = 0.29 (pentane, stain in KMnO₄).

Proof of Stereochemistry:

4.770

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral HPLC (OD-R, Chiraldex, 1 mL/min, 1% isopropanol in hexanes, 254 nm) – analysis of the title compound.

9408939

4.76

1303835

4.97

(S)-5-(hexa-1.5-dien-3-vl)benzo[d][1.3]dioxole. ¹H NMR (400 MHz, CDCl₃): δ 2.38-2.50 (2H, m, ArCHCH₂CH=CH₂), 3.28 (1H, app q, J = 7.6 Hz, ArCHCH=CH₂), 4.95-5.06 (4H, m, CH₂CH=CH₂ & ArCHCH=CH₂), 5.71 (1H, app ddt, J = 16.8 Hz, 12.5 Hz, 6.8 Hz, $CH_2CH=CH_2$), 5.93 (2H, s, OCH_2O), 5.93 (1H, ddd, J = 17.6 Hz, 10.4 Hz, 7.6 Hz, ArCHCH=CH₂), 6.64 (1H, dd, *J* = 8.0 Hz, 1.6 Hz, ArH), 6.69 (1H, d, *J* = 1.6 Hz, ArH), 6.74 (1H, d, J = 8.0 Hz, ArH); ¹³C NMR (125 Hz, CDCl₃): δ 39.8, 49.3, 100.8, 108.0, 108.1, 114.2, 116.1, 120.6, 136.5, 137.7, 141.6, 145.9, 147.6; IR (neat): 2895.2 (w, br), 1639.0 (w), 1503.0 (s), 1486.6 (s), 1440.4 (m), 1245.3 (s), 1039.9 (s), 913.7 (s), 809.8 (w) cm⁻¹; HRMS

(ESI+) for C₁₃H₁₅O₂ [M+H]: calculated: 203.1072, found: 203.1079; $[\alpha]^{20}_{D} = +22.830$ (c = 0.69, CHCl₃). The crude reaction mixture was purified on silica gel (80:1 pentane:diethyl ether) to afford a clear, colorless oil (23.4 mg, 83% yield). $R_f = 0.32$ (60:1 pentane:diethyl ether, stain in KMnO₄).

Proof of Stereochemistry:

The title compound was subjected to ozonolysis and reduction. The resulting diol was protected with benzoic anhydride to afford the dibenzoate ester for HPLC analysis, as depicted below. The analogous racemic material was prepared via the same route using 1,2-bis(diphenylphosphino)benzene as achiral ligand in the allyl-allyl coupling reaction. The absolute stereochemistry was assigned by analogy.

Chiral HPLC (OD-R, Chiraldex, 1 mL/min, 3% isopropanol in hexanes, 220 nm) – analysis of the dibenzoate ester.

(S)-3-(hexa-1,5-dien-3-yl)pyridine. ¹H NMR (500 MHz, CDCl₃): δ 2.44-2.57 (2H, m, ArCHCH₂CH=CH₂), 3.40 (1H, app q, J = 7.0 Hz, ArCHCH=CH₂), 4.98-5.01 (2H, m, CH₂CH=CH₂), 5.05 (1H, app dt, J =17.0 Hz, 1.0 Hz, ArCHCH=CH_{trans}H), 5.11 (1H, app dt, J = 10.5 Hz, 1.0 Hz, ArCHCH=CH_{cis}H), 5.70 (1H, app ddt, J = 17.5 Hz, 10.5 Hz, 7.0 Hz, CH₂CH=CH₂), 5.97 (1H, ddd, J = 17.0 Hz, 10.5 Hz, 7.0 Hz, ArCHCH=CH₂), 7.23 (2H, m, ArH), 7.50 (1H, app dt, J = 8.0 Hz, 2.0 Hz, ArH), 8.46 (1H, s, ArH); ¹³C NMR (125 Hz, CDCl₃): δ 39.5, 46.9, 115.4, 116.9, 123.3, 135.1, 135.7, 138.8, 140.4, 147.8, 149.7; IR (neat): 3078.9 (w), 2925.5 (w), 1640.0 (w), 1574.5 (w), 1478.3 (w), 1423.6 (m), 1025.2 (w), 993.1 (m), 914.9 (s), 810.6 (w), 715.7 (s), 401.4 (w) cm⁻¹; HRMS (ESI+) for C₁₁H₁₄N [M+H]: calculated: 160.1126, found: 160.1119; $[\alpha]^{20}_{D} = +21.938$ (c = 0.550, CHCl₃). The crude reaction mixture was purified on silica gel pretreated with 2% triethylamine in column eluent (3:1 pentane:diethyl ether) to afford a clear, light yellow oil (12.5 mg, 52% yield). R_f = 0.17 (3:1 pentane:diethyl ether, visualize by UV).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral GLC (CD-GTA, Supelco, 60 °C for 60 min, ramp 2 °C/min to 100 °C, 25 psi) – analysis of the title compound.

fear.	[min]	Type	(min)	(pA*s)	[pA]	& Area	
1	85.398	MM	0.2594	572.71948	36.80141	94.80510	
2	87.197	MM	0.1692	31.38249	3.09128	5.19490	

(*S*)-1-(hexa-1,5-dien-3-yl)-4-(trifluoromethyl)benzene. ¹H NMR (500 MHz, CDCl₃): δ 2.44-2.56 (2H, m, ArCHCH₂CH=CH₂), 3.43 (1H, app q, J = 7.5 Hz, ArCHCH=CH₂), 4.97-5.11 (4H, m, CH₂CH=CH₂ & ArCHCH=CH₂), 5.69 (1H, dddd, J = 17.0 Hz, 10.0 Hz, 7.0 Hz, 7.0 Hz, CH₂CH=CH₂), 5.96 (1H, ddd, J = 17.5, 10.5, 7.0

Hz, ArCHCH=CH₂), 7.30 (2H, dd, J = 8.0 Hz, 0.5 Hz, ArH), 7.56 (2H, d, J = 8.0 Hz, ArH); ¹³C NMR (125 Hz, CDCl₃): δ 39.5, 49.4, 115.3, 116.7, 125.4 (q, J = 3.75 Hz), 128.1, 135.9, 140.6, 147.7; IR (neat): 2922.3 (s), 2851.2 (m), 2166.2 (m), 2036.7 (m), 2019.9 (m), 2004.6 (m), 1961.1 (w), 1325.7 (w), 485.1 (w), 453.4 (m), 438.2 (m), 421.5 (m) cm⁻¹; HRMS (ESI+) for C₁₂H₁₄Cl [M+H]: calculated: 227.1048, found: 227.1047; $[\alpha]^{20}_{D} = +16.478$ (c = 0.985, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (20.3 mg, 60% yield). R_f = 0.63 (pentane, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral GLC (CD-GTA, Supelco, 100 °C, 25 psi) – analysis of the title compound.

Racemic

Reaction Product

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	olo
1	7.429	MM	0.0821	2382.36694	483.47037	87.07733
2	7.689	MM	0.0752	353.55417	78.31371	12.92267

(*S*)-2-(hexa-1,5-dien-3-yl)furan. ¹H NMR (500 MHz, CDCl₃): δ 2.43 (1H, ddd, J = 14.0, 7.5, 7.0 Hz, CHCH_aH_bCH=CH₂), 2.56 (1H, app dtt, J = 14.0, 7.0, 7.0, 1.5 Hz, CHCH_aH_bCH=CH₂), 3.47 (1H, app q, J = 7.5 Hz, FurCHCH=CH₂), 5.00-5.12 (4H, m, CHCH=CH₂ & CH₂CH=CH₂), 5.75

(1H, app ddt, J = 17.0, 10.0, 7.0 Hz, CH₂CH=CH₂), 5.87 (1H, ddd, J = 17.0, 10.5, 8.0 Hz, CHCH=CH₂), 6.04 (1H, dt, J = 3.0, 1.0 Hz, Fur-H), 6.30 (1H, dd, J = 3.0, 2.0 Hz, Fur-H), 7.34 (1H, dd, J = 2.0, 1.0 Hz, Fur-H); ¹³C NMR (125 Hz, CDCl₃): δ 37.7, 43.2, 105.1, 110.0, 115.7, 116.5, 132.9, 138.5, 141.2, 156.7; IR (neat): 2922.3 (s), 2851.9 (m), 1793.3 (w), 1727.3 (w), 1641.2 (w), 1462.8 (w), 1377.4 (w), 1274.1 (w), 1125.0 (w), 1077.4 (w), 823.4 (w) cm⁻¹; HRMS (ESI+) for C₁₀H₁₃O [M+H]: calculated: 149.0966, found: 149.0968; $[\alpha]^{20}_{D} = +32.168$ (c = 0.53, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, light yellow oil (9.5 mg, 64% yield). R_f = 0.56 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral GLC (CD-GTA, Supelco, 70 °C, 25 psi) – analysis of the title compound.

Racemic

Reaction product

Peak	RetTime	Туре	Width	n Area Height		Area
#	[min]		[min]	[pA*s]	[pA]	8
1	7.056	MF	0.0811	275.07043	56.54135	93.61302
2	7.475	FM	0.0875	18.76736	3.57612	6.38698

(*S*)-hexa-1,5-dien-3-ylcyclohexane. ¹H NMR (500 Hz, CDCl₃): δ 0.87-1.30 (6H, m, (CH₂)₃), 1.61-1.73 (5H, m, CH₂CHCH₂), 1.89 (1H, m, CHCH=CH₂), 2.03-2.09 (1H, m, CH_aCH_bCH=CH₂), 2.19-2.24 (1H, m, CH_aCH_bCH=CH₂), 4.89-5.01 (4H, m, CHCH=CH₂ & CH_aCH_bCH=CH₂), 5.59 (1H, ddd, *J* = 19.5 Hz, 10.5 Hz, 9.5 Hz, CHCH=CH₂), 5.74 (1H, app ddt, *J* = 17.2 Hz, 10.4 Hz, 6.8 Hz, CH₂CH=CH₂); ¹³C NMR (100 Hz, CDCl₃): δ 26.60, 26.63, 26.7, 29.4, 31.1, 36.4, 41.0, 49.8, 115.0, 115.2, 137.8, 140.9 ppm; IR (neat): 3075.2 (w), 2976.9 (w), 2921.2 (s), 2851.4 (s), 1639.8 (s), 1447.9 (m), 1419.4 (w), 993.9 (m), 908.2 (s), 704.9 (w) cm⁻¹; HRMS (ESI+) for C₁₂H₂₁ [M+H]: calculated: 165.1643, found: 165.1650; [α]²⁰_D = -4.322 (*c* = 0.62, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (10.3 mg, 63% yield of title compound). Mixture of branched to linear compounds: 10:1. R_f = 0.85 (8:1 hexane: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with authentic racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling reaction. Absolute stereochemistry was determined by converting the allyl-allyl coupling product to a dibenzoate, by ozonolysis/reduction and benzoate protection of the corresponding diol, as shown below. *Via* chiral HPLC the resulting dibenzoate was compared to (R)-2-cyclohexylbutane-1,4-diyl dibenzoate, which was prepared by diboration/homologation/oxidation of vinylcyclohexane, followed by dibenzoate protection as shown below.⁸

⁸ Kliman, L. T.; Mlynarski, S. N.; Morken, J. P.; J. Am. Chem. Soc., 2009, 131, 13210.

Chiral GLC (β-dex, Supelco, 80 °C, 25 psi) - analysis of title compound

Chiral HPLC (OD-R, Chiralcel, 1 mL/min, 1% isopropanol, 220 nm) – analysis of 2cyclohexylbutane-1,4-diyl dibenzoate

Me (*S*)-4-vinylundec-1-ene. ¹H NMR (400 Hz, CDCl₃): δ 0.88 (3H, t, J = 6.8 Hz, CH₃), 1.22-1.38 (12H, m, CH₃(CH₂)₆), 2.01-2.14 (3H, m, CHCH=CH₂ & CH₂CH=CH₂), 4.92-5.02 (4H, m, CHCH=CH₂ & CH₂CH=CH₂), 5.58 (1H, ddd, J = 16.8 Hz, 10.4 Hz, 8.0 Hz, CHCH=CH₂), 5.76 (1H, app ddt, J = 17.2 Hz, 10.4 Hz, 6.8 Hz, CH₂CH=CH₂); ¹³C NMR (100 Hz, CDCl₃): δ 14.1, 22.7, 27.1, 29.3, 29.7, 31.9, 34.2, 39.5, 43.7, 114.1, 115.5, 137.2, 142.8; IR (neat): 3077.2 (w), 2957.1 (m), 2923.3 (s), 2854.2 (m), 1641.0 (s), 1465.1 (s), 1419.4 (w), 1378.1 (w), 992.6 (m), 909.4 (s) cm⁻¹; HRMS (ESI+) for C₁₃H₂₅ [M+H]: calculated: 181.1956, found: 181.1958; $[\alpha]^{20}_{D} = -2.828$ (c = 0.76, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (14.4 mg, 80% yield of title compound). Mixture of branched to linear compounds: 11:1. R_f = 0.86 (8:1 hexane: ethyl acetate).

Proof of Stereochemistry:

Enantioselectivity was determined by converting the allyl-allyl coupling product to a dibenzoate by ozonolysis/reduction and benzoate protection of the corresponding diol as shown below. *Via* chiral HPLC the resulting dibenzoate was compared to racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling reaction. Absolute stereochemistry was determined by comparing the dibenzoate to authentic (*S*)-2-heptylbutane-1,4-diyl dibenzoate which was prepared by diboration/homologation/oxidation of 1-nonene, followed by dibenzoate protection as shown below.⁸

Chiral HPLC (OD-R, Chiralcel, 0.5 mL/min, 1% isopropanol, 220 nm) – analysis of 2-heptylbutane-1,4-diyl dibenzoate

(S)-tert-butyldimethyl((2-vinylpent-4-en-1-yl)oxy)silane. ¹H NMR (500 MHz, CDCl₃): δ 0.04 (6H, s, Si(CH₃)₂), 0.89 (9H, s, Si(C(CH₃))₃), TBSO 2.04-2.09 (1H. m, $CHCH_{A}H_{B}CH=CH_{2}$), 2.24-2.33 (2H. m. CHCH_A**H**_BCH=CH₂ and CH₂C**H**CH_AH_B), 3.50-3.57 (2H, m, SiOCH₂), 4.98-5.06 (4H, m, CHCH=CH₂ & CH₂CH=CH₂), 5.65-5.70 (1H, m, CHCH=CH₂), 5.78 (1H, app ddt, J = 17.0Hz, 10.5 Hz, 7.0 Hz, CH₂CH=CH₂); ¹³C NMR (125 Hz, CDCl₃): δ – 5.4, -5.4, 18.3, 25.9, 35.3, 46.0, 65.9, 115.4, 115.8, 136.9, 139.7; IR (neat): 3077.8 (w), 2955.7 (m), 2928.7 (m), 2857.2 (m), 1730.7 (m), 1641.3, (w), 1470.9 (m), 1253.4 (s), 1097.4 (s), 992.6, (m), 1097.4 (s), 912.0 (s), 834.1 (s), 773.7 (s) cm⁻¹; HRMS (ESI+) for $C_{13}H_{27}OSi$ [M+H]: calculated: 227.1831, found: 227.1831; $[\alpha]_{D}^{20} = +6.254$ (*c* = 1.227, CHCl₃). The crude reaction mixture was purified on silica gel (pentane, then 50:1 pentane: ether) to afford a clear, colorless oil (20.6 mg, 91% yield). $R_f = 0.76$ (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by converting the allyl-allyl coupling product to a benzoate by deprotection of TBS group and benzoate protection of the corresponding alcohol as shown below. *Via* chiral GLC the resulting benzoate was compared to racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling reaction. The absolute stereochemistry was assigned by analogy.

Chiral GLC (CD-GTA, Supelco, 100 °C, 60 min, then 1 °C/min to 130 °C, 25 psi) – analysis of benzoate.

Racemic

Derived from reaction product

Peak #	RetTime [min]	Туре	Width [min]	Area [pA*s]	Height [pA]	Area ۶
1	78.021	MM	0.3222	212.78847	11.00840	94.42910
2	78.938	MM	0.3000	12.55359	6.97340e-1	5.57090

(*R*)-(((3-vinylhex-5-en-1-yl)oxy)methyl)benzene. ¹H NMR (400 MHz, CDCl₃): δ 1.49-1.57 (1H, m, CH_AH_BCH=CH₂), 1.75-1.83 (1H, m, CH_B HCH=CH₂), 2.05-2.19 (2H, m, BnOCH₂CH₂), 2.28 (1H, app dtd, *J* = 13.6 Hz, 8.4 Hz, 5.2 Hz, CHCH=CH₂), 3.42-3.53 (2H, m, BnOCH₂), 4.49 (2H, d, *J* = 2.0 Hz, PhCH₂O), 4.94-5.04 (4H, m, CHCH=CH₂ & CH₂CH=CH₂), 5.59 (1H, ddd, *J* = 17.2 Hz, 10.4 Hz, 8.8 Hz, CHCH=CH₂), 5.76 (1H, app dtt, *J* = 20.8 Hz, 12.0 Hz, 5.6 Hz, CH₂CH=CH₂), 7.25-7.34 (5H, m, PhH); ¹³C NMR (100 Hz, CDCl₃): δ 34.0, 39.5, 40.4, 68.3, 72.9, 114.8, 115.9, 127.5, 127.6, 128.3, 136.7, 138.6, 141.9; IR (neat): 3074.5 (w), 2926.0 (m), 2856.6 (m), 1640.7, (m), 1495.9 (w), 1453.9 (m), 1419.2 (w), 1363.5, (m), 1204.2 (w), 1101.6 (s), 1028.0 (w), 994.4 (m), 912.1 (s), 735.0 (s), 697.1 (s) cm⁻¹; HRMS (ESI+) for C₁₅H₂₁O [M+H]: calculated: 217.1592, found: 217.1590; $[\alpha]^{20}_{D} = -11.355$ (*c* = 1.18, CHCl₃). The crude reaction mixture was purified on silica gel (100:1 hexanes: ethyl acetate) to afford a clear, colorless oil (24.3 mg, 75% yield of title compound) as a mixture of coupling product and diene (90:10). R_f = 0.35 (100:1 hexanes: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

The title compound was subjected to ozonolysis and reduction. The resulting diol was protected with benzoic anhydride to afford the dibenzoate ester for HPLC analysis, as depicted below. The analogous racemic material was prepared via the same route using 1,2-bis(diphenylphosphino)benzene as achiral ligand in the allyl-allyl coupling reaction. The absolute stereochemistry was assigned by analogy.

Chiral SFC (AD-H, Chiralpak, 220nm, 1 mL/min, 1% MeOH, ramped 0.1% per minute to 5% MeOH, 150 bar, 50 °C) – analysis of the dibenzoate ester.

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	59.36	60.90	62.69	0.00	7.64	493.9	682.7	7.636
2	UNKNOWN	62.79	64.23	67.85	0.00	92.36	4850.2	8258.5	92.364
Total						100.00	5344.2	8941.3	100.000

Me (*S*)-(5-methylhexa-hexa-1,5-dien-3-ylbenzene. ¹H NMR (500 MHz, CDCl₃): δ 1.70 (3H, s, CH₃), 2.45 (2H, app dtd, J = 14.0 Hz, 14.0 Hz, 8.0 Hz, CHCH₂CH=CH₂), 3.51 (1H, app q, J = 7.5 Hz, PhCHCH₂), 4.64 (1H, m, MeC=CH_A), 4.72 (1H, m, MeC=CH_B), 4.98-5.04 (2H, m, CHCH=CH₂), 5.97 (1H, ddd, J = 17.0 Hz, 10.0 Hz, 7.0 Hz, CHCH=CH₂), 7.18-7.21 (3H, m, PhH), 7.26-7.32 (2H, m, PhH); ¹³C NMR (125 MHz, CDCl₃): δ 22.4, 44.0, 47.8, 112.3, 114.1, 126.2, 127.7, 128.4, 141.8, 143.4, 144.0; IR (neat): 3075.8 (w), 3027.8 (w), 2970.2 (w), 1637.6 (w), 1601.2 (w), 1493.8 (w), 1451.7 (w), 1414.6 (m), 1373.9 (w), 990.8 (m), 911.9 (s), 887.6 (s), 752.2 (s) cm⁻¹; HRMS (ESI+) for C₁₃H₁₇ [M+H]: calculated: 173.1330, found: 173.1330; $[\alpha]^{20}_{D} = +27.681$ (c = 0.987, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (13.6 mg, 79% yield). R_f = 0.48 (18:1 hexane: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by comparison of the title compound with racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling. The absolute stereochemistry was assigned by analogy.

Chiral GLC (β-dex, Supelco, 80 °C, 25 psi) - analysis of title compound

Racemic

Reaction Product

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	웡
1	102.091	MM	0.3999	12.74831	5.31307e-1	0.82829
2	103.027	MM	0.8084	1526.36267	31.46725	99.17171

Me

(*S*)-(5-methyleneundec-1-en-3-yl)benzene. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (3H, t, J = 7.2 Hz, CH₂CH₃), 1.24-1.44 (8H, m, (CH₂)₄CH₃), 1.97 (2H, t, J = 7.6 Hz, (CH₂)₄CH₂CC=CH₂), 2.44 (2H, d, J = 7.6 Hz, PhCHCH₂C=CH₂), 3.49 (1H, app q, J = 7.6 Hz, PhCH), 4.67 (1H, s, C=CH_aH_b), 4.73 (1H, s, C=CH_aH_b), 4.99 (1H, dt, J = 17.6, 1.2 Hz, CH=CH_{trans}), 5.02 (1H, dt, J = 10.4, 1.2 Hz, CH=CH_{cis}), 5.97 (1H, ddd, J = 17.6, 10.4, 7.2 Hz, CH=CH₂), 7.17-7.21 (3H, m, PhH), 7.28-7.31 (2H, m, PhH); ¹³C NMR (100 Hz.

CDCl₃): δ 13.0, 14.4, 27.9, 29.4, 32.1, 36.3, 42.4, 48.1, 111.4, 114.5, 126.5, 128.0, 128.7, 142.2, 144.5, 147.7; IR (neat): 3670.0 (w), 3028.1 (w), 2956.3 (m), 2926.8 (s), 2856.4 (m), 1642.9 (w), 1493.1 (w), 1453.0 (m), 1378.1 (w), 1074.4 (w), 990.6 (w), 912.3 (m), 891.0 (m), 753.2 (m), 673.0 (s) cm⁻¹; HRMS (ESI+) for C₁₈H₂₇ [M+H]: calculated: 243.2113, found: 243.2105; $[\alpha]^{20}{}_{\rm D}$ = +24.191 (*c* = 0.75, CHCl₃). The crude reaction mixture was purified on silica gel (pentane) to afford a clear, colorless oil (18.9 mg, 78% yield). R_f = 0.68 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Proof of Stereochemistry:

Enantioselectivity was determined by converting the allyl-allyl coupling product to a diol by ozonolysis/reduction. *Via* chiral HPLC the resulting diol was compared to racemic material prepared using 1,2-bis(diphenylphosphino)benzene as the achiral ligand in the allyl-allyl coupling reaction. The absolute stereochemistry was assigned by analogy.

Chiral HPLC (AS-H, Chiralpak, 220nm, 1 mL/min, 2% isopropanol) – analysis of the diol.

Deuterium-Labeling Study

Preparation of (S)-(-)-tert-butyl cis-3-/²H1]-1-phenylprop-2-enyl carbonate. From the deuterated allylic alcohol,⁹ synthesized from commercially available (S)-1-phenylprop-2-yn-1-ol. >95% ee. procedure B was followed.

(S)-(-)-tert-butyl cis-3-[²H1]-1-phenylprop-2-enyl carbonate. ¹H NMR D (400 MHz, CDCl₃): δ 1.47 (9H, s, OC(CH₃)₃), 5.24 (1H, app dt, J = 9.2, 4.0Hz, CH=CHD), 6.01-6.04 (2H, m, CH=CHD & PhCHOBoc), 7.26-7.38 (5H, m, PhH); ¹³C NMR (100 Hz, CDCl₃): δ 27.8, 71.2, 82.3, 116.9 [t, ¹J(C, 2 H) = 23.8 Hz], 127.0, 128.2, 128.5, 136.1, 138.7, 152.7; IR (neat): 2980.8 (w), 2933.3 (w), 1739.3 (s), 1495.0 (w), 1394.3 (m), 1312.3 (s), 1273.8 (s), 1252.5 (s), 1086.0 (m), 966.7 (w), 894.8 (m), 698.8 (m) cm⁻¹; HRMS (ESI+) for C₉H₈D [M-OBoc]: calculated: 118.0767, found: 118.0768; $[\alpha]^{20}_{D} = -29.776$ (c = 0.97, CHCl₃). The crude reaction mixture was purified on silica gel (50:1 hexanes: ethyl acetate) to afford a clear, light vellow oil (93%). R_f = 0.56 (8:1 hexanes: ethyl acetate, stain in KMnO₄).

Allyl-allyl coupling of deuterium-labeled starting material utilizing allylboronic acid **pinacol ester:** The representative procedure for allyl-allyl coupling was applied.

(S)-trans-1-[²H1]-hexa-1,5-dien-ylbenzene. ¹H NMR (500 MHz, CDCl₃): δ 2.49 (2H, m, CH₂CH=CH₂), 3.36 (1H, app q, J = 7.0 Hz, PhCH), 4.96-5.04 (3H, m, CH=CH₂ & CH=CHD), 5.73 (1H, ddt, J = 17.5, 10.0, 7.0 Hz, $CH_2CH=CH_2$), 5.98 (1H, dd, J = 17.5, 7.5 Hz,

CHCH=CHD), 7.19-7.32 (3H, m, Ph-H), 7.29-7.38 (2H, m, Ph-H); ¹³C NMR (100 Hz, CDCl₃): δ 39.7, 49.6, 114.1 [t, ¹*J*(C, ²H) = 23.8 Hz], 116.1, 126.3, 127.7, 128.4, 136.6, 141.4, 143.7; IR (neat): 3077.2 (w), 3028.3 (w), 3003.2 (w), 2924.5 (w, br), 2857.1 (w, br), 1640.2 (w), 1600.4 (w), 1451.8 (w), 1415.7 (w), 979.3 (m), 911.7 (s), 747.1 (m) cm⁻¹; HRMS (ESI+) for $C_{12}H_{14}D$ [M+H]: calculated: 160.1237, found: 160.1233; $[\alpha]_{D}^{20} = +18.858$ (*c* = 0.88, CHCl₃). The crude H⊲ reaction mixture was purified on silica gel (pentane) to D afford a clear, colorless oil (11.7 mg, 77% yield). $R_f = 0.79$ J = 17.5 Hz (8:1 hexanes: ethyl acetate, stain in KMnO₄).

⁹ Kang, M. J.; Jang, J. S.; Lee, S. G. Tetrahedron Lett. **1995**, 36, 8829.

S-39

S-47

•

S-55

S-74

