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A. Supplementary Figures Referenced in the Main Text 

 

Supplementary Figure 1. Parsimonious Enzyme Usage FBA. In pFBA, the underlying 

assumption is that, under growth pressure, there is a selection for strains that can process 

the growth substrate the most rapidly and efficiently while using the minimum amount of 

enzyme. These assumptions are approximated by employing FBA to optimize the growth 

rate, followed by minimizing the net metabolic flux through all gene-associated reactions in 

the network. Therefore, pFBA finds the subset of genes and proteins that may contribute to 

the most efficient metabolic network topology under the given growth conditions. The 

genes and proteins are classified as 1) essential, 2) pFBA optima, 3) enzymatically less 

efficient, requiring more enzymatic steps than alternative pathways that meet the same 

cellular need (ELE), 4) metabolically less efficient, requiring a reduction in growth rate if used 

(MLE), or 5) unable to carry flux in the experimental conditions (pFBA no-flux). Here, Gene A, 

classified as MLE, represents an enzyme that uses a suboptimal co-factor to catalyze a 

reaction, thereby reducing the growth rate if used. Gene B, classified as pFBA no-flux, cannot 

carry a flux in this example since it is unable to take up or produce a necessary precursor 

metabolite. Genes E and F in this example require two different enzymes to catalyze the 

same transformation which Gene D can do alone; therefore they are classified as ELE. Gene 

G is essential, since its removal will stop the flux through all pathways. Genes C and D 

represent the most efficient (topologically and metabolically) pathway and therefore are 

part of the pFBA optima. 



 

 

Supplementary Figure 2. pFBA shows a small improvement of normal FBA. pFBA is a 

variant of Flux Balance Analysis , in which an additional constraint is added that minimizes 

the total flux through all gene-associated reactions in the metabolic network. The addition 

of this constraint in pFBA reduces the number of non-essential metabolic genes that are 

predicted to be used in the optimal solutions. However, the pFBA optima show a slightly 

higher percent coverage by the (A) proteomic and (B) transcriptomic data than the non-

essential FBA optima. Moreover, during the process of adaptive evolution (C), there is a 

slight increase in up-regulation of the pFBA optima, when compared with up-regulation 

within the non-essential FBA optima. The cloud represents the normalized distribution of 

the summed up and down regulated genes or proteins of randomly chosen differentially 

expressed genes, with x and y values representing the Z-score for the sum of down- and up- 

regulated gene fold-change, respectively. See Supplementary Analysis (page 20) for details. 



 

 

Supplementary Figure 3.Few less-efficient genes are up-regulated and functional in up-

regulation-optimized models. For each data set, models were generated that minimize the 

inclusion of non- and weakly up-regulated genes, while maintaining the ability to grow at 

90% of the optimal WT growth rate. The optimization method added few functional MLE and 

ELE genes, suggesting that few up-regulated MLE and ELE genes are able to contribute to 

growth. See Supplementary Analysis (page 25) for details. 



 

Supplementary Figure 4. Coverage of down regulated genes and proteins in metabolic 

regulons. To assess the effect of down regulation of a selection of down-regulated regulons, 

we evaluated how many genes or proteins from each regulon were down regulated in each 

pFBA class. From this, it is clear that metabolic regulons have a much greater effect on the 

suppression of genes and proteins in the pFBA no-flux class. See Supplementary Analysis 

(Page 31) for details. 



 

Supplementary Figure 5. A flowchart for the simulation and classification of genes in pFBA. 

Following the addition of experimentally measured substrate and oxygen uptake rates, pFBA 

was employed to predict pathway usage for the given conditions and to classify the genes, 

following the workflow demonstrated here. 

 



B. Supplementary Methods 

AMT tag method 

The theoretical mass and the observed normalized elution time (NET) of each peptide 

identified by LC-MS/MS is used to construct a reference database of AMT tags, which serve 

as two-dimensional markers for identifying peptides in subsequent high resolution and high 

mass accuracy LC-MS analyses. A reference database of AMT tags for Escherichia coli had 

been generated through the exhaustive SCX fractionation and LC-MS/MS analysis described 

previously (Adkins et al, 2006).  This approach to proteomics research is enabled by a 

number of published and unpublished in-group developed tools, which are available for 

download at http://omics.pnl.gov (Jaitly et al, 2006;Kiebel et al, 2006;Monroe et al, 

2007;Monroe et al, 2008;Petritis et al, 2006). Prior to analysis the samples were subjected to 

a blocking and randomization treatment to minimize the effects of systematic biases and 

ensure the even distribution of known and unknown confounding factors across the entire 

experimental dataset. Peptides from each of the protein preparations were separated by an 

automated in-house designed reverse-phase capillary HPLC system as described elsewhere 

(Livesay et al, 2008). Eluate from the HPLC was directly electrosprayed into a 11.4 T FTICR 

mass spectrometer (LTQ-Orbitrap, Thermo Fisher Scientific, San Jose, CA) using electrospray 

ionization (ESI) with emitters described previously (Kelly et al, 2007) and the ESI interface 

modified with an electrodynamic ion funnel (Page et al, 2006). Three biological replicates for 

each sample were analyzed and relevant information such as the elution time from the 

capillary LC column, the abundance of the signal (peak height from each peptide elution 

profile of the most abundant charge state), and the monoisotopic mass (determined from 

charge state and the high accuracy m/z measurement) of each feature observed in the 11.4 

T FTICR-MS was used to match the peptide identifications contained within the AMT tag 

database.   

Each biological replicate was analyzed in triplicate and the order was randomized as in Latin 

Squares design to minimize bias.  Isotopic clusters in the spectra were identified using the 

software tool Decon2LS (Jaitly et al, 2009). The monoisotopic masses of these isotopic 

clusters were then grouped into LC-MS features (i.e. potential peptides) and aligned against 

an arbitrarily chosen baseline dataset, using the LCMSWARP algorithm (Zimmer et al, 2006) 

in order to correct for chromatographic variations. Then the LC-MS features that are 

commonly observed at least in three datasets were clustered based on a mass tolerance of 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004809#pone.0004809-Jaitly1#pone.0004809-Jaitly1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004809#pone.0004809-Jaitly1#pone.0004809-Jaitly1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004809#pone.0004809-Livesay1#pone.0004809-Livesay1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004809#pone.0004809-Kelly1#pone.0004809-Kelly1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004809#pone.0004809-Page1#pone.0004809-Page1


±5ppm and a normalized elution time tolerance of ±0.03.  In order to obtain the peptide 

identifications of these LC-MS clusters, their average masses and average normalized elution 

times were matched against the AMT tag database created earlier, with a mass tolerance of 

±5ppm and a normalized elution time tolerance of ±0.03.  The abundance values of these 

peptides were obtained as the maximum ion current intensity from all MS scans in which it 

elutes. These steps were carried out using the in-house developed software tool MultiAlign 

(http://omics.pnl.gov/software/). 

http://omics.pnl.gov/software/


Flux Variability Analysis 

Flux Variability Analysis (FVA) is a variant of flux balance analysis (FBA) in which the range of 

allowable flux for each reaction is computed given a range for the allowable predicted 

growth rate. Using a previously published genome-scale model of E. coli K-12 

metabolism(Feist et al, 2007), FVA was applied to each environmental condition 

corresponding to the data provided here. The model was set to 90-100% of the optimal 

growth rate, and then the maximum and minimum flux for each reaction was computed. 

Reactions that cannot carry a flux in any condition (i.e., blocked reactions) were removed 

from the model for all analyses in this study.  

Each gene associated reaction was then classified (see Supplementary Table 8). The 

classifications used in this work are as follow (see Supplementary Figure 6). “Zero-flux” 

reactions cannot carry a flux while maintaining at least 90% of the maximum growth rate. 

“Hard-coupled to biomass” reactions need to maintain an exact, specific flux to maintain the 

optimal growth rate. If the flux through hard-coupled reactions decreases, the growth rate 

will also decrease in a linear fashion. “Partially coupled to biomass” reactions require a non-

zero flux, but can vary their flux while maintaining at least 90% of the maximum flux 

distribution. All reactions that can maintain a zero or non-zero flux are classified as “Not 

coupled to biomass.” A small number of remaining reactions that contributed to 

thermodynamically infeasible loops were removed from the analysis since the flux levels are 

not constrained and therefore inaccurate. 

Reactions associated with each protein were determined using the gene-protein-reaction 

associations (GPR) in the iAF1263 genome-scale model of E. coli metabolism (Feist et al, 

2007). These were then reduced to the unique reaction classification-GPR pairs to avoid bias 

from proteins that can catalyze many reactions (see Supplementary Table 9). Enrichment of 

each reaction class was computed using the hypergeometric test and p-values are provided 

in Supplementary Tables 3 and 10. 



 

Supplementary Figure 6. Flux Variability Analysis. FVA was used to compute the range of 

allowable steady state fluxes for all reactions in the metabolic network for each strain, 

assuming a biomass production that is at least 90% of the optimal growth rate. A reaction 

was classified as “Hard-coupled to biomass” if the flux varied exactly with biomass 

production. “Partially coupled to biomass” included reactions that were required to have a 

non-zero flux, but were more flexible in the range. Reactions were classified as “Not coupled 

to biomass” if they could have a zero or non-zero flux while maintaining 90% biomass. 

Reactions were considered “zero flux” if they could maintain a flux in other conditions, but 

could not in the growth conditions for the strains tested here.  



Parsimonious Enzyme Usage FBA 

pFBA is a method used to classify genes based on condition-specific pathway usage as 

predicted in silico (Supplementary Figure 1). It uses a bilevel optimization in which the 

growth rate (biomass) is optimized using FBA, followed by the minimization of total flux 

through all gene-associated reactions. The metabolic network is represented by a 

stoichiometric matrix (Palsson, 2006), Sirrev, in which all reversible reactions are split into two 

irreversible reactions. Each reaction is constrained to carry a non-negative, steady-state flux, 

virrev. Thus the net flux is minimized through gene associated reaction subject to optimal 

biomass: 
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where m is the number of gene-associated irreversible reactions in the network, vbiomass 

approximates the growth rate and vbiomass,lb is the lower bound for the biomass rate. A 

flowchart for the entire process is provided in Supplementary Figure 5. 

The underlying assumption here is that the growth selection pressure at exponential growth 

(as seen here with the adaptively evolved strains) will select for the fastest growing strains. 

This is followed by the assumption that cells with more efficient enzyme use will have an 

increased growth advantage. These assumptions have been implemented, as reported 

previously (Schuetz et al, 2007). This implementation, called “max biomass per unit flux” 

optimizes the ratio of biomass to the square of the total network flux: 

maxmin

1

2

0..

max

vvv

vSts

v

v

i

n

i

i

biomass

. 

The “max biomass per unit flux” method is non-linear and non-convex. Moreover, it 

optimizes for network states that use a higher number of low-flux reactions as opposed to 

increasing flux through a smaller number of high-flux reactions. In addition, may allow for 



sub-optimal biomass, if it greatly decreases the flux through the network. In pFBA, on the 

other hand, the biomass function is maximized, and then the sum of the magnitude of all 

fluxes is minimized, thereby not biasing the results against the use of higher flux pathways.  

Singular Value Decomposition (SVD) 

 In Singular Value Decomposition (SVD), a matrix, M, is decomposed into three matrices: 

TVUM  

The matrix ∑ is a diagonal matrix that contains rank ordered weightings (singular values) that 

are indicative the importance of the corresponding modes, as represented by columns in U 

and V, in reconstituting the data set. More specifically, the amount by which a mode 

explains variation in the data matrix M is found by squaring the singular value and dividing 

by the sum of the squares of all singular values (Wall et al, 2003). Sometimes the number of 

significant singular values is interpreted as being associated with the number of biological 

processes that produce the variation in the data (Wall et al, 2003). 

Previously the SVD has been described for microarray data for use in characterizing 

transcriptional programs and in classification (Alter et al, 2000;Alter, 2006;Challacombe et al, 

2004;Liu et al, 2003;Wall et al, 2003;Yeung et al, 2002), and a more detailed description of 

its significance in gene expression profile analysis has been published (Wall et al, 2003). SVD, 

however, has been employed less with proteomic data (Bowers et al, 2005;McLaughlin et al, 

2007;Vohradsky et al, 2007). In the sense of proteomic data, as depicted in Supplementary 

Figure 7, each column in the matrix U represents an “eigen-proteome”, which is an 

orthonormal superposition of the measured proteomes of all experiments, providing a 

unique combination of proteins expressed at various measures in the mode. These vectors 

span the space of experiments or measured proteomes. 

Each column in the matrix V represents an “eigen-protein”, an orthonormal superposition of 

proteins which provides a combination of experiment or proteome loadings that represent a 

unique pattern of globally, uncorrelated, and decoupled proteins. The eigen-proteins span 

the space of proteomic states. While these eigen-proteins and eigen-proteomes may not 

have direct biological meaning in detailing mechanisms in transcription, they can provide 

insights into biological properties and guide further studies, as has been done in DNA 

microarrays (Wall et al, 2003). 



Herein the proteomic (and microarray) data was logarithmically transformed, missing 

measurements were imputed using an Iterated Local Least Squares Imputation method (Cai 

et al, 2006), and the mean expression level for each protein across all experiments was 

subtracted prior to SVD.  

The data were subdivided based on gene ontology classification and the dimensionality of 

these subsets was assessed. The SVDs of expression levels for proteins associated with all 

GO classes (for protein coding ORFs) were computed in order to probe their relative 

information content. The distribution of singular values for each GO annotation category 

was then compared to the distributions of 1000 randomly chosen sets of proteins from the 

data (each random set contained the same number of proteins as the GO annotation class 

with which each GO class was compared). Significance of low-dimensional GO classes were 

determined by t-test on all modes with an explained variance larger than 0.7/n (FDR = 0.05).  

In addition, first two eigen-proteins (left singular vectors) were queried to find GO classes in 

which the data significantly separated the evolved and non-evolved strains. 

 

Supplementary Figure 7. The Singular Value Decomposition in the Proteome Context. 

 



PathWave analysis  

Reactions from the genome-scale metabolic network iAF1260 were divided into subsystems 

(pathways in which they contribute), thereby allowing an elucidation of regions of the 

metabolic network that underwent significant expression changes in the adaptive evolution 

process. Each individual pathway was represented by its adjacency-matrix. Pathways that 

consisted of more than one connected component were further partitioned into sub-

pathways. Every sub-pathway was represented by its corresponding adjacency matrix.  

We then calculated an embedding for every pathway into a 2-dimensional, regular square 

lattice grid. To preserve neighborhood characteristics of the nodes, we were looking for 

embeddings in which adjacent nodes of the network were placed onto the grid as close to 

each other as possible. As a measure of distance in the lattice, we used the Manhattan 

distance. We wanted to determine an optimal neighborhood in which the total edge length 

of the graph on the lattice was minimized while conserving the network topology. This 

resulted in an NP-hard combinatorial optimization problem. We stated this problem as an 

integral linear program (IP). The basic model was enhanced by a number of graph 

dependent, additional constraints on the distance variables. They provided lower bounds for 

the distance sums of well-known sub graph motifs. Subsequently, the expression data was 

mapped onto the optimally ordered grid representations of all pathways and sub graphs.  

In order to explore every possible expression pattern of neighboring reactions and groups of 

reactions within a pathway that showed significant differences between samples of different 

conditions, we calculated features performing a Haar wavelet transform for each optimized 

grid representation of the pathways. To rank the pathways according to the enrichment of 

differentially expressed features, the distance between the resulting features of the 

different conditions was calculated. The maximal value of these distances was taken and 

compared with an extreme value distribution fitted on the underlying null distribution. The 

null distribution was estimated by 1000 fold permutation resampling of the expression data 

samples. Resulting p-values were corrected for multiple testing (Gordi & Khamis, 2004). 

Furthermore, each single feature was statistically ranked to identify locally differentially 

regulated patterns. For details see Schramm et al. (Schramm et al, 2010). 



C. Supplementary Analysis 

Evaluation of protein species identified in that data set 

Gene set enrichment of the proteomic data 

Genome scale gene expression evaluation through microarrays and deep sequencing 

purports to find all RNA transcripts in the biological sample. However, due to the diverse 

range of chemistry exhibited by proteins, the large range of modifications, and the large 

dynamic range of protein concentrations, proteomics can only identify a portion of the true 

proteome in a sample. However, each year brings novel technologies that increase the 

identification of true positives. In this study, more than 1000 proteins were identified (983 

with more than one peptide). 731 of these were found with high confidence in all 50 

different samples. Supplementary Figure 8.a shows the overlap of protein identification 

across all datasets. However, despite this overlap, the datasets had varying numbers of 

protein identifications (see Supplementary Figure 8.b). 

In order to assess this variation in the quantity of identified proteins, the datasets were each 

tested for enriched (Supplementary Table 11) and depleted (Supplementary Table 12) Gene 

Ontology classes (Ashburner et al, 2000) with an FDR of 0.05. In this analysis it clear that 

certain types of proteins were consistently missing from the datasets. The most significantly 

depleted GO classes (listed in Supplementary Table 12) were dominated by classes of 

membrane-spanning proteins, and proteins that are intrinsic to the membrane (e.g., 

“integral to membrane”, “transporter activity”, “flagellum”). For example, the significantly 

depleted (p = 5 x 10-12) GO class “Integral to Membrane” has 894 genes in it. However, 

across all datasets 833 of those genes were missing, even when all one-hit-wonders were 

included in the analysis. Even though novel methods have reduced the difficulty of 

identifying membrane-spanning and other highly hydrophobic proteins (Ferguson & Smith, 

2003), many such proteins were missing from our proteomic datasets. 

To assess whether this was due to an inherent low expression of membrane-spanning 

proteins or due to losses in the sample preparation, a similar analysis was done on a series 

of microarrays that corresponded to about 2/3 of the samples that were proteomically 

profiled here (Lewis et al, 2009) 

(http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_expression2). In this 



analysis, presence/absence calls were made from the microarray data using the Wilcoxon 

Rank sum test with ~20 negative controls on each array (FDR = 0.05). Enriched and depleted 

GO classes were determined for the microarray data (Supplementary Tables 13-14). Here, 

similar GO classes were found to be depleted. For example, the GO class “Integral to 

Membrane” was also depleted in the microarray data (p << 6 x 10-13), though only 332 genes 

were consistently considered “off” in all conditions considered. Other GO classes that were 

significantly depleted in both the proteomic and microarray data also include “membrane”, 

“transport”, “transporter activity”, “uniporter activity”, “No GO annotation / non-protein 

coding”, “membrane”, “transposase activity”, and “transposition, DNA-mediated”. In fact, at 

an FDR of 0.05, the depletion of expressed gene sets in the gene expression data includes 

almost all sets significantly depleted in the proteomic data. While the quantity of missing 

genes/proteins differed between the two different data sources, this concordance of 

depletion of GO classes between the proteomic data and gene expression data lends 

support to the reliability of both the proteomic methodology and the data sets themselves. 

 

Supplementary Figure 8. Coverage of the proteomic data. The overlap of identified proteins 

in the various data samples is relatively high. A) Most proteins are found in all samples, and 

only a small fraction is found in fewer than 45 of the 50 samples. B) In like manner, most 

samples contain more than 950 proteins that are identified with more than one unique 

peptide. 

 



Comparison of differential expression in proteomic and microarray data 

In the adaptation process hundreds proteins are differentially expressed (Supplementary 

Table 1), representing 32%, 45%, and 59% of the identified proteins in the glycerol, lactate 

and Δpgi strains, respectively. In the microarray data, 52% and 35% of the expressed genes 

are differentially expressed in the glycerol and lactate strains, respectively. However, various 

studies have shown only a moderate correlation between proteomic and microarray data 

(Ansong et al, 2009). Here we tested to see if there was agreement between the sets of 

differentially expressed genes and proteins. For this we compared the overlap of up and 

down regulated genes and proteins in glycerol (Supplementary Figure 9) and lactate 

(Supplementary Figure 10) evolved strains. Out of the subset of genes and proteins found 

both in the transcriptomic and proteomic data, 83% and 71% of the differentially expressed 

species change their expression in the same direction in the glycerol and lactate strains 

respectively, which is far more than expected by chance (p << 1 x 10-18).  



 

Supplementary Figure 9. Overlap of differentially expressed genes and proteins in glycerol 
evolved strains. 

 

 

Supplementary Figure 10. Overlap of differentially expressed genes and proteins in lactate 
evolved strains. 

 



 

Differential expression is associated with central carbon and amino 

acid metabolism 

The COGs demonstrate that many expression changes are associated with specific metabolic 

processes; however, the effects on specific pathways are not clear from such analyses. 

Therefore, PathWave, a method based on the Haar wavelet of metabolic network structure 

(see Supplementary methods and (Schramm et al, 2010)) was used to identify metabolic 

network subsystems that significantly change in the evolved strain proteomes and 

transcriptomes. In this analysis, all growth conditions (except the lactate microarray) show 

significant changes in either the proteomic data and/or the microarrays in central carbon 

metabolism (i.e., oxidative phosphorylation, pyruvate metabolism, citric acid cycle, 

anaplerotic reactions, and/or pentose phosphate pathway), tRNA charging, and/or the 

metabolism of specific amino acids (see Supplementary Table 2). Thus, regional changes in 

the metabolic network correlate with subsystems, thereby allowing for improved oxidative 

growth and protein synthesis. 

A comparison between FBA and pFBA 

pFBA is a variant of Flux Balance Analysis (FBA) in which growth rate is maximized as in FBA; 

however, in pFBA, flux through the metabolic network is also minimized. Therefore, a 

comparison between FBA and pFBA is warranted here. A key part of pFBA, however, is the 

assessment of all alternate optima and subsequent classification of all genes based on the 

simulation results. Therefore in this comparison, we have subjected the FBA results to the 

same search of the alternate optima (using Flux Variability Analysis) and gene classification 

of the resulting simulations. In the end, the only differences in gene classes are found in the 

pFBA optima and ELE classes, which are combined in FBA into one “Non-essential FBA 

optima” class, since flux is not minimized. Percent coverage of this class is slightly lower than 

the “pFBA optima” class (Supplementary Figure 2.A-B). In like manner, over the adaptive 

evolution time course, up and down-regulation of genes are slightly more consistent with 

the pFBA optima than the Non-essential FBA optima (Supplementary Figure 2.C). 



Omic Data Supports the Use of the in silico Flux Variability Analysis 

Optimal Growth States  

The optimal solutions computed from FBA are not unique (Lee et al, 2000). Therefore, Flux 

Variability Analysis (FVA) computes the range of flux values for every reaction that is 

consistent with the optimal solution. Thus, each reaction in the network can be classified 

with respect to its possible contribution to the optimal growth state as follows 

(Supplementary Figures 6 and 11.a):  

1. Not coupled to biomass formation,  

2. Partially coupled to biomass formation,  

3. Hard-coupled to biomass formation, or  

4. Unable to carry a flux (zero-flux).  

These classes are consistent with the group of expressed and differentially expressed genes 

and proteins. That is, the more genes and proteins that are more coupled to biomass 

production show high coverage in the data, and in the evolution time course, these genes 

and proteins are significantly up-regulated (Supplementary Figure 11.b). 

 

Supplementary Figure 11. FVA shows consistency with proteomic and transcriptomic data. 

Flux Variability Analysis (FVA) was used to label all metabolic reactions, based on simulation 

results. (A) FVA classifies each reaction based on its growth rate coupling. (B) Omic data 



support predicted coupling of reactions to growth, where growth-coupled reactions show 

higher coverage from omic data than reactions that cannot carry a flux. Moreover, in 

adaptive evolution, reactions that are partially-coupled to growth are up-regulated, and 

non-functional reactions are down-regulated. Thus the data support predicted optimal 

growth states, and the results suggest that laboratory evolved strains further enhance these 

optimal growth states. 

 

Comparison of pFBA genes and FVA reactions 

The pFBA genes were mapped to the FVA reaction classes. From this it is clear that the hard-

coupled and partially-coupled reactions were all associated with the essential and pFBA 

optima genes, and the pFBA no-flux genes were all within the FVA zero-flux reactions. 

However, FVA Zero Flux reactions were identified in the other pFBA classes since some Zero-

Flux reactions are catalyzed by genes which may be active for alternative, functional 

reactions. 

 

Supplementary Figure 12. A comparison of pFBA genes and FVA reactions.  

Expression supports pathway usage from FVA optimal growth predictions 

Does FVA show that omics data support optimal growth states? Reactions necessary for 

optimal growth (i.e., reactions in the partially-coupled and hard-coupled classes) show 

higher coverage in the proteomic and transcriptomic data than reactions that are predicted 

to be unnecessary (i.e., not-coupled and zero-flux reactions).  

Reactions in the partially-coupled class show the most complete coverage (Supplementary 

Figure 13). This coverage is much higher than expected by chance for all strains and data 

types (Supplementary Table 10). Hard-coupled reactions also show good coverage by the 

proteomic data, and near complete coverage by the transcriptomic data. Missing hard-

coupled reactions from the proteomic data may be below the level of detection since they 



maintain a very small maximum flux (three orders of magnitude lower than partially-coupled 

reactions; see Supplementary Figure 14); therefore, most hard-coupled reactions will only 

require a miniscule amount of protein.  

Reactions that are not coupled to biomass (NC) show moderate coverage (Supplementary 

Figure 13). This result is expected since NC reactions may be used, but can represent 

unnecessary reactions, less efficient pathways, or redundant pathways.  Reactions that are 

predicted to have a zero-flux under the respective growth conditions are significantly 

depleted in all data sets (Supplementary Table 10). The coverage of these FVA reaction 

classes suggests that for the given environmental conditions, the transcriptional regulatory 

network already suppresses many unnecessary genes, and expresses those needed for a 

high predicted growth rate. 

 

Supplementary Figure 13. FVA classifications are consistent with omic data. Simulations for 

each growth condition were used to classify each reaction, followed by a comparison to all 

(A) identified proteins and (B) expressed transcripts. Reaction classes that require flux 

(Partially and Hard Coupled) consistently have higher coverage from the data than classes 

that cannot carry flux (Zero Flux).  

 

Adaptation suppresses inactive FVA pathways  

Excess unused enzyme mass creates a large maintenance demand on cells (Kurland & Dong, 

1996); therefore, cells under selective pressure for growth are expected to modulate 

expression levels of enzymes as needed for growth (Dekel & Alon, 2005). While we showed 

an up-regulation of optimal pathways using pFBA, it is expected that genes and proteins 



associated with non-functional reactions should be down-regulated, thereby saving 

resources.  

Are conditionally nonfunctional genes down-regulated? Genes and proteins associated with 

the FVA reactions that must have a zero flux in silico are significantly down-regulated 

(Supplementary Table 3). Thus, during the process of adaptive evolution, computationally-

predicted nonfunctional pathways are suppressed through a concerted down-regulation of 

genes associated with such pathways. 

Adaptation induces more flexible metabolic reactions 

The suppression of unused metabolic pathways frees resources for use in growth-coupled 

processes. pFBA supports this hypothesis with the emergence of the pFBA optima and the 

lack of up-regulation among metabolically inefficient enzymes. However, the pFBA optima 

are associated with reactions with all levels of coupling to growth, including all hard and 

partially-coupled reactions (Supplementary Figure 12). Therefore, it may be expected that in 

adaptive evolution, the more flexible partially-coupled reactions would be less up-regulated 

than the rigid hard-coupled reactions, since the hard coupled reactions are directly essential 

for growth. 

Does adaptive evolution shift expression within the more flexible or more rigid pathways? 

Surprisingly, reactions that are rigid (hard coupled to growth) are not more frequently up-

regulated than expected by chance for almost any of the datasets (Supplementary Table 3). 

However, in almost all data sets, the more flexible partially-coupled reactions are 

significantly up-regulated (Supplementary Table 3). Thus, reactions that have a less-direct 

effect on growth are the most significantly changed. However, this is not problematic if WT 

strains buffer the rigid reactions by over-expressing the hard-coupled enzymes to allow for a 

more robust phenotype. 

Are the more rigid reactions buffered with over-expression in WT? Simulations predict that 

the median flux of partially-coupled reactions is more than 3 orders of magnitude higher 

than hard-coupled reactions (Supplementary Figure 14). However, the protein and transcript 

abundance medians for partially-coupled reactions are only 1.8-3.7 fold higher in the WT 

strains. This suggests that hard-coupled reactions may be buffered in WT strains with excess 

enzyme, thus protecting against momentary shifts in environmental conditions. The buffer 

would be less necessary for partially-coupled enzymes, since they can maintain a lower flux 



with only having a weak effect on biomass production. These results suggest that during 

adaptive evolution, there is a shift of expression towards pathways that are flexible, since 

hard-coupled pathways are already over-expressed. Thus, metabolically, the evolved strains 

will be slightly less robust against shifts to significantly different growth conditions.  

Hard-coupled reactions carry a much lower flux than partially-coupled 

reactions 

It is puzzling as to why there is much less coverage of reactions that are hard-coupled (HC) to 

biomass in the proteomic data. While membrane-bound proteins are depleted in the data 

(Supplementary Table 12), only a few HC reactions that are associated with membrane 

proteins were not identified in the data. However, when the maximum flux of each reaction 

is computed, most partially-coupled (PC) reactions have a higher flux than HC reactions 

(Supplementary Figure 14). In fact, the median flux for HC reactions is more than three 

orders of magnitude smaller than the median PC flux values. 

 

Supplementary Figure 14. Hard-coupled reactions carry a much lower flux than partially-

coupled reactions. For each growth condition, the fluxes for all hard-coupled and partially-

coupled reactions were determined. The distribution of maximum fluxes for partially-

coupled reactions is significantly higher than the distribution of allowed fluxes for hard-

coupled reactions. HC = hard-coupled, PC = partially-coupled. 

 

Contribution of up-regulated less-efficient (ELE and MLE) genes  

A small fraction of metabolically less-efficient (MLE) and enzymatically less efficient (ELE) 

genes were up-regulated in the evolved strains. Potentially, less efficient genes can increase 

growth rate despite their decreased efficiency, if they allow for the usage of kinetically faster 

enzymes and shorter pathways. The results we have presented, however, do not support 



this hypothesis, since the strains presented here evolved to a higher biomass yield 

(Supplementary Table 7), thereby suggesting that the metabolic networks of the evolved 

strains are more efficient than that of the unevolved strains. However, to further answer this 

question, an analysis is presented here to test if the less efficient genes are up-regulated 

within functional pathways or if their up-regulation is for other processes beyond biomass 

production. 

It has been shown by our study and others that the end points of adaptive evolution can 

accurately be described using in silico models (Fong & Palsson, 2004;Ibarra et al, 2002). 

Here, we aimed to determine the most likely condition-specific metabolic model given high-

throughput data obtained from cells exhibiting the various optimal phenotypes. This allowed 

for a systematic evaluation of pathways that were up- and down-regulated.    

To do this, an optimization was performed subject to all existing constraints from the 

metabolic model, including the previously reported substrate uptake rates (Charusanti et al, 

submitted;Fong et al, 2005). Additionally, the model was constrained to meet at least 90% of 

WT growth rate.  The goal was to retain all genes supported by up-regulated expression 

data, but maintain model functionality towards biomass formulation. This was carried out by 

minimizing the sum of all fold-changes for all genes with a fold change less than 2 (increased 

expression in the evolved strains): 

 

Here, wi is a gene-specific weight for each gene added to the model, gi.  These weights are 

computed using the fold-change data in conjunction with a log2 fold-change cut-off of 1.  

More specifically, it is computed by taking the distance from the fold-change for each gene 

to the fold change cut-off.  As an example, if the log2 fold change distance is 2.5, and the log2 

fold change cut-off is 1, the weight for this gene would be 1.5 (and the model will include 

this gene in the solution returned since gi = 1).  If the log2 fold change was 0.5, and the log2 

fold change cut-off is 1, the weight for this gene would be -0.5.  The model will only include 

this gene in the solution returned if it is critical for meeting 90% of the biomass objective. 

We recognize that this formulation likely leads to the inclusion of genes that cannot be 

functional (towards biomass formation) in the final returned model, if they have a fold 

change higher than the cutoff.  To address this concern, we subsequently performed flux 

variability analysis (FVA) and removed all genes that cannot possibly have a role in the 



objective.  More specifically, we removed genes for which all reactions they can participate 

in must carry a 0 flux. However, this method retains all isozymes. 

A few MLE and ELE genes consistently showed up in the final returned models. These genes 

were of considerable interest as their expression leads to an optimal phenotype but violates 

the pFBA objective. Most of these genes are relevant in amino acid and nucleic acid 

metabolism. The most prominent examples are as follow. 

As mentioned in the main text, only one MLE gene was up-regulated in all data sets. 

Deoxyuridinetriphosphatase (DnaS; 3.6.1.23), which dephosphorylates dUTP, is up-regulated 

in all datasets, presumably to maintain genome integrity at the increased growth rates by 

decreasing the dUTP concentration in the cell (Hochhauser & Weiss, 1978). 

Another enzyme that is up-regulated in the glycerol and lactate strain microarray data and 

the pgi deletion strain proteomic data is Formyltetrahydrofolate Hydrolase (PurU; 3.5.1.10). 

This enzyme converts 10-Formyltetrahydrofolate to tetrahydrofolate, thereby producing 

extra formate for purine synthesis in aerobic conditions (Nagy et al, 1995), thereby 

increasing the concentration of purines for the increased demands for DNA and RNA 

precursors at higher growth rates. Moreover, PurU is known to regulate glycine biosynthesis, 

thereby safeguarding it under high purine concentrations (Nagy et al, 1995).   

The glycerol strain microarray data and the pgi deletion strain proteomic data also show an 

up-regulation of the NAD transhydrogenase in conjunction with the up-regulation of the 

oxidative pentose phosphate pathway (which is necessary for the pgi deletion strain, but 

MLE in the glycerol strains). The transhydrogenase expression level has been shown to 

correlate with growth rate previously (Canonaco et al, 2001). In the glycerol and pgi deletion 

strains, the up-regulation of the NAD transhydrogenase is likely important for maintaining 

decreasing the buildup of NADPH from the up regulation of the oxidative pentose phosphate 

pathway. 

The remaining functional MLE and ELE genes contribute primarily to amino acid transport 

and nucleotide metabolism and oxidation, likely due to the minimal media and high growth 

rates, respectively. Overall, of all MLE and ELE genes only a small fraction is up-regulated and 

can contribute to functional pathways (Supplementary Figure 3). 



Comparison between pFBA “growth rate” objective vs. other common 

objective functions for adaptive evolution 

A wide number of different cellular objectives have been used to describe cell decisions in 

phenotypic prediction. Researchers have used optimization methods to describe cellular 

growth, such as Flux Balance Analysis, with objectives such as optimizing growth yield (mol 

biomass per mol substrate), “growth rate” (biomass for a given substrate uptake rate, with 

constraints for cellular maintenance), or ATP production. A recent work (Schuetz et al, 2007) 

conducted a large analysis of various objective functions and additional constraints to assess 

which combinations predicted a flux distribution most similar to the experimentally 

measured flux through the network. In that work, no combination was found to best 

describe the six experimental conditions tested. However in batch culture, it was shown that 

ATP yield per unit flux was the most accurate. For nutrient scarce continuous conditions 

(similar to those in our study) the maximization of ATP or biomass yield was best.  

Here, we have assessed the accuracy of a few different objectives to identify which, when 

combined with flux minimization, is most consistent with the expression changes seen in 

adaptive evolution. As shown in Supplementary Figure 15, very little difference was found 

between maximizing “growth rate” and “growth yield” (including the removal non-growth 

associated maintenance and the measured oxygen uptake rate constraints). On the other 

hand, maximizing ATP yield led to poor results. This, however, was expected. In the previous 

study that showed positive results for ATP yield maximization, only a model of central 

metabolism was used (Schuetz et al, 2007). However, in a genome-scale model, the 

maximization of ATP selects against the usage of biosynthetic pathways, since the end 

products are not specified in the objective function. Thus, these pathways will either 

decrease the ATP yield or increase flux through the metabolic network. In fact, few genes 

contribute to the Essential and pFBA optima classes under the ATP yield objective, and most 

genes are included in the ELE class.  

Across all of the data sets only the pgi deletion proteomic data showed an up-regulation of 

essential and pFBA optima genes when optimizing ATP. Most other sets only showed either 

up-regulation or a lack of down-regulation (Supplementary Figure 15). This inconsistency of 

results between data sets when optimizing ATP yield for a genome-scale model, suggests 

that optimizing “growth rate” is a better in silico objective (though “growth yield” is just 

about the same). 



 

Supplementary Figure 15. A comparison of different objective functions. pFBA with a 

maximization of growth rate, is not significantly different from pFBA with an maximization of 

the growth yield (without O2 constraints). However, pFBA with the maximization of ATP yield 

performs worse since the Essential genes and pFBA optima are not up-regulated for any data 

sets except for the pgi deletion strain proteomic data. The cloud represents the normalized 

distribution of the summed up and down regulated genes or proteins of randomly chosen 

differentially expressed genes, with x and y values representing the Z-score for the sum of 

down- and up- regulated gene fold-change, respectively.  



Significant changes in translation and metabolism in evolved strains 

through SVD 

To discover processes that are affected in the evolved strains, singular value decomposition 

(SVD) was employed. SVD is commonly used to determine dimensionality of a data set, and 

the dimensionality is thought to be correlated with the number of biological processes that 

produce the variation in the data (Wall et al, 2003). When sets of protein/gene expression 

data have a significantly low dimensionality (as determined through SVD), this suggests that 

there is a mechanism that allows such molecules to co-vary in their expression, possibly due 

to similarities in function, genomic location, and/or regulation. The SVDs were computed for 

all Gene Ontology (GO) classes. At an FDR of 0.05, there are 11 GO annotation classes in 

which the proteomic data have a significantly lower dimensionality than randomly chosen 

proteins, and 20 significant GO classes in the gene expression profiles (see Supplementary 

Tables 15 and 16).  

The global analysis of dimensionality of GO classes in the proteomic and transcriptomic data 

demonstrates the dominance in the changes in translation and metabolism (see 

Supplementary Tables 15 and 16). In the SVD of all datasets, ribosomal and translation-

associated protein classes dominate the low dimensional classes. In addition, when the SVD 

is conducted on data from the individual experimental conditions, strains grown on lactate 

or glycerol are also dominated by GO classes for several metabolic processes (see 

Supplementary Tables 17-18). For the SVD of the data from strains in which pgi was deleted, 

however, more than 200 GO classes significantly separate the evolved and non-evolved 

strains in only two modes (see Supplementary Table 19). Most of these classes are also 

involved with transcription, translation, and metabolism. Thus, the SVD of data from all 

three evolution conditions supports results presented in Figure 4 of the main text, thereby 

demonstrating the importance of changes in translation and metabolism in the process of 

adaptive evolution. 



Effect of down regulated regulons on metabolism 

Several metabolism-associated regulons are enriched among each growth condition. 

Therefore it is desirable to quantify the effect each regulon has on the different pFBA 

classes. If the pFBA classes are reasonable, one would expect that for each regulon, down 

regulation would have only a small effect on the essential genes and pFBA optima, while a 

higher fraction of pFBA no-flux genes should be down-regulated. For each growth condition, 

metabolism-related regulons that were significantly down-regulated were selected and 

tested to assess their coverage for all expressed genes or identified proteins. As predicted, a 

higher fraction of identified proteins and expressed genes are down-regulated in the pFBA 

no-flux for the most highly enriched metabolic-associated regulons (Supplementary Figure 

4).  

 



Concern of Pgi identified in pgi-deletion proteomic datasets 

Upon inspection of the proteomic data, it was surprising to find that Pgi was identified in all 

of the pgi-deletion strain proteomic data sets. Across all data sets, 47 different peptides for 

Pgi had been identified. However, pgi-deletion strains only had on average 4 of these 47 

peptides in each sample. In addition, all but one peptide was identified outside of an FDR of 

0.06 (Supplementary Figure 16.a). Further RTPCR and analysis of microarray data from the 

pgi deletion strains verified zero expression of the pgi gene (Supplementary Figure 16.b). For 

RTPCR, the flanking lanes were loaded with 2-log ladder from New England Biolabs 

(#N3200S) in order to provide an estimate of DNA fragment sizes.  The second lane from the 

left is pgi amplified from wild-type E. coli.  The remaining lanes are Δpgi amplified from the 

evolved strains.  The primers used for wild-type and the evolved strains were all the same, 

and surround the pgi gene but do not include any actual base pairs associated with the gene. 

Subsequently, fresh samples were subjected to a second round of proteomic profiling, and 

the same Pgi peptides were identified (data not shown). Therefore, we are able to conclude 

that the abundance values reported for Pgi in proteomic dataset for the Δpgi strains 

represent false positive assignments.  

 

Supplementary Figure 16. Verification that pgi removal was successful. Removal of pgi 

from Δpgi strains was successful. A) A handful of the 47 distinct identified Pgi peptides are 

found in the proteomic data for the pgi deletion strains. However, all such peptides, except 

one, had high mass and/or normalized elution time errors and thus were identified at an 

FDR greater than 6% (black box). B) To further verify that pgi was successfully removed and 

that evolved strains were lacking pgi, all Δpgi strains were subjected to RTPCR. While pgi is 

highly expressed in wild type E. coli, it is clearly not expressed in any of the Δpgi evolved 



strains. Together these results show that pgi was successfully deleted and that the identified 

peptides were false positives. 
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