Supporting Information

A Library of 1,4-Disubstituted 1,2,3-Triazole Analogs of the Oxazolidinone RNA-Binding Agents.

George Acquaah-Harrison, Shu Zhou, Jennifer V. Hines and Stephen C. Bergmeier*

Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.

Author to whom correspondence should be addressed:

Phone Number: 740-597-9649 Fax Number: 740-593-0148 Email: bergmeis@ohio.edu

Table of Contents

Biological data of 1,4-disubstituted 1,2,3-triazole members	8
Table 1. FRET screening of 1,4-disubstituted 1,2,3-triazole binding affinity for model RNAs AM1A	4
and C11U	8
Procedures for Precursors and selected Library Members	9
General Procedures.	9
General method A for glycidyl ester 6a-c synthesis	9
General method B for glycidyl carbamate 8a-b synthesis	10
General method A for the synthesis of propargylamine derivatives 4{1-7}	16
General method B for the synthesis of propargylamine derivatives 4{8-9}.	17

General procedure for 1,4-disubstituted 1,2,3-triazole synthesis.	20
Glycidyl esters 6a-c	
Oxiran-2-ylmethyl octanoate (6a). ¹ H NMR	
Oxiran-2-ylmethyl benzoate (6b). ¹ H NMR	
Oxiran-2-ylmethyl benzoate (6b). ¹³ C NMR	
Oxiran-2-ylmethyl cyclohexanecarboxylate (6c). ¹ H NMR	
Oxiran-2-ylmethyl cyclohexanecarboxylate (6c). ¹³ C NMR	32
Glycidyl carbamates 8a-b	
Oxiran-2-ylmethyl benzylcarbamate (8a). ¹ H NMR	
Oxiran-2-ylmethyl benzylcarbamate (8a). ¹³ C NMR	
Oxiran-2-ylmethyl butylcarbamate (8b). ¹ H NMR	
Oxiran-2-ylmethyl butylcarbamate (8b). ¹³ C NMR	34
Azide components 3{1-12}	
3-azido-2-hydroxypropyl octanoate 3{1}. ¹ H NMR	34
3-azido-2-hydroxypropyl octanoate 3{1}. ¹³ C NMR	35
3-azida-2-hydroxypropyl benzoate 3/2) ¹ H NMR	35
5-azido-2-nydroxypropyr benzoate 5(2). In rurra	35
3-azido-2-hvdroxypropyl benzoate 3{2}, ¹³ C NMR	36
3-azido-2-hydroxypropyl cyclohexanecarboxylate 3{3}. ¹ H NMR	
3-azido-2-hydroxypropyl cyclohexanecarboxylate 3{3}. ¹³ C NMR	
3-azido-2-hydroxypropyl benzylcarbamate 3{4}. ¹ H NMR	
3-azido-2-hydroxypropyl benzylcarbamate 3{4}. ¹³ C NMR	
3-azido-2-hydroxypropyl butylcarbamate 3{5}. ¹ H NMR	
3-azido-2-hydroxypropyl butylcarbamate 3(5), ¹³ C NMR	
2-azido-1-phenylethanol 3{6}. ¹ H NMR	
2-azido-1-phenylethanol 3{6}. ¹³ C NMR	
2-azidohexan-2-ol 3{7}. ¹ H NMR	
2-azidohexan-2-ol 3{7}. ¹³ C NMR	
	41
1-azido-3-(benzyloxy)propan-2-ol 3{8}. ¹ H NMR	41
1-azido-3-(benzyloxy)propan-2-ol 3{8}. ¹³ C NMR	42
Trans-2-azidocyclohexanol 3{9}. ¹ H NMR	42
Trans-2-azidocyclohexanol 3{9}. ¹³ C NMR	43
Trans-2-azidocyclohexyl benzoate 3{10}. ¹ H NMR	43
Trans-2-azidocyclohexyl benzoate 3{10}. ¹³ C NMR	44
Trans-2-azidocyclohexyl 2-phenylacetate 3{11}. ¹ H NMR	44
Trans-2-azidocyclohexyl 2-phenylacetate 3{11}. ¹³ C NMR	45
Trans-2-azidocyclohexyl 2-phenoxyacetate 3{12}. ¹ H NMR	45
Trans-2-azidocyclohexyl 2-phenoxyacetate 3{12}. ¹³ C NMR	
Alkyne components 4{1-9}	
N-butyl-N-(prop-2-ynyl)butan-1-amine 4{1}. ¹ H NMR	46
N-butyl-N-(prop-2-ynyl)butan-1-amine 4{1}. ¹³ C NMR	
N-methyl-N-(3-phenylpropyl)prop-2-yn-1-amine 4{2}. ¹ H NMR	47
N-methyl-N-(3-phenylpropyl)prop-2-yn-1-amine 4{2}. ¹³ C NMR	
N-methyl-N-phenethylprop-2-yn-1-amine 4{3}. ¹ H NMR	48

N-methyl-N-phenethylprop-2-yn-1-amine 4{3}. ¹³ C NMR	49
4-(prop-2-ynyl)morpholine 4{4}. ¹ H NMR	
4-(prop-2-ynyl)morpholine 4{4}. ¹³ C NMR	50
4-phenyl-1-(prop-2-ynyl)piperidine 4{5}. ¹ H NMR	50
4-phenyl-1-(prop-2-ynyl)piperidine 4{5}. ¹³ C NMR	51
1-phenyl-4-(prop-2-ynyl)piperazine 4{6}. ¹ H NMR	51
1-phenyl-4-(prop-2-ynyl)piperazine 4{6}. ¹³ C NMR	52
	52
Ethyl 1-(prop-2-ynyl)piperidine-3-carboxylate 4{7}. ¹ H NMR	52
Ethyl 1-(prop-2-ynyl)piperidine-3-carboxylate 4{7}. ¹³ C NMR	53
N-(cyclohexylmethyl)-N-methylprop-2-yn-1-amine 4{8}. ¹ H NMR	53
N-(cyclohexylmethyl)-N-methylprop-2-yn-1-amine 4{8}. ¹³ C NMR	54
N,3-dimethyl-N-(prop-2-ynyl)butan-1-amine 4{9}. ¹ H NMR	54
N,3-dimethyl-N-(prop-2-ynyl)butan-1-amine 4{9}. ¹³ C NMR	55
A disubstituted 1.2.3 triazolo lbrory	55
2-bydrovy-3-(A-((methyl(3-nhenylnronyl)amino)methyl)-1H-1 2 3-triazol-1-yl)nronyl	
2-nyuloxy-5-(4-((methyl(5-phenyipi opyi)ammo)methyl)-111-1,2,5-thazor-1-yi)pi opyi honzyloorhomoto 2(4.2) ¹ H NMP	55
2 (A ((A - phonyl piper a zin - 1, yl)methyl) 1H - 1 2 3 triazol 1 - yl)eyeleheyenel 2(0 6) 1H NME	
Ethyl 1.((1.(2.hydroxyheyyl).1H-1 2 3.triazol.4.yl)methyl)nineridine.3.carboxylate 2{77	1
NMR	56
1-(4-(((cvclohexvlmethvl)(methvl)amino)methvl)-1H-1,2,3-triazol-1-vl)hexan-2-ol 2{7.8}.	¹ H NMR
	57
1-(4-((4-nhenylninerazin-1-yl)methyl)-1H-1.2.3-triazol-1-yl)hexan-2-ol 2{7.6}. ¹ H NMR	57
Ethyl 1-((1-(2-hydroxycyclohexyl)-1H-1,2,3-triazol-4-yl)methyl)nineridine-3-carboxylate	2{9.7}.
¹ H NMR	58
2-(4-(((cvclohexvlmethyl)(methyl)amino)methyl)-1H-1.2.3-triazol-1-vl)cvclohexanol 2{9.8	3}, ¹ H
NMR	
Ethyl 1-((1-(3-(benzyloxy)-2-hydroxypropyl)-1H-1.2.3-triazol-4-yl)methyl)piperidine-3-	
carboxylate 2{8.7}. ¹ H NMR	
3-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)-2-hydroxypropyl benzylcarbamate 2{	4.1}. ¹ H
NMR	
Ethyl 1-((1-(3-(benzylcarbamoyloxy)-2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl)pipe	eridine-
3-carboxylate 2{4.7}. ¹ H NMR	
2-hydroxy-3-(4-((isopentyl(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)propyl benzylcar	bamate
2{4.9}. ¹ H NMR	
3-(4-(((cvclohexvlmethyl)(methyl) amino)methyl)-1H-1.2.3-triazol-1-vl)-2-hvdroxvpropy	
benzylcarbamate 2{4.8}. ¹ H NMR	
2-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1.2.3-triazol-1-yl)cyclohexyl benzoate 2{10.5}.	^I H NMR
= (· ((· F	
2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-	
phenoxvacetate 2{12.8}. ¹ H NMR	
2-(4-((methyl(3-phenylpropyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxy	acetate
2{12,2}. ¹ H NMR	62
2-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate	2{12,5}.
¹ H NMR	
2-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,1}.	H NMR
	63

2-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenyla	cetate 2{11,1}. ¹ H N
2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)	cyclohexyl 2-phenyla
2{11,8}. ¹ H NMR	
2-hydroxy-3-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)	propyl benzylcarban
2{4,5}. H NMIK	
PLC chromatograms for 1,4-disubstituted 1,2,3-triazole libra	ry members
1,4-disubstituted 1,2,3-triazole member 2 {1,1}. HPLC ($CH_3OH : H_2O$) R	L _T 17.05 (93%)
1.4-disubstituted 1.2.3-triazole member 2 {1 2} HPLC (CH ₂ OH · H ₂ O) R	$k_{m}4.97$ (81%) gradier
elution 55% to 95% over 9 min	(0170), gruater
1.4-disubstituted 1.2.3-triazole member 2 {1.3}. HPLC (CH ₂ OH : H_2O) R	19.11 (91%), gradie
elution 55% to 95% over 26 min	() 1 / () () () () () () () () () () () () ()
1,4-disubstituted 1,2,3-triazole member 2{1,4}. HPLC (CH ₃ OH : H ₂ O) R	L _T 15.34 (87%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{1,5}. HPLC (CH ₃ OH : H ₂ O) R	L _T 19.20 (100%)
1,4-disubstituted 1,2,3-triazole member 2{1,6}. HPLC (CH ₃ OH : H ₂ O) R	L _T 16.94 (98%)
1,4-disubstituted 1,2,3-triazole member 2{1,7}. HPLC (CH ₃ OH : H ₂ O) R	L _T 16.84 (97%), gradie
elution 55% to 95% over 21 min	-
1,4-disubstituted 1,2,3-triazole member 2{1,8}. HPLC (CH ₃ OH : H ₂ O) R	^k _T 19.92 (95%)
1,4-disubstituted 1,2,3-triazole member 2{1,9}. HPLC (CH ₃ OH : H ₂ O) R	α _T 17.57 (84%)
1,4-disubstituted 1,2,3-triazole member 2{2,1}. HPLC (1% AcOH in CH	$I_3OH : H_2O) R_T 13.95$
(100%), gradient elution 55% to 95% over 21 min.	
1,4-disubstituted 1,2,3-triazole member 2{2,2}. HPLC (CH ₃ OH : H ₂ O) R	a _T 13.31 (83%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{2,3}. HPLC (1% AcOH in CH	$I_{3}OH : H_{2}O) R_{T} 2.40$ (
gradient elution 30% to 90% over 26 min.	
1,4-disubstituted 1,2,3-triazole member 2{2,4}. HPLC (CH ₃ OH : H ₂ O) R	t _T 10.20 (81%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{2,5}. HPLC (CH ₃ OH : H ₂ O) R	$L_{\rm T}$ 10.02 (84%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{2,6}. HPLC (CH ₃ OH : H ₂ O) R	t _T 10.37 (81%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{2,7}. HPLC (CH ₃ OH : H ₂ O) R	L _T 11.84 (84%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{2,8}. HPLC (1% AcOH in CH	$I_3OH : H_2O) R_T 2.53$ (
gradient elution 30% to 90% over 21 min.	
1,4-disubstituted 1,2,3-triazole member 2{2,9}. HPLC (CH ₃ OH : H ₂ O) R	. _T 9.69 (84%), gradiei
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2 $\{3,1\}$. HPLC (CH ₃ OH : H ₂ O) R	. _T 14.13 (83%), gradie
elution 55% to 95% over 21 min	
1,4-disubstituted 1,2,3-triazole member 2{3,2}. HPLC (1% AcOH in CH	$H_3OH : H_2O) R_T 4.30$
(100%), gradient elution 30% to 90% over 26 min.	
1,4-disubstituted 1,2,3-triazole member 2 {3,3}. HPLC (1% AcOH in CH	$H_3OH : H_2O) R_T 2.45$
(1000%) and $100%$ $100%$ $100%$ $100%$	
(100%), gradient elution 30% to 90% over 26 min.	

1,4-disubstituted 1,2,3-triazole member 2{3,6}. HPLC (CH₃OH : H₂O) R_T 12.07 (82%), gradient **1,4-disubstituted 1,2,3-triazole member 2** $\{3,7\}$. HPLC (CH₃OH : H₂O) R_T 6.59 (96%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{3,8}. HPLC (1% AcOH in CH₃OH : H₂O) R_T9.95 (84%), **1,4-disubstituted 1,2,3-triazole member 2**{3,9}. HPLC (CH₃OH : H₂O) R_T 15.64 (85%)......**79 1,4-disubstituted 1,2,3-triazole member 2** $\{4,1\}$. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.50 **1,4-disubstituted 1,2,3-triazole member 2**{4,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.92 (98%), **1,4-disubstituted 1,2,3-triazole member 2**{4,4}. HPLC (CH₃OH : H₂O) R_T 14.47 (84%), gradient 1,4-disubstituted 1,2,3-triazole member 2{4,5}. HPLC (1% AcOH in CH₃OH : H₂O) R_T2.32 **1,4-disubstituted 1,2,3-triazole member 2**{4,6}. HPLC (CH₃OH : H₂O) R_T 10.20 (80%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{4,7}. HPLC (CH₃OH : H₂O) R_T13.88 (97%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{4,8}. HPLC (CH₃OH : H₂O) R_T11.89 (84%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{4,9}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 9.05 (81%), **1,4-disubstituted 1,2,3-triazole member 2**{5,1}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 8.64 (96%), **1,4-disubstituted 1,2,3-triazole member 2**{5,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 9.90 (99%), **1,4-disubstituted 1,2,3-triazole member 2**{5,3}. HPLC (1% AcOH in CH₃OH : H₂O) R_T4.05 (94%), **1,4-disubstituted 1,2,3-triazole member 2** $\{5,4\}$. HPLC (1% AcOH in CH₃OH : H₂O) R_T2.39 1,4-disubstituted 1,2,3-triazole member $2{5,5}$. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.49 **1,4-disubstituted 1,2,3-triazole member 2**{5,6}. HPLC (CH₃OH : H₂O) R_T 10.70 (80%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{5,7}. HPLC (CH₃OH : H₂O) R_T 13.57 (92%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{6,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.50 (84%), **1,4-disubstituted 1,2,3-triazole member 2**{6,4}. HPLC (CH₃OH : H₂O) R_T9.54 (100%)......**90 1,4-disubstituted 1,2,3-triazole member 2**{6,5}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.52 (89%), **1,4-disubstituted 1,2,3-triazole member 2**{6,6}. HPLC (CH₃OH : H₂O) R_T 9.76 (80%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{6,7}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 3.12 (98%), **1,4-disubstituted 1,2,3-triazole member 2**{6,8}. HPLC (CH₃OH : H₂O) R_T17.21 (94%)......**92 1,4-disubstituted 1,2,3-triazole member 2**{6,9}. HPLC (CH₃OH : H₂O) R_T 15.34 (95%)......**92** 1,4-disubstituted 1,2,3-triazole member 2{7,2}. HPLC (CH₃OH : H₂O) R_T15.72 (86%)......93 **1,4-disubstituted 1,2,3-triazole member 2**{7,3}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 13.95 **1,4-disubstituted 1,2,3-triazole member 2**{7,4}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 9.05 (90%), gradient elution 30% to 90% over 14 min......94 **1,4-disubstituted 1,2,3-triazole member 2**{7,5}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.54 (90%), gradient elution 30% to 90% over 21 min......95 **1.4-disubstituted 1.2.3-triazole member 2** $\{7,6\}$. HPLC (CH₃OH : H₂O) R_T 9.79 (84%), gradient **1,4-disubstituted 1,2,3-triazole member 2**{7,7}. HPLC (CH₃OH : H₂O) R_T 14.25 (99%), gradient 1,4-disubstituted 1,2,3-triazole member 2{7,8}. HPLC (CH₃OH : H₂O) R_T 16.53 (96%)......96 1,4-disubstituted 1,2,3-triazole member 2{7,9}. HPLC (CH₃OH : H₂O) R_T 14.96 (86%)......97 **1,4-disubstituted 1,2,3-triazole member 2**{8,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T4.18 (81%), 1,4-disubstituted 1,2,3-triazole member 2{8,3}. HPLC (CH₃OH : H₂O) R_T15.13 (84%)......98 **1,4-disubstituted 1,2,3-triazole member 2**{8,4}. HPLC (CH₃OH : H₂O) R_T13.99 (94%)......**99 1,4-disubstituted 1,2,3-triazole member 2**{8,5}. HPLC (CH₃OH : H₂O) R_T 15.00 (98%).......**99** 1,4-disubstituted 1,2,3-triazole member 2{8,6}. HPLC (CH₃OH : H₂O) R_T 10.37 (81%), gradient elution 55% to 95% over 21 min......**100 1,4-disubstituted 1,2,3-triazole member 2**{8,7}. HPLC (CH₃OH : H₂O) R_T 14.56 (98%), gradient elution 55% to 95% over 21 min......**100** 1.4-disubstituted 1.2.3-triazole member 2{8.8}. HPLC (CH₃OH : H₂O) R_T 19.70 (98%)......101 **1,4-disubstituted 1,2,3-triazole member 2**{8,9}. HPLC (CH₃OH : H₂O) R_T 18.19 (90%)......**101 1,4-disubstituted 1,2,3-triazole member 2** $\{9,1\}$. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.50 **1,4-disubstituted 1,2,3-triazole member 2**{9,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.51 (89%), **1,4-disubstituted 1,2,3-triazole member 2** $\{9,3\}$. HPLC (1% AcOH in CH₃OH : H₂O) R_T2.51 **1,4-disubstituted 1,2,3-triazole member 2**{9,4}. HPLC (CH₃OH : H₂O) R_T 15.12 (82%)......**103 1,4-disubstituted 1,2,3-triazole member 2**{9,5}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.51 (84%), **1,4-disubstituted 1,2,3-triazole member 2**{9,6}. HPLC ($CH_3OH : H_2O$) R_T 8.85 (90%), gradient elution 55% to 95% over 21 min......**104** 1,4-disubstituted 1,2,3-triazole member 2{9,7}. HPLC (CH₃OH : H₂O) R_T 12.84 (98%), gradient **1.4-disubstituted 1.2.3-triazole member 2**{9,8}. HPLC (CH₃OH : H₂O) R_T 18.94 (81%)......**105 1.4-disubstituted 1.2.3-triazole member 2**{9.9}. HPLC (CH₃OH : H₂O) R_T 14.20 (100%), gradient

1,4-disubstituted 1,2,3-triazole member 2 {10,1}. HPLC (1% AcOH in CH ₃ OH : H ₂ O) R _T 2.54
(83%), gradient elution 30% to 90% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {10,2}. HPLC (1% AcOH in CH ₃ OH : H ₂ O) R _T 2.65
(100%), gradient elution 30% to 90% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {10,3}. HPLC (CH ₃ OH : H ₂ O) R _T 14.43 (84%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {10,4}. HPLC (CH ₃ OH : H ₂ O) R _T 10.11 (84%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {10,5}. HPLC (1% AcOH in CH ₃ OH : H ₂ O) R _T 2.52
(100%), gradient elution 30% to 90% over 26 min
1,4-disubstituted 1,2,3-triazole member 2 {10,6}. HPLC (CH ₃ OH : H ₂ O) R _T 11.85 (82%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {10,7}. HPLC (CH ₃ OH : H ₂ O) R _T 16.73 (94%), gradient
elution 55% to 95% over 21 min
$1,\!4\text{-disubstituted}\ 1,\!2,\!3\text{-triazole member}\ 2\{10,\!8\}.\ HPLC\ (CH_3OH:H_2O)\ R_T\ 14.47\ (82\%).\\ 110$
1,4-disubstituted 1,2,3-triazole member 2 {10,9}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 3.40$
(100%), gradient elution 30% to 90% over 20 min
$\textbf{1,4-disubstituted 1,2,3-triazole member 2} \\ \textbf{11,1}. \ HPLC \ (CH_{3}OH:H_{2}O) \ \textbf{R}_{T} \\ \textbf{16.80} \ (\textbf{86\%}). \ \textbf{ 111} \\ \textbf{11.1} \\$
$1,\!4\text{-disubstituted 1,} 2,\!3\text{-triazole member 2} \{11,\!2\}. \ HPLC \ (CH_3OH:H_2O) \ R_T 14.34 \ (96\%). \ \dots \ 111$
$1,\!4\text{-disubstituted}\ 1,\!2,\!3\text{-triazole\ member}\ 2\{11,\!3\}.\ HPLC\ (CH_3OH:H_2O)\ R_T\ 14.66\ (86\%).\\ 112$
$1,\!4\text{-disubstituted 1,}2,\!3\text{-triazole member 2}\{11,\!4\}. \ HPLC \ (CH_3OH:H_2O) \ R_T 16.15 \ (86\%). \ $
$1,\!4\text{-disubstituted}\ 1,\!2,\!3\text{-triazole member}\ 2\{11,\!5\}.\ HPLC\ (CH_3OH:H_2O)\ R_T 16.67\ (98\%).\\ 113$
1,4-disubstituted 1,2,3-triazole member 2{11,6}. HPLC (CH ₃ OH : H ₂ O) R _T 15.32 (81%) 113
1,4-disubstituted 1,2,3-triazole member 2{11,7}. HPLC (CH ₃ OH : H ₂ O) R _T 19.41 (100%)114
1,4-disubstituted 1,2,3-triazole member 2{11,8}. HPLC (CH ₃ OH : H ₂ O) R _T 19.88 (95%) 114
1,4-disubstituted 1,2,3-triazole member 2{11,9}. HPLC (CH ₃ OH : H ₂ O) R _T 17.04 (95%) 115
1,4-disubstituted 1,2,3-triazole member 2 {12,1}. HPLC (CH ₃ OH : H ₂ O) R _T 20.38 (81%), gradient
elution 55% to 95% over 35 min115
1,4-disubstituted 1,2,3-triazole member 2 {12,2}. HPLC (CH ₃ OH : H ₂ O) R _T 20.29 (97%), gradient
elution 55% to 95% over 35 min116
1,4-disubstituted 1,2,3-triazole member 2 {12,3}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.90$
(93%), gradient elution 30% to 90% over 13 min
1,4-disubstituted 1,2,3-triazole member 2 {12,4}. HPLC (CH ₃ OH : H ₂ O) R _T 12.17 (81%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {12,5}. HPLC (CH ₃ OH : H_2O) R_T 14.48 (98%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {12,6}. HPLC (CH ₃ OH : H_2O) R_T 11.41 (84%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {12,7}. HPLC (CH ₃ OH : H_2O) R_T 15.25 (96%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {12,8}. HPLC (CH ₃ OH : H_2O) R_T 13.92 (84%), gradient
elution 55% to 95% over 21 min
1,4-disubstituted 1,2,3-triazole member 2 {12,9}. HPLC (CH ₃ OH : H ₂ O) R_T 10.99 (82%), gradient
elution 55% to 95% over 21 min
Table 2. Mass of molecular ion peak (MW+H) of the 1,4-disubstituted 1,2,3-triazole library members

Compd	$\overline{\Delta F^a_{AM1A}(\%)}$	$\Delta F_{C11U}(\%)$	Compd	$\Delta F_{AM1A}(\%)$	$\Delta F_{C11U}(\%)$	Compd	$\Delta F_{AM1A}(\%)$	$\Delta F_{C11U}(\%)$
ANB-22 ^b	8.53	19.53	2 {5,4}	16.79	21.12	2 {9,1}	6.34	10.95
ANB-40	7.67	13.38	2 {5,6}	11.30	12.74	2 {9,3}	6.34	13.35
2 {1,1}	11.66	15.17	2 {5,7}	29.72	25.65	2 {9,4}	13.95	23.19
2 {1,2}	-6.61	-7.73	2 {5,8}	14.51	22.54	2 {9,5}	5.86	13.32
2 {1,6}	32.93	34.73	2 {5,9}	6.53	15.14	2 {9,6}	0.27	2.96
2 {2,1}	14.12	13.46	2 {6,3}	14.94	20.05	2 {9,7}	9.17	8.65
2 {2,2}	5.10	7.80	2 {6,4}	11.73	15.73	2 {9,8}	12.83	16.15
2 {2,3}	3.39	3.59	2 {6,6}	4.48	4.12	2 {9,9}	5.33	12.22
2 {2,4}	19.50	25.03	2 {6,7}	12.75	13.34	2 {10,4}	22.60	24.76
2 {2,6}	5.85	11.85	2 {6,8}	18.23	14.55	2 {10,5}	6.08	10.78
2 {2,7}	18.92	23.73	2 {6,9}	8.00	14.12	2 {10,6}	20.05	24.05
2 {2,8}	15.65	17.37	2 {7,1}	10.68	11.57	2 {10,7}	23.00	28.49
2 {2,9}	15.23	16.01	2 {7,2}	9.39	14.36	2 {10,8}	0.50	8.57
2 {3,1}	7.02	9.63	2 {7,3}	14.18	13.82	2 {10,9}	-16.24	-11.39
2 {3,4}	11.70	18.05	2 {7,4}	11.74	23.19	2 {11,1}	8.46	12.98
2 {3,7}	28.48	26.13	2 {7,5}	5.50	14.99	2 {11,4}	16.09	20.19
2 {3,8}	-4.36	-2.69	2 {7,6}	3.48	9.97	2 {11,7}	17.95	18.22
2 {3,9}	-2.50	3.28	2 {7,7}	6.87	15.90	2 {11,8}	6.99	11.15
2 {4,1}	20.43	24.49	2 {7,8}	6.03	19.98	2 {12,1}	9.64	16.31
2 {4,2}	2.51	9.71	2 {7,9}	6.07	12.98	2 {12,2}	7.34	8.04
2 {4,3}	19.92	27.38	2 {8,1}	24.09	29.09	2 {12,3}	7.93	12.85
2 {4,5}	13.01	25.07	2 {8,2}	15.07	17.68	2 {12,4}	13.47	22.72
2 {4,6}	9.94	14.39	2 {8,3}	18.43	19.55	2 {12,5}	5.24	10.51
2 {4,7}	25.51	22.32	2 {8,4}	14.54	28.75	2 {12,6)	10.16	13.94
2 {4,8}	16.43	22.17	2 {8,5}	16.07	20.17	2 {12,7}	25.78	26.08
2 {4,9}	16.21	21.38	2 {8,6}	9.89	10.52	2 {12,8}	6.97	14.61
2 {5,1}	21.65	32.76	2 {8,8}	19.60	23.21	2 {12,9}	12.25	19.17

Biological data of 1,4-disubstituted 1,2,3-triazole members

Table 1. FRET screening of 1,4-disubstituted 1,2,3-triazole binding affinity for model RNAs AM1A and C11U

^a the relative fluorescence intensity change ΔF was calculated by $\Delta F=[(F-F_0)/F_0]*100$, where F

is the fluorescence intensity with ligand and F₀ is without ligand at 585 nm upon excitation at 467 nm.^b

All of the compounds were tested at a final concentration of $10 \,\mu$ M.

Procedures for Precursors and selected Library Members

General Procedures.

All reagents and starting materials were purchased from commercial suppliers. All reactions were conducted under an atmosphere of argon unless otherwise noted. Poly(4vinylpyridine), cross-linked 2% cross-linked with divinylbenezene powder was purchased from Aldrich and used as a scavenger for copper ions. Workup of 1,2,3-triazole compounds were carried out using Isolute SPE phase separators purchased from Biotage. Purification of desired products were carried out using flash chromatography on silica gel (230-400 mesh) purchased from Silicycle. Triethylamine was distilled from calcium hydride prior to use. THF and DCM were dried over a column of dried alumina under an atmosphere of nitrogen. ¹H and ¹³C-NMR spectra were garnered on a Bruker AG 300 MHz spectrometer in CDCl₃ and referenced to TMS. HPLC data were obtained on Shimadzu using Supelco discovery C8 column (15cm x 4.6 mm, 5 µm), eluting at 1 mL/min with a gradient elution starting at 55% of MeOH-H₂O going to 95% over 26 minutes as the mobile phase eluant unless otherwise stated. Retention times are reported in minutes. Mass verifications were carried out on a Shimadzu 2010A LC/MS using APCI probe. IR data were acquired on a Shimadzu Advantage FTIR-8400. Melting points were obtained on a Mel-temp Π , from laboratory devices, USA.

General method A for glycidyl ester 6a-c synthesis.

To a solution of glycidol **5** (100 mol%) in CH_2Cl_2 (1.35 M) at 0 °C was added DMAP (120 mol%). The reaction mixture was stirred for 30 minutes and the acid chloride (120 mol%) was added. The reaction was warmed to room temperature and stirring was continued at room temperature under argon atmosphere for 4 h. The reaction mixture was poured through a silica

gel pad, washed with CH_2Cl_2 (100 mL), filtered, concentrated and chromatographed (25% EtOAc in hexanes) to provide the desired glycidyl esters **6a-c**.

General method B for glycidyl carbamate 8a-b synthesis.

To a solution of allyl alcohol **7** (100 mol%) in CH_2Cl_2 (1.72 M) at 0 °C was added Et_3N (300 mol%) and DMAP (2 mol%). The reaction mixture was stirred at 0 ° C for 30 minutes and the required isocyanate (120 mol%) was added. The reaction was warmed to rt and stirring was continued for 4 h. The reaction mixture was washed with 1 M HCl (3x), saturated NaHCO₃ (3x), H_2O (3x), brine (2x), dried over MgSO₄, filtered, concentrated, and chromatographed (50% EtOAc in hexanes) to provide the allyl carbamate. Without further purification, the allyl carbamate was used in the next step of the reaction. To a solution of allyl carbamate (100 mol%) in CH_2Cl_2 (0.53 M) at 0 °C was added mCPBA (120 mol%). The reaction mixture was gradually warmed to room temperature and stirred 16 h. The reaction mixture was diluted with Et_2O , washed with 1 M NaOH (3x), dried over MgSO₄, filtered, concentrated, and chromatographed (50% EtOAc in hexanes) to provide carbamoyl epoxides **8a** and **8b**.

Oxiran-2-ylmethyl octanoate (6a).

Glycidol **5** (1.1 g, 15 mmol) was reacted with octanoyl chloride (3.1 mL, 2.9 g, 18 mmol) following general method A for glycidyl esters to afford 2.7 g (91%) of the ester **6a** as pale yellow oil that matched analytical data previously reported.¹ ¹H NMR (CDCl₃, 300 MHz) δ 3.92 (dd, *J* = 3.1, 12.3, 1H), 3.42 (dd, *J* = 6.3, 12.3, 1H), 2.72-2.69 (m, 1H), 2.33 (t, *J* = 4.9, 1H), 2.15 (dd, *J* = 2.6, 5.0, 1H), 1.87 (t, *J* = 7.4, 2H), 1.23-1.09 (m, 2H), 0.93-0.73 (m, 8H), 0.42 (t, *J* = 6.8, 3H).

Oxiran-2-ylmethyl benzoate (6b).

Glycidol **5** (1.1 g, 15 mmol) was reacted with benzoyl chloride (2.5 g, 18 mmol) following general method A for glycidyl esters to afford 2.4 g (90%) of the ester **6b** as yellow oil that matched analytical data previously reported.² ¹H NMR (CDCl₃, 300 MHz) δ 8.07 (d, *J* = 7.2, 2H), 7.57 (t, *J* = 7.2, 1H), 7.45 (t, *J* = 7.1, 2H), 4.65 (dd, *J* = 1.0, 3.1, 1H), 4.19 (dd, *J* = 6.2, 12.3, 1H), 3.37-3.31 (m, 1H), 2.98 (t, *J* = 4.9, 1H), 2.74-2.72 (m, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 166.3, 133.2, 129.7, 128.4, 65.4, 49.5, 44.7.

Oxiran-2-ylmethyl cyclohexanecarboxylate (6c).

Glycidol **5** (1.1 g, 15 mmol) was reacted with cyclohexanecarbonyl chloride (2.6 g, 18 mmol) following general method A for glycidyl esters to afford 2.6 g (93%) of the ester **6c** as colorless oil that matched analytical data previously reported.³ ¹H NMR (CDCl₃, 300 MHz) δ 4.21 (dd, *J* = 3, 12.3, 1H), 3.74 (dd, *J* = 6.1, 12.3, 1H), 3.02-2.99 (m, 1H), 2.64 (t, *J* = 4.6, 1H), 2.46 (dd, *J* = 2.6, 4.9, 1H), 1.74 (d, *J* = 12.4, 2H), 1.67-1.42 (m, 3H), 1.40-1.21 (m, 2H), 1.21-0.99 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 175.2, 64.3, 49.1, 44.2, 42.8, 28.8, 25.57, 25.19.

Oxiran-2-ylmethyl benzylcarbamate (8a).

Benzyl carbamate (1.13 g, 6.1 mmol) prepared from allyl alcohol **7** was reacted with mCPBA (1.26 g, 7.3 mmol) following general method B for glycidyl carbamates to afford 1.0 g (80%) of the carbamate **8a** as a yellow oil that matched analytical data previously reported.⁴ ¹H NMR (CDCl₃, 300 MHz) δ 7.36-7.26 (m, 5H); 5.20 (s, 1H), 4.45 (dd, *J* = 2.9, 12.2, 1H), 4.36 (d, *J* = 6.0, 2H), 3.90 (dd, *J* = 6.3, 12.2, 1H), 3.21-3.17 (m, 1H), 2.82 (t, *J* = 4.6, 1H), 2.62 (dd, *J* = 2.4, 4.4, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 156.1, 138.3, 128.7, 127.6, 127.5, 65.6, 49.8, 45.2, 44.6.

Oxiran-2-ylmethyl butylcarbamate (8b).

Butyl carbamate (1.60 g, 10.5 mmol) prepared from allyl alcohol **7** was reacted with mCPBA (2.17 g, 12.6 mmol) following general method B for glycidyl carbamates to afford 1.5 g (82%) of

the carbamate **8b** as yellow oil.¹H NMR (CDCl₃, 300 MHz) δ 5.00 (s, 1H); 4.42 (dd, J = 2.7, 12.2, 1H), 3.87(dd, J = 6.3, 12.2, 1H), 3.21-3.14 (m, 3H), 2.83 (t, J = 4.7, 1H), 2.64 (dd, J = 2.6, 4.8, 1H), 1.54-1.44 (m, 2H), 1.41-1.28 (m, 2H), 0.92 (t, J = 7.2, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 156.2, 65.3, 49.9, 44.6, 40.8, 32.0, 19.9, 13.7.

General method A for the synthesis of azide components $3\{1-3\}, 3\{4-5\} \& 3\{6-9\}$.

To a mixture of epoxide (100 mol%) and NH₄Cl (200 mol%) in MeOH and H₂O (0.28 M, 8:1) was added NaN₃ (800 mol%) and the reaction mixture was stirred at room temperature for 24 h. The reaction mixture was concentrated to 1/10 its volume, diluted with H₂O and extracted with EtOAc (3x). The combined organic layers were washed with brine (2x), dried over MgSO₄, filtered, concentrated, and chromatographed (35% EtOAc in hexanes) to provide azide compounds $3\{1-3\}, 3\{4-5\} \& 3\{6-9\}$.

General method B for the synthesis of azide components 3{10-12}.

To a solution of *trans*-2-azidocyclohexanol **3**{9} (100 mol%) in CH_2Cl_2 (0.71 M) at 0 °C was added Et_3N (300 mol%) and DMAP (2 mol%). The reaction mixture was stirred for 30 minutes and the acid chloride (120 mol%) was added. The reaction was gradually warmed to room temperature and stirred for 16 h under an argon atmosphere. The reaction mixture was washed with 1 M HCl (3x), saturated NaHCO₃ (3x), H₂O (3x), brine (2x), dried over MgSO₄, filtered, concentrated, and chromatographed (25% EtOAc in hexanes) to provide compounds **3**{10-12}.

3-azido-2-hydroxypropyl octanoate 3{1}.

Glycidyl octanoate **6a** (1.13 g, 5.6 mmol) was reacted with NaN₃ (3.6 g, 56 mmol) following the general method A for azide compounds syntheses to afford 1.1 g (77%) of the azide **3**{1} as a pale yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 4.15 (dd, J = 5.2, 12.2, 1H), 4.10 (dd, J = 5.2, 12.2, 1H), 4.04-3.97 (m, 1H), 3.41 (dd, J = 5.9, 12.8, 1H), 3.35 (dd, J = 5.9, 12.8, 1H), 3.03 (d, J

= 5.0, 1H), 2.33 (t, J = 7.5, 2H), 1.66-1.56 (m, 2H), 1.35-1.21 (m, 8H), 0.86 (t, J = 6.9, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 174.8, 69.6, 66.1, 54.1, 34.7, 32.3, 29.7, 29.5, 25.5, 23.2, 14.7. IR (CDCl₃) 2100 cm⁻¹.

3-azido-2-hydroxypropyl benzoate 3{2}.

Glycidyl benzoate **6b** (1.1 g, 6.2 mmol) was reacted with NaN₃ (4.0 g, 62 mmol) following the general method A for azide compounds syntheses to afford 1.0 g (81%) of the azide **3**{2} as an orange-yellow oil that matched analytical data previously reported.^{5 1}H NMR (CDCl₃, 300 MHz) δ 8.04 (d, *J* = 7.3, 2H), 7.58 (t, *J* = 7.2, 1H), 7.44 (t, *J* = 7.9, 2H), 4.44 (dd, *J* = 5.3, 20.5, 1H), 4.36 (dd, *J* = 5.3, 20.5, 1H), 4.21-4.12 (m, 1H), 3.51 (dd, *J* = 5.5, 13.0, 1H), 3.46 (dd, *J* = 5.5, 13.0, 1H), 3.22 (d, *J* = 4.4, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 166.8, 133.5, 129.7, 129.4, 128.5, 69.1, 66.1, 53.56. IR (CDCl₃) 2106 cm⁻¹.

3-azido-2-hydroxypropyl cyclohexanecarboxylate 3{3}.

Glycidyl cyclohexanecarboxylate **6c** (1.13 g, 6.1 mmol) was reacted with NaN₃ (4 g, 61 mmol) following the general method A for azide compounds syntheses to afford 1.12 g (81%) of the azide **3**{3} as a pale yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 4.11 (dd, J = 5.4, 20.4, 1H), 4.03 (dd, J = 5.4, 20.4, 1H), 3.99-3.89 (m, 1H); 3.36 (dd, J = 5.0, 12.7, 1H), 3.29 (dd, J = 5.0, 12.7, 1H), 3.00 (d, J = 5.0, 1H), 2.28 (tt, J = 3.6, 11.2, 1H), 1.90-1.79 (m, 2H), 1.75-1.53 (m, 3H), 1.45-1.10 (m, 5H), ¹³C NMR (CDCl₃, 75 MHz) δ 176.3, 69.0, 65.3, 53.5, 43.0, 29.0, 25.6, 25.3. IR (CDCl₃) 2100 cm⁻¹.

3-azido-2-hydroxypropyl benzylcarbamate 3{4}.

Glycidyl benzylcarbamate **8a** (0.97 g, 3.8 mmol) was reacted with NaN₃ (2.5 g, 38 mmol) following the general method A for azide compounds syntheses to afford 0.87 g (77%) of the azide **3**{4} as an orange-yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.23 (m, 5H), 5.27 (s,

1H), 4.36 (d, J = 5.2, 2H), 4.19 (dd, J = 4.3, 12.1, 1H), 4.14 (dd, J = 4.3, 12.1, 1H), 4.02-3.89 (m, 1H), 3.37-3.20 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 156.5, 137.7, 128.5, 127.4, 127.3, 69.3, 66.4, 53.1, 44.95. IR (CDCl₃) 2100 cm⁻¹.

3-azido-2-hydroxypropyl butylcarbamate 3{5}

Glycidyl butylcarbamate **8b** (0.93 g, 4.3 mmol) was reacted with NaN₃ (2.8 g, 43 mmol) following the general method A for azide compounds syntheses to afford 0.91 g (81%) of the carbamate **3**{5} as an orange-yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 4.90 (bs, 1H), 4.20-4.09 (m, 2H), 4.04-3.95 (m, 1H), 3.43-3.29 (m, 3H), 3.18 (q, *J* = 6.5, 2H), 1.50-1.43 (m, 2H), 1.42-1.28 (m, 2H), 0.93 (t, *J* = 7.3, 3H), ¹³C NMR (CDCl₃, 75 MHz) δ 155.3, 68.1, 64.9, 51.9, 39.4, 30.4, 18.3, 12.1. IR (CDCl₃) 2100 cm⁻¹.

2-azido-1-phenylethanol 3{6}.

Styrene oxide **9a** (1.2 g, 10 mmol) was reacted with NaN₃ (6.5 g, 100 mmol) following the general method A for azide compounds syntheses to afford 1.5 g (92%) of the azide **3**{6} as a yellow oil that matched analytical data previously reported.⁶ ¹H NMR (CDCl₃, 500 MHz) δ 7.43-7.31 (m, 5H), 4.66 (t, *J* = 6.5, 1H), 3.75 (t, *J* = 6.0, 2H), 2.08 (t, *J* = 6.0, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.5, 128.1, 127.9, 126.4, 67.1, 65.7. IR (CDCl₃) 2100 cm⁻¹

1-azidohexan-2-ol 3{7}.

2-Butyloxirane **9b** (1.0 g, 10 mmol) was reacted with NaN₃ (6.5 g, 100 mmol) following the general method A for azide compounds syntheses to afford 1.35 g (94%) of the azide **3**{7} as a colorless oil that matched analytical data previously reported.⁷ ¹H NMR (CDCl₃, 300 MHz) δ 3.84-3.68 (m, 1H), 3.38 (dd, *J* = 3.4, 12.4, 1H), 3.25 (dd, *J* = 7.4, 12.4, 1H), 2.00 (s, 1H), 1.56-1.25 (m, 6H), 0.92 (t, *J* = 6.9, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 70.3, 56.6, 33.5, 27.1, 22.1, 13.4. IR (CDCl₃) 2100 cm⁻¹.

1-azido-3-(benzyloxy)propan-2-ol 3{8}.

Benzyl glycidylether **9c** (1.6 g, 10 mmol) was reacted with NaN₃ (6.5 g, 100 mmol) following the general method A for azide compounds syntheses to afford 1.95 g (93%) of the azide **3**{8} as a pale yellow oil that matched analytical data previously reported.⁸ ¹H NMR (CDCl₃, 300 MHz) δ 7.39-7.27 (m, 5H), 4.55 (s, 2H), 4.01-3.89 (m, 1H), 3.53 (dd, *J* = 4.4, 9.6, 1H), 3.48 (dd, *J* = 4.4, 9.6, 1H), 3.39 (dd, *J* = 6.0, 12.9, 1H), 3.34 (dd, *J* = 6.0, 12.9, 1H), 2.56 (d, *J* = 3.9, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 136.1, 127.1, 126.5, 126.5, 72.1, 69.8, 68.2, 52.0. IR (CDCl₃) 2096 cm⁻¹.

Trans-2-azidocyclohexanol 3{9}.

Cyclohexene oxide **9d** (1.0 g, 10 mmol) was reacted with NaN₃ following the general method A for azide compounds syntheses to afford 1.38 g (98%) of the azide **3**{9} as a white solid that matched analytical data previously reported.⁸ ¹H NMR (CDCl₃, 300 MHz) δ 3.37-3.26 (m, 1H), 3.18-3.05 (m, 1H), 2.22 (d, *J* = 3.5, 1H), 2.05-1.90 (m, 2H), 1.74-1.60 (m, 2H); 1.36-1.11 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 72.4, 65.9, 31.9, 28.6, 23.1, 22.7. IR (CDCl₃) 2096 cm⁻¹.

Trans-2-azidocyclohexyl benzoate 3{10}.

2-Azido cyclohexanol **3**{9} (1.1 g, 11.3 mmol) was acylated with benzoyl chloride (2.0 g, 13.6 mmol) following general method B for azide synthesis to afford 2.1 g (92%) of the azide **3**{10} as a white solid that matched analytical data previously reported.⁹ ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (d, *J* = 7.9, 2H), 7.58 (t, *J* = 7.2, 1H), 7.45 (t, *J* = 7.5, 2H), 5.00-4.89 (m, 1H), 3.63-3.51 (m, 1H), 2.29-2.05 (m, 2H), 1.83-1.72 (m, 2H), 1.54-1.27 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 165.8, 133.1, 130.1, 129.7, 128.4, 76.0, 63.4, 30.5, 30.4, 23.8, 23.5. IR (CDCl₃) 2100 cm⁻¹. m.p 112-115 °C.

Trans-2-azidocyclohexyl 2-phenylacetate 3{11}.

2-Azido cyclohexanol **3**{9} (0.5 g, 3.5 mmol) was acylated with phenylacetyl chloride (0.65 g, 4.2 mmol) following general method B for azide synthesis to afford 0.80 g, (88%) of the azide **3**{11} as colorless oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.32-7.23 (m, 5H), 4.73-4.65 (m, 1H), 3.65 (s, 2H), 3.41-3.32 (m, 1H), 2.05-1.98 (m, 2H), 1.73-1.67 (m, 2H), 1.41-1.21 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 170.9, 133.9, 129.3, 128.6, 127.1, 75.8, 63.1, 41.5, 30.4, 30.3, 23.7, 23.4. IR (CDCl₃) 2100 cm⁻¹

Trans-2-azidocyclohexyl 2-phenoxyacetate 3{12}.

2-Azido cyclohexanol **3**{9} (0.51 g, 3.6 mmol) was acylated with phenoxyacetyl chloride (0.75 g, 4.4 mmol) following general method B for azide synthesis to afford 0.90 g (91%) of the azide **3**{12} as colorless oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.31 (t, *J* = 7.6, 2H), 7.01 (t, *J* = 7.4, 1H), 6.94 (d, *J* = 8.0, 2H), 4.86-4.78 (m, 1H), 4.70 (d, *J* = 16.2, 1H), 4.64 (d, *J* = 16.2, 1H), 3.45-3.34 (m, 1H), 2.11-1.98 (m, 2H), 1.79-1.65 (m, 2H); 1.45-1.18 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 168.3, 157.8, 129.6, 121.7, 114.7, 76.4, 65.3, 63.0, 30.4, 30.2, 23.7, 23.4. IR (CDCl₃) 2096 cm⁻¹.

General method A for the synthesis of propargylamine derivatives 4{1-7}.

To a solution of propargyl bromide **10** (120 mol%) in THF (0.84 M) was added a secondary amine **11** (100 mol%). The reaction mixture was stirred for 5 minutes and K_2CO_3 (200 mol%) was added. The reaction mixture was heated at reflux for 24 h under an argon atmosphere. The reaction mixture was filtered, concentrated and chromatographed (50% EtOAc in hexane) to afford the propargyl amine derived alkynes **4**{1-7}.

General method B for the synthesis of propargylamine derivatives 4{8-9}.

To a solution of N-methyl propargylamine **12** (100 mol%) in MeOH (1.45 M) was added alkyl bromide **13** (120 mol%). The reaction mixture was stirred for 5 minutes and K_2CO_3 (200 mol%) was added. The reaction was heated at reflux for 24 h under an argon atmosphere. The reaction mixture was filtered, concentrated and chromatographed (50% EtOAc in hexane) to afford the propargyl amine derived alkyne **4**{8} and **4**{9}.

N-butyl-*N*-(prop-2-ynyl)butan-1-amine 4{1}.

Propargyl bromide **10** (1.1 g, 9.29 mmol) was reacted with dibutylamine **11a** (1.0 g, 7.74 mmol) following general method A for propargylamine synthesis to afford 0.93 g (72%) of the alkyne **4**{1} as an orange-yellow oil that matched analytical data previously reported.¹⁰ ¹H NMR (CDCl₃, 300 MHz) δ 3.40 (d, *J* = 2.3, 2H), 2.45 (t, *J* = 7.1, 4H), 2.15 (t, *J* = 2.3, 1H), 1.49-1.26 (m, 8H), 0.92 (t, *J* = 7.1, 6H). ¹³C NMR (CDCl₃, 75 MHz) δ 78.2, 71.7, 52.7, 41.0, 29.0, 19.9, 13.3.

N-methyl-N-(3-phenylpropyl)prop-2-yn-1-amine 4{2}.

Propargyl bromide **10** (1.0 g, 14.5 mmol) was reacted with N-methyl-3-phenylpropylamine **11b** (3.4 g, 17.4 mmol) following general method A for propargylamine synthesis to afford 2.2 g, (80%) of the alkyne **4**{2} as a reddish brown oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.29-7.24 (m, 2H), 7.19-7.14 (m, 3H), 3.34 (d, *J* = 2.4, 2H), 2.64 (t, *J* = 7.6, 2H), 2.44 (t, *J* = 7.2, 2H), 2.31 (s, 3H), 2.19 (t, *J* = 2.4, 1H), 1.84-1.74 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 139.9, 126.2, 126.1, 123.5, 76.4, 70.7, 52.9, 43.3, 39.5, 31.3, 27.0.

N-methyl-*N*-phenethylprop-2-yn-1-amine 4{3}.

Propargyl bromide **10** (1.1 g, 8.88 mmol) was reacted with N-methyl-2-phenylethanamine **11c** (1.0 g, 7.40 mmol) following general method A for propargylamine synthesis to afford 0.96 g, (75%) of the alkyne **4**{3} as a reddish brown oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.28-7.14 (m,

5H), 3.37 (d, *J* = 2.4, 2H), 2.78-2.72 (m, 2H), 2.69-2.63 (m, 2H), 2.35 (s, 3H), 2.21 (t, *J* = 2.4, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 140.2, 128.7, 128.4, 126.1, 78.5, 73.3, 57.4, 45.6, 41.8, 34.3. **4-(prop-2-ynyl)morpholine 4**{4}.

Compound **4**{4} **was** prepared by following the method of Verron.¹¹ Propargyl bromide **10** (1.6 g, 13.8 mmol) was dissolved in THF (10 mL). To this reaction was added K₂CO₃ (3.2 g, 23.0 mmol) followed by morpholine **11d** (1.0 g, 11.5 mmol). The reaction mixture was refluxed for 6 h. The reaction mixture was washed with CH₃OH (30 mL) and the washed concentrated to afford a white solid. The solid was suspended in CH₂Cl₂ (30 mL) for 20 min then filtered, concentrated to provide the crude 4-prop-2-ynyl-morpholine. Kugelrohr distillation of the crude product afforded 1.2 g, (84%) of 4-prop-2-ynyl-morpholine **4**{4} as a colorless oil that matched analytical data previously reported.¹¹ ¹H NMR (CDCl₃, 300 MHz) δ 3.72 (t, *J* = 4.8, 4H), 3.27 (d, *J* = 2.4, 2H), 2.55 (t, *J* = 4.9, 4H), 2.26 (t, *J* = 2.4, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 78.4, 73.4, 66.8, 52.2, 47.2.

4-phenyl-1-(prop-2-ynyl)piperidine 4{5}.

Propargyl bromide **10** (1.0 g, 6.2 mmol) was reacted with 4-phenylpiperidine **11e** (0.89 g, 7.44 mmol) following general method A for propargylamine synthesis to afford 0.98 g, (80%) of the alkyne **4**{5} as a white solid that matched analytical data previously reported.¹² ¹H NMR (CDCl₃, 300 MHz) δ 7.36-7.19 (m, 5H), 3.38 (d, *J* = 2.8, 2H), 3.08-3.00 (m, 2H), 2.59-2.47 (m, 1H), 2.37 (dt, *J* = 3.5, 11.5, 2H), 2.29 (t, *J* = 3.5, 1H), 1.95-1.80 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ 145.8, 128.0, 126.5, 125.8, 78.7, 72.6, 52.6, 46.9, 41.8, 33.0. m.p 62-65 °C

1-phenyl-4-(prop-2-ynyl)piperazine 4{6}.

Propargyl bromide **10** (0.88 g, 7.4 mmol) was refluxed with 4-phenylpiperazine **11f** (1.0 g, 6.2 mmol) following general method A for propargylamine synthesis to afford 0.97 g (78%) of the

alkyne 4{6} as a yellow solid that matched analytical data previously reported.¹³ ¹H NMR (CDCl₃, 300 MHz) δ 7.29-7.34 (m, 2H), 6.93 (d, *J* = 8.8, 2H), 6.86 (t, *J* = 7.3, 1H), 3.36 (d, *J* = 2.5, 2H), 3.24 (t, *J* = 5.0, 4H), 2.74 (t, *J* = 5.2, 4H), 2.27 (t, *J* = 2.4, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 150.9, 128.8, 119.4, 115.8, 78.3, 73.0, 51.6, 48.7, 46.6. m.p 45-47 °C.

Ethyl 1-(prop-2-ynyl)piperidine-3-carboxylate 4{7}.

Propargyl bromide **10** (0.91 g, 7.7 mmol) was reacted with ethyl nipecotate **11g** (1.0 g, 6.4 mmol) following general method A for propargylamine synthesis to afford 0.86 g (69%) of the alkyne **4**{7} as a yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 4.13 (q, *J* = 7.1, 2H), 3.33 (d, *J* = 2.4, 2H), 3.01 (db, 1H), 2.81-2.74 (m, 1H), 2.64-2.24 (m, 1H), 2.78 (t, *J* = 10.7, 1H), 2.26-2.17 (m, 2H), 1.97-1.90 (m, 1H), 1.81-1.72 (m, 1H), 1.68-1.52 (m, 1H), 1.50-1.41 (m, 1H), 1.26 (t, *J* = 7.1, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ 173.5, 78.3, 72.7, 59.9, 53.9, 51.8, 46.8, 41.4, 26.0, 24.0, 13.7.

N-(cyclohexylmethyl)-N-methylprop-2-yn-1-amine 4{8}.

N-methylpropargylamine **12** (1.0 g, 14.5 mmol) was reacted with (bromomethyl)cyclohexane **13a** (3.1 g, 17.4 mmol) following general method B for propargylamine synthesis to afford 1.74 g, (74%) of the alkyne **4**{8} as a reddish brown oil. ¹H NMR (CDCl₃, 300 MHz) δ 2.97 (d, *J* = 3.0, 2H), 1.93 (s, 3H), 1.89-1.85 (m, 3H), 1.49 (m, 5H), 1.11-1.04 (m, 1H), 0.98-0.76 (m, 3H), 0.61-0.44 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ 78.7, 72.8, 62.5, 45.8, 42.0, 35.5, 31.6, 26.7, 26.0.

N,3-dimethyl-*N*-(prop-2-ynyl)butan-1-amine 4{9}.

N-methyl propargylamine **12** (1.0 g, 14.5 mmol) was reacted with 1-bromo-3-methylbutane **13b** following general method B for propargylamine synthesis to afford 1.54 g (77%) of the alkyne **4**{9} as a reddish brown oil. ¹H NMR (CDCl₃, 300 MHz) δ 3.34 (d, *J* = 2.4, 2H), 2.42 (t, *J* = 7.6,

2H), 2.30 (s, 3H), 2.20 (t, *J* = 2.4, 1H), 1.68-1.53 (m, 1H), 1.39-1.30 (m, 2H), 0.91 (d, *J* = 6.6, 6H). ¹³C NMR (CDCl₃, 75 MHz) δ 77.8, 71.9, 53.0, 44.6, 40.9, 35.7, 25.4, 21.7.

General procedure for 1,4-disubstituted 1,2,3-triazole synthesis.

To a solution of azide compound (1.0 equiv) in 'BuOH/H₂O mixture (1:1, 0.2 M) at 25 °C was added propargylamine derived alkyne (1.1 equiv). To this reaction mixture was added CuSO₄•5H₂O (1.0 M in H₂O, 1.0 equiv) followed by sodium ascorbate (1.0 M in H₂O, 2.0 equiv). The reaction mixture was stirred at room temperature for 24 h, then concentrated to a fourth its volume and diluted with CH₂Cl₂ (2 mL). A mixture of NH₄OH/H₂O (1:1= 2 mL) was added and the mixture filtered through a biotage phase separator. The CH₂Cl₂ filtrate was concentrated, charged onto silica plug and washed with 50% EtOAc in hexanes as forerun eluant. This was followed by 5% CH₃OH in CH₂Cl₂ to afford the desired 1,4-disubstituted 1,2,3-triazole **2**.

2-hydroxy-3-(4-((methyl(3-phenylpropyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)propyl

benzylcarbamate $2{4,2}$.

Azide **3**{4} (25 mg, 0.100 mmol) and the alkyne **4**{2} (19 mg, 0.100 mmol) were reacted following the general method for triazole synthesis to provide 41 mg (94%) of the 1,2,3-triazole **2**{4,2} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (s, 1H), 7.21-7.11 (m, 7H), 7.06-7.01 (m, 3H), 5.72 (t, *J* = 6.9, 1H), 4.5 (dd, *J* = 3, 13.4, 1H), 4.40-4.28 (m, 3H), 4.27-4.16 (m, 2H), 4.16-4.03 (m, 2H), 3.62 (s, 2H), 2.61 (t, *J* = 7.5, 2H), 2.42 (t, *J* = 7.5, 2H), 2.21 (s, 3H), 1.90-1.72 (m, 2H). HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.92 (97%), MS (APCI) : M+H expected 437.53, obtained 438.95.

2-(4-((4-phenylpiperazin-1-yl)methyl)-1*H***-1,2,3-triazol-1-yl)cyclohexanol 2**{9,6}.

Azide $3\{9\}$ (15 mg, 0.106 mmol) and the alkyne $4\{6\}$ (21 mg, 0.106 mmol) were reacted following the general method for triazole synthesis to provide 34 mg (95%) of the 1,2,3-triazole

2{9,6} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.60 (s, 1H), 7.29-7.24 (m, 2H), 6.93-6.84 (m, 3H), 5.31 (s, 1H), 4.18-4.14 (m, 1H), 4.01-3.98 (m, 1H), 3.72 (s, 2H), 3.20 (t, *J* = 4.7, 4H), 2.70 (t, *J* = 5.0, 4H), 2.22-2.18 (m, 2H), 1.94-1.86 (m, 3H), 1.48-1.42 (m, 3H). HPLC (1% AcOH in CH₃OH : H₂O) R_T 2.51 (84%), MS (APCI) : M+H expected 341.45, obtained 341.90.

Ethyl 1-((1-(2-hydroxyhexyl)-1*H*-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{7,7}.

Azide **3**{7} (15 mg, 0.105 mmol) and the alkyne **4**{7} (20 mg, 0.106 mmol) were reacted following the general method for triazole synthesis to provide 32 mg (91%) of the 1,2,3-triazole **2**{7,7} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.68 (s, 1H), 4.48-4.41 (dt, *J* = 3.1, 13.8, 1H), 4.27-4.02 (m, 5H), 3.76 (d, *J* = 14.2, 1H), 3.70 (d, *J* = 14.2, 1H), 3.03 (d, *J* = 10.9, 1H), 2.86 (d, *J* = 10.4, 1H), 2.62-2.57 (m, 1H), 2.32 (t, *J* = 10.7, 1H), 2.18 (t, *J* = 10.7, 1H), 1.98-1.91 (m, 1H), 1.72-1.69 (m, 1H), 1.68-1.58 (m, 1H), 1.50-1.43 (m, 4H), 1.42-1.37 (m, 3H), 1.23 (t, *J* = 7.2, 3H), 0.90 (t, *J* = 6.9, 3H). HPLC (CH₃OH : H₂O) R_T 14.25 (99%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 338.45, obtained 339.30.

1-(4-((cyclohexylmethyl)(methyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)hexan-2-ol 2{7,8}.

Azide $3\{7\}$ (15 mg, 0.105 mmol) and the alkyne $4\{8\}$ (17 mg, 0.105 mmol) were reacted following the general method for triazole synthesis to provide 30 mg (93%) of the 1,2,3-triazole $2\{7,8\}$ as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.47 (s, 1H), 4.24-4.17 (m, 1H), 4.01 (dd, *J* = 7.8, 13.8, 1H), 3.89-3.74 (m, 1H), 3.52 (s, 2H), 2.11-2.05 (bs, 5H), 1.73 (s, 1H), 1.55-1.43 (m, 5H), 3.00-2.00 (m, 3H), 1.13-1.08 (m, 3H), 1.03-0.88 (m, 3H), 0.69-0.62 (m, 5H). HPLC (CH₃OH : H₂O) R_T 16.53 (95%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 308.26, obtained 309.25. **1-(4-((4-phenylpiperazin-1-yl)methyl)-1***H***-1,2,3-triazol-1-yl)hexan-2-ol 2**{7,6}.

Azide **3**{7} (15 mg, 0.105 mmol) and the alkyne **4**{6} (21 mg, 0.105 mmol) were reacted following the general method for triazole synthesis to provide 35 mg (96%) of the 1,2,3-triazole **2**{7,6} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.70 (s, 1H), 7.29-7.24 (m, 2H), 6.93-6.84 (m, 3H), 4.46 (dd, J = 2.5, 14.0, 1H), 4.24 (dd, J = 8, 14, 1H), 4.10-4.00 (m, 1H), 3.76 (s, 2H), 3.42 (s, 2H), 3.23-3.17 (bs, 4H), 2.67-1.80 (bs, 4H), 1.53-1.28 (m, 6H), 0.92 (t, J = 7, 3H). HPLC (CH₃OH : H₂O) R_T 9.79 (84%). MS (APCI) : M+H expected 343.47, obtained 344.90.

Ethyl 1-((1-(2-hydroxycyclohexyl)-1*H*-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{9,7}.

Azide **3**{9} (15 mg, 0.106 mmol) and the alkyne **4**{7} (21 mg, 0.106 mmol) were reacted following the general method for triazole synthesis to provide 33 mg (92%) of the 1,2,3-triazole **2**{9,7} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.60 (s, 1H), 4.20-4.07 (m, 3H), 3.99-3.91 (m, 1H), 3.79(s, 1H), 3.69-3.66 (m, 2H), 3.01 (d, *J* = 10.8, 1H), 2.82 (d, *J* = 11.0, 1H), 2.63-2.54 (m, 1H), 2.34-2.25 (m, 1H), 2.23-2.07 (m, 3H), 1.94-1.80 (m, 4H), 1.75-1.68 (m, 1H), 1.66-1.53 (m, 1H), 1.51-1.34 (m, 4H), 1.23 (t, *J* = 7.0, 3H). HPLC (CH₃OH : H₂O) R_T 12.84 (98%). MS (APCI) : M+H expected 336.43, obtained 337.90.

2-(4-((cyclohexylmethyl)(methyl)amino)methyl)-1*H***-1,2,3-triazol-1-yl)cyclohexanol 2{9,8}. Azide 3{9} (15 mg, 0.106 mmol) and the alkyne 4{8} (18 mg, 0.106 mmol) were reacted following the general method for triazole synthesis to provide 30 mg (92%) of the 1,2,3-triazole 2{9,8} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.61 (s, 1H), 4.25-4.10 (m, 3H), 4.02-3.90 (m, 1H), 3.69 (s, 2H) 2.26 (s, 3H), 2.22-2.15 (m, 4H), 1.95-1.82 (m, 3H), 1.80-1.60 (m, 5H), 1.53-1.35 (m, 4H), 1.30-1.10 (m, 3H), 0.92-0.76 (m, 2H). HPLC (CH₃OH : H₂O) R_T 18.94** (81%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 306.24, obtained 307.90.

Ethyl 1-((1-(3-(benzyloxy)-2-hydroxypropyl)-1*H*-1,2,3-triazol-4-yl)methyl)piperidine-3carboxylate 2{8,7}.

Azide **3**{8} (15 mg, 0.072 mmol) and the alkyne **4**{7} (14 mg, 0.072 mmol) were reacted following the general method for triazole synthesis to provide 26 mg (91%) of the 1,2,3-triazole **2**{8,7} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.56 (s, 1H), 7.32-7.22 (m, 5H), 4.49-4.47 (m, 3H), 4.37-4.29 (m, 1H), 4.20-4.10 (m, 1H), 4.08-4.05 (q, *J* = 4.5, 2H), 3.70-3.60 (s, 2H), 3.48-3.30 (m, 3H), 2.95 (d, *J* = 9.6, 1H), 2.75 (d, *J* = 9.6, 1H), 2.54 (t, *J* = 10.4, 1H), 2.27-2.21 (m, 1H), 2.18-2.03 (m, 2H), 1.86 (d, *J* = 11.1, 1H), 1.69-1.37 (m, 3H), 1.16 (t, *J* = 7.1, 4H). HPLC (CH₃OH : H₂O) R_T 14.56 (98%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 402.49, obtained 403.25.

3-(4-((dibutylamino)methyl)-1*H***-1,2,3-triazol-1-yl)-2-hydroxypropyl** benzylcarbamate **2**{4,1}.

Azide **3**{4} (20 mg, 0.080 mmol) and the alkyne **4**{1} (13 mg, 0.080 mmol) were reacted following the general method for triazole synthesis to provide 31 mg (92%) of the 1,2,3-triazole **2**{4,1} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.59 (s, 1H), 7.35-7.28 (m, 5H), 5.56 (t, *J* = 5.6, 1H), 4.41 (dd, *J* = 3.3, 13.6, 1H), 4.40-4.30 (m, 3H), 4.28-4.10 (m, 4H), 3.72 (s, 2H), 2.41 (t, *J* = 7.2, 4H), 1.48-1.43 (m, 4H), 1.41-1.27 (m, 4H), 0.90 (t, *J* = 7.2, 6H). HPLC (CH₃OH : H₂O) R_T 16.53 (95%). MS (APCI) : M+H expected 417.55, obtained 418.35.

Ethyl 1-((1-(3-(benzylcarbamoyloxy)-2-hydroxypropyl)-1*H*-1,2,3-triazol-4yl)methyl)piperidine-3-carboxylate 2{4,7}. Azide **3**{4} (20 mg, 0.080 mmol) and the alkyne **4**{7} (16 mg, 0.080 mmol) were reacted following the general method for triazole synthesis to provide 34 mg (96%) of the 1,2,3-triazole **2**{4,7} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.66 (s, 1H), 7.33-7.27 (m, 5H), 5.79 (t, *J* = 5.4, 1H), 4.50 (dt, *J* = 2.8, 13.7, 1H), 4.40-4.30 (m, 3H), 4.28-4.18 (m, 2H), 4.16-4.06 (m, 4H), 3.64 (d, *J* = 14.2, 1H), 3.60 (d, *J* = 14.2, 1H), 2.95 (d, *J* = 10.8, 1H), 2.75 (d, *J* = 11.1, 1H), 2.59-2.50 (m, 1H), 2.25 (t, *J* = 10.2, 1H), 2.09 (t, *J* = 10.2, 1H), 1.92-1.87 (m, 1H), 1.73-1.67 (m, 1H), 1.51-1.37 (m, 2H), 1.23 (t, *J* = 7.2, 3H). HPLC (CH₃OH : H₂O) R_T 13.88 (97%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 445.51, obtained 446.25.

2-Hydroxy-3-(4-((isopentyl(methyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)propyl

benzylcarbamate 2{4,9}.

Azide **3**{4} (20 mg, 0.080 mmol) and the alkyne **4**{9} (11 mg, 0.080 mmol) were reacted following the general method for triazole synthesis to provide 29 mg (92%) of the 1,2,3-triazole **2**{4,9} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.81 (s, 1H), 7.35-7.28 (m, 6H), 5.50 (t, *J* = 5.4, 1H), 4.54 (dd, *J* = 3.0, 13.6, 1H), 4.40-4.36 (m, 3H), 4.30-4.24 (m, 1H), 4.20 (d, *J* = 4.1, 1H), 4.12 (dd, *J* = 5.2, 11.6, 1H), 3.79 (s, 2H), 2.57-2.51 (m, 2H), 2.32 (s, 3H), 1.65-1.55 (m, 1H), 151-1.43 (m, 2H), 0.91 (t, *J* = 6.6, 6H). HPLC (CH₃OH : H₂O) R_T 3.25 (82%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 389.49, obtained 390.30. **3-(4-(((cyclohexylmethyl)(methyl) amino)methyl)-1H-1,2,3-triazol-1-yl)-2-hydroxypropyl**

benzylcarbamate 2{4,8}.

Azide **3**{4} (20 mg, 0.080 mmol) and the alkyne **4**{8} (13 mg, 0.080 mmol) were reacted following the general method for triazole synthesis to provide 30 mg (90%) of the 1,2,3-triazole **2**{4,8} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.51 (s, 1H), 7.26-7.19 (m, 5H), 5.39 (t, *J* = 5.4, 1H), 4.43 (dd, *J* = 3.3, 13.7, 1H), 4.34 (m, 3H), 4.18-4.13 (m, 1H), 4.11 (d, *J* = 3.7, 1H),

4.07 (dd, J = 4.0, 13.3, 1H), 3.53 (s, 2H), 2.11 (s, 3H), 2.07 (d, J = 7.2, 2H), 1.70-1.59 (m, 5H), 1.46-1.36 (m, 1H), 1.18-1.09 (m, 4H), 0.79-0.68 (m, 2H). HPLC (CH₃OH : H₂O) R_T 11.89 (84%). MS (APCI) : M+H expected 415.53, obtained 416.95.

2-(4-((4-phenylpiperidin-1-yl)methyl)-1*H***-1,2,3-triazol-1-yl)cyclohexyl benzoate 2**{10,5}.

Azide **3**{10} (20 mg, 0.082 mmol) and the alkyne **4**{5} (16 mg, 0.082 mmol) were reacted following the general method for triazole synthesis to provide 33 mg (90%) of the 1,2,3-triazole **2**{10,5} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.88-785 (m, 2H), 7.49 (tt, *J* = 0.9, 7.5, 1H), 7.39-7.27 (m, 4H), 7.23-7.15 (m, 3H), 7.58 (s, 1H), 5.38-5.29 (m, 1H), 4.79-4.70 (m, 1H), 3.68 (s, 2H), 2.89-2.84 (m, 2H), 2.39-2.23 (m, 3H), 2.09-1.94 (m, 5H), 1.72-1.51 (m, 7H). HPLC (CH₃OH : H₂O) R_T 2.52 (100%). MS (APCI) : M+H expected 444.25, obtained 445.30.

2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1*H***-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2**{12,8}.

Azide **3**{12} (20 mg, 0.073 mmol) and the alkyne **4**{8} (12 mg, 0.073 mmol) were reacted following the general method for triazole synthesis to provide 30 mg (93%) of the 1,2,3-triazole **2**{12,8} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (s, 1H), 7.29-7.23 (m, 2H), 6.97 (tt, *J* = 0.9, 7.4, 1H), 6.75-6.71 (m, 2H), 5.27-5.18 (m, 1H), 4.60-4.51 (m, 1H), 4.48 (d, *J* = 16.3, 1H), 4.39 (d, *J* = 16.3, 1H), 3.63 (m, 2H), 2.29-2.21 (m, 2H), 2.16 (s, 3H), 2.12 (d, *J* = 7.1, 2H), 2.00-1.91 (m, 3H), 1.79-1.60 (m, 5H), 1.59-1.40 (m, 4H), 1.29-1.11 (m, 3H), 0.89-0.74 (m, 2H). HPLC (CH₃OH : H₂O) R_T 13.92 (84%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 440.28, obtained 441.90.

2-(4-((methyl(3-phenylpropyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)cyclohexyl 2phenoxyacetate 2{12,2}.

Azide $3\{12\}$ (20 mg, 0.073 mmol) and the alkyne $4\{2\}$ (14 mg, 0.073 mmol) were reacted following the general method for triazole synthesis to provide 32 mg (95%) of the 1,2,3-triazole

2{12,2} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.44 (s, 1H), 7.28-7.17 (m, 7H), 6.97 (t, *J* = 7.2, 1H), 6.73 (d, *J* = 8.1, 2H), 5.28-5.17 (m, 1H), 4.52-4.42 (m, 4H), 3.68 (s, 2H), 2.62 (t, *J* = 7.8, 2H), 2.41 (t, *J* = 7.2, 2H), 2.21 (s, 3H), 1.94-1.83 (m, 7H), 1.53-1.47 (m, 4H). HPLC (CH₃OH : H₂O) R_T 20.29 (97%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 462.58, obtained 463.00.

2-(4-((4-phenylpiperidin-1-yl)methyl)-1*H***-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2**{12,5}.

Azide $3\{12\}$ (20 mg, 0.073 mmol) and the alkyne $4\{5\}$ (15 mg, 0.073 mmol) were reacted following the general method for triazole synthesis to provide 32 mg (91%) of the 1,2,3-triazole $2\{12,5\}$ as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.53 (s, 1H), 7.32-7.17 (m, 7H), 6.97 (tt, *J* = 0.9, 7.5, 1H), 6.76-6.72 (m, 2H), 5.29-5.20 (m, 1H), 4.62-4.53 (m, 1H), 4.49 (d, *J* = 16.3, 1H), 4.40 (d, *J* = 16.3, 1H), 3.70 (s, 2H), 3.04-2.99 (m, 2H), 2.49-2.41 (m, 1H), 2.32-2.22 (m, 2H), 2.19-2.09 (m, 2H), 2.03-1.09 (m, 3H), 1.82-1.76 (m, 4H), 1.60-1.48 (m, 3H). HPLC (CH₃OH : H₂O) R_T 14.48 (98%). MS (APCI) : M+H expected 474.59, obtained 475.85.

2-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,1}.

Azide **3**{12} (20 mg, 0.073 mmol) and the alkyne **4**{1} (12 mg, 0.073 mmol) were reacted following the general method for triazole synthesis to provide 30 mg (91%) of the 1,2,3-triazole **2**{12,1} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (s, 1H), 7.26-7.21 (m, 2H), 6.98-6.90 (m, 1H), 6.72 (d, *J* = 8.3, 2H), 5.24-5.16 (m, 1H), 4.67-4.49 (m, 1H), 4.45 (d, *J* = 16.2, 1H), 4.36 (d, *J* = 16.2, 1H), 3.72 (s, 2H), 2.38 (t, *J* = 7.2, 4H), 2.25-2.21 (m, 2H), 1.98-1.89 (m, 3H), 1.51-1.38 (m, 7H), 1.31-1.19 (m, 5H), 0.86 (t, *J* = 7.2, 6H). HPLC (CH₃OH : H₂O) R_T 20.38 (81%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 442.59, obtained 444.30.

Ethyl 1-((1-(2-(2-phenoxyacetoxy)cyclohexyl)-1*H*-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{12,7}.

Azide $3\{12\}$ (20 mg, 0.073 mmol) and the alkyne $4\{7\}$ (14 mg, 0.073 mmol) were reacted following the general method for triazole synthesis to provide 31 mg (92%) of the 1,2,3-triazole $2\{12,7\}$ as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.49 (d, J = 6, 1H), 7.29-7.23 (m, 2H), 6.98 (tt, J = 0.9, 6.4, 1H), 6.73 (dd, J = 0.8, 7.9, 2H), 5.23 (m, 1H), 4.58-4.53 (m, 1H), 4.48 (d, J =16.3, 1H), 4.39 (d, J = 16.3, 1H), 4.16-4.06 (m, 2H), 3.70 (d, J = 14.2, 1H), 3.63 (d, J = 14.2, 1H), 2.95 (t, J = 8.1, 1H), 2.76-2.70 (m, 1H), 2.58-2.50 (m, 1H), 2.30-2.22 (m, 3H), 2.19-1.81 (m, 6H), 1.71-1.65 (m, 1H), 1.60-1.37 (m, 5H), 1.23 (t, J = 7.2, 3H). HPLC (CH₃OH : H₂O) R_T 15.25 (96%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 470.56, obtained 470.80

2-(4-((dibutylamino)methyl)-1*H***-1**,2,3-triazol-1-yl)cyclohexyl 2-phenylacetate 2{11,1}.

Azide $3\{11\}$ (25 mg, 0.096 mmol) and the alkyne $4\{1\}$ (16 mg, 0.096 mmol) were reacted following the general method for triazole synthesis to provide 38 mg (93%) of the 1,2,3-triazole $2\{11,1\}$ as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.10 (s, 1H), 7.07-6.99 (m, 3H), 6.86-6.82 (m, 2H), 4.92-4.83 (m, 1H), 4.35-4.24 (m, 1H), 3.47 (s, 2H), 3.20 (s, 2H), 2.14 (t, *J* = 7.2, 3H), 2.10-1.92 (m, 2H), 1.72-1.64 (m, 3H), 1.29-1.16 (m, 7H), 1.11-0.99 (m, 5H), 0.69 (t, *J* = 7.2, 6H). HPLC (CH₃OH : H₂O) R_T 16.80 (86%), gradient elution 55% to 95% CH₃OH over 26 min. MS (APCI) : M+H expected 426.59, obtained 430.00.

2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)cyclohexyl 2-phenylacetate 2{11,8}.

Azide $3\{11\}$ (25 mg, 0.0.096 mmol) and the alkyne $4\{8\}$ (16 mg, 0.096 mmol) were reacted following the general method for triazole synthesis to provide 38 mg (93%) of the 1,2,3-triazole $2\{11,8\}$ as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.56 (s, 1H), 7.09-7.00 (m, 3H), 6.90-6.84 (m, 2H), 4.93-4.84 (m, 1H), 4.36-4.27 (m, 1H), 3.39 (s, 2H), 3.22 (s, 2H), 2.10-1.90 (m, 7H),

1.79-1.65 (m, 3H), 1.64-1.40 (m, 6H), 1.33-1.21 (m, 4H), 1.10-0.90 (m, 4H), 0.68-0.54 (m, 2H). HPLC (CH₃OH : H₂O) R_T 16.53 (95%). MS (APCI) : M+H expected 424.58, obtained 423.40.

2-hydroxy-3-(4-((4-phenylpiperidin-1-yl)methyl)-1*H*-1,2,3-triazol-1-yl)propyl benzylcarbamate 2{4,5}.

Azide **3**{4} (20 mg, 0.080 mmol) and the alkyne **4**{5} (16 mg, 0.080 mmol) were reacted following the general method for triazole synthesis to provide 33 mg (92%) of the 1,2,3-triazole **2**{4,5} as a thick oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.69 (s, 1H), 7.33-7.24 (m, 7H), 7.22-7.19 (m, 3H), 5.71 (t, *J* = 6.8, 1H), 4.53 (dd, *J* = 3.0, 13.6, 1H), 4.39-4.21 (m, 5H), 4.20-4.10 (m, 2H), 3.03 (d, *J* = 11.4, 2H), 2.53-2.43 (m, 1H), 2.20-2.10 (m, 2H), 1.83-1.72 (m, 4H). HPLC (CH₃OH : H₂O) R_T 2.33 (100%). MS (APCI) : M+H expected 449.55, obtained 450.35.

Reference:

- 1. Gajewiak, J.; Prestwich, G. D.; Tetrahedron Lett. 2006, 47, 7607-7609.
- 2. Liu, G.; Liu, C-P.; Sun, L.; Wen, Q-W.; Xue, J-T.; Li, M-Q. Shandong Huagong 2008, 37, 1-3.
- 3. Macchia, B.; balsamo, A.; lapucci, A.; Macchia, F.; Martinelli, A.; Ammon, H.; Prasad, S.; Breschi, M. C.; Ducci, M.; Martinotti, E. J. Med. Chem. **1987**, *30*, 616-622.
- 4. Rousseau, J.; Rousseau, C.; Lynikaite, B.; Sackus, A.; de Leon, C.; Rollin, P.; Tatibouet, A. *Tetrahedron* **2009**, *65*, 8571-8581.
- 5. Konno, H.; Toshiro, E.; Hinoda, N. Synthesis 2003, 14, 2161-2164.
- 6. Schrittwieser, J. H.; Lavandera, L.; Seisser, B.; Mautner, B.; Kroutil, W. Eur. J. Org. Chem. 2009, 14, 2293-2298.
- 7. Kiasat, A. R.; Badri, R.; Zargari, B.; Sayyuhi, S. J. Org. Chem. 2008, 73, 8382-8385.
- 8. Zhao, P.; Yang, Z-J.; Zhang, L-R.; Zhang, L-H. Tetrahedron, Lett. 2008, 49, 2951-2955.
- 9. Lattanzi, A.; Della Sala, G. Eur. J. Org. Chem. 2009, 12, 1845-1848.
- 10. Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y. *Tetrahedron Lett.* **2009**, *48*, 7605-7609.
- 11. Preiss, T.; Henkelman, J.; Wulff-Doering, J.; Joachim, S. S. Ger. Offen. 1998 (DE 19636078).
- 12. Verron, J.; Malherbe, P.; Prinssen, E.; Thomas, A. W.; Nock, N.; Masciadri, R. *Tetrahedron Lett.* **2006**, *48*, 377-380.

- 13. Cantet, A-C.; Carreyre, H.; Gesson, J-P.; Jouannetaud, M-P.; Renoux, B. J. Org. Chem. **2008**, *73*, 2875-2878.
- 14. Torregrosa, J. L.; Baboulene, M.; Speziale, V.; lattes, A. J. Organometallic Chem. **1983**, 244, 311-317.

Glycidyl esters 6a-c

Oxiran-2-ylmethyl octanoate (6a). ¹H NMR

Oxiran-2-ylmethyl benzoate (6b). ¹H NMR

Oxiran-2-ylmethyl benzoate (6b). ¹³C NMR

Oxiran-2-ylmethyl cyclohexanecarboxylate (6c). ¹H NMR

Oxiran-2-ylmethyl cyclohexanecarboxylate (6c). ¹³C NMR

Glycidyl carbamates 8a-b

Oxiran-2-ylmethyl benzylcarbamate (8a). ¹H NMR

Oxiran-2-ylmethyl benzylcarbamate (8a). ¹³C NMR

Oxiran-2-ylmethyl butylcarbamate (8b). ¹H NMR

Oxiran-2-ylmethyl butylcarbamate (8b). ¹³C NMR

Azide components 3{1-12}

3-azido-2-hydroxypropyl octanoate 3{1}. ¹H NMR

3-azido-2-hydroxypropyl octanoate 3{1}. ¹³C NMR

3-azido-2-hydroxypropyl benzoate 3{2}. ¹H NMR

3-azido-2-hydroxypropyl cyclohexanecarboxylate 3{3}. ¹H NMR

3-azido-2-hydroxypropyl cyclohexanecarboxylate 3{3}. ¹³C NMR

3-azido-2-hydroxypropyl benzylcarbamate 3{4}. ¹H NMR

3-azido-2-hydroxypropyl benzylcarbamate 3{4}. ¹³C NMR

3-azido-2-hydroxypropyl butylcarbamate 3{5}. ¹H NMR

3-azido-2-hydroxypropyl butylcarbamate 3{5}. ¹³C NMR

2-azido-1-phenylethanol 3{6}. ¹H NMR

2-azido-1-phenylethanol 3{6}. ¹³C NMR

2-azidohexan-2-ol 3{7}. ¹H NMR

2-azidohexan-2-ol 3{7}. ¹³C NMR

1-azido-3-(benzyloxy)propan-2-ol 3{8}. ¹H NMR

1-azido-3-(benzyloxy)propan-2-ol 3{8}. ¹³C NMR

Trans-2-azidocyclohexanol 3{9}. ¹H NMR

Trans-2-azidocyclohexanol 3{9}.¹³C NMR

Trans-2-azidocyclohexyl benzoate 3{10}. ¹H NMR

Trans-2-azidocyclohexyl benzoate 3{10}. ¹³C NMR

Trans-2-azidocyclohexyl 2-phenylacetate 3{11}. ¹H NMR

Trans-2-azidocyclohexyl 2-phenylacetate 3{11}. ¹³C NMR

Trans-2-azidocyclohexyl 2-phenoxyacetate 3{12}. ¹H NMR

Trans-2-azidocyclohexyl 2-phenoxyacetate 3{12}. ¹³C NMR

Alkyne components 4{1-9}

N-butyl-N-(prop-2-ynyl)butan-1-amine 4{1}. ¹H NMR

N-butyl-N-(prop-2-ynyl)butan-1-amine 4{1}. ¹³C NMR

N-methyl-N-(3-phenylpropyl)prop-2-yn-1-amine 4{2}. ¹H NMR

N-methyl-N-(3-phenylpropyl)prop-2-yn-1-amine 4{2}. ¹³C NMR

N-methyl-N-phenethylprop-2-yn-1-amine 4{3}. ¹H NMR

N-methyl-N-phenethylprop-2-yn-1-amine 4{3}. ¹³C NMR

4-(prop-2-ynyl)morpholine 4{4}. ¹H NMR

4-(prop-2-ynyl)morpholine 4{4}. ¹³C NMR

4-phenyl-1-(prop-2-ynyl)piperidine 4{5}. ¹H NMR

4-phenyl-1-(prop-2-ynyl)piperidine 4{5}. ¹³C NMR

1-phenyl-4-(prop-2-ynyl)piperazine 4{6}. ¹H NMR

1-phenyl-4-(prop-2-ynyl)piperazine 4{6}. ¹³C NMR

Ethyl 1-(prop-2-ynyl)piperidine-3-carboxylate 4{7}. ¹H NMR

Ethyl 1-(prop-2-ynyl)piperidine-3-carboxylate 4{7}. ¹³C NMR

N-(cyclohexylmethyl)-N-methylprop-2-yn-1-amine 4{8}. ¹H NMR

N-(cyclohexylmethyl)-N-methylprop-2-yn-1-amine 4{8}. ¹³C NMR

N,3-dimethyl-N-(prop-2-ynyl)butan-1-amine 4{9}. ¹H NMR

N,3-dimethyl-N-(prop-2-ynyl)butan-1-amine 4{9}. ¹³C NMR

1,4-disubstituted 1,2,3-triazole lbrary

2-(4-((4-phenylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)cyclohexanol 2{9,6}. ¹H NMR

Ethyl 1-((1-(2-hydroxyhexyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{7,7}. ¹H NMR

 $1-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)hexan-2-ol~2\{7,8\}.~^1HNMR$

1-(4-((4-phenylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)hexan-2-ol 2{7,6}. ¹H NMR

Ethyl 1-((1-(2-hydroxycyclohexyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{9,7}. ¹H NMR

2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexanol 2{9,8}. ¹H NMR

Ethyl 1-((1-(3-(benzyloxy)-2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine-3carboxylate 2{8,7}. ¹H NMR

3-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)-2-hydroxypropyl benzylcarbamate 2{4,1}. ¹H NMR

Ethyl 1-((1-(3-(benzylcarbamoyloxy)-2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine-3-carboxylate 2{4,7}. ¹H NMR

2-hydroxy-3-(4-((isopentyl(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)propyl benzylcarbamate 2{4,9}. ¹H NMR

3-(4-(((cyclohexylmethyl)(methyl) amino)methyl)-1H-1,2,3-triazol-1-yl)-2-hydroxypropyl benzylcarbamate 2{4,8}. ¹H NMR

2-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl) cyclohexyl benzoate 2{10,5}. $^1\mathrm{H}$ NMR

2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,8}. ¹H NMR

2-(4-((methyl(3-phenylpropyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,2}. ¹H NMR

2-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,5}. $^1\mathrm{H}$ NMR

2-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenoxyacetate 2{12,1}. ¹H NMR

Ethyl 1-((1-(2-(2-phenoxyacetoxy)cyclohexyl)-1H-1,2,3-triazol-4-yl)methyl)piperidine-3carboxylate 2{12,7}. ¹H NMR

2-(4-((dibutylamino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenylacetate 2{11,1}. ¹H NMR

2-(4-(((cyclohexylmethyl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)cyclohexyl 2-phenylacetate 2{11,8}. ¹H NMR

2-hydroxy-3-(4-((4-phenylpiperidin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propyl benzylcarbamate 2{4,5}. ¹H NMR

HPLC chromatograms for 1,4-disubstituted 1,2,3-triazole library members

1,4-disubstituted 1,2,3-triazole member 2{1,1}. HPLC (CH₃OH : H₂O) R_T 17.05 (93%)

1,4-disubstituted 1,2,3-triazole member 2{1,2}. HPLC (CH₃OH : H₂O) R_T 4.97 (81%), gradient elution 55% to 95% over 9 min.

1,4-disubstituted 1,2,3-triazole member 2{1,3}. HPLC (CH₃OH : H₂O) R_T 19.11 (91%), gradient elution 55% to 95% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{1,4}. HPLC (CH₃OH : H₂O) R_T 15.34 (87%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{1,5}. HPLC ($CH_3OH : H_2O$) R_T 19.20 (100%).

1,4-disubstituted 1,2,3-triazole member 2{1,6}. HPLC ($CH_3OH : H_2O$) $R_T 16.94$ (98%).

1,4-disubstituted 1,2,3-triazole member 2{1,7}. HPLC (CH₃OH : H₂O) R_T 16.84 (97%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{1,8}. HPLC (CH₃OH : H₂O) R_T 19.92 (95%).

1,4-disubstituted 1,2,3-triazole member 2{1,9}. HPLC (CH₃OH : H₂O) R_T 17.57 (84%).

1,4-disubstituted 1,2,3-triazole member 2{2,1}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 13.95$ (100%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,2}. HPLC (CH₃OH : H₂O) R_T 13.31 (83%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,3}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 2.40 (93%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{2,4}. HPLC (CH₃OH : H₂O) R_T 10.20 (81%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,5}. HPLC (CH₃OH : H₂O) R_T 10.02 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,6}. HPLC (CH₃OH : H₂O) R_T 10.37 (81%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,7}. HPLC (CH₃OH : H₂O) R_T 11.84 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,8}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 2.53$ (82%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{2,9}. HPLC (CH₃OH : H₂O) R_T 9.69 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{3,1}. HPLC (CH₃OH : H₂O) R_T 14.13 (83%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{3,2}. HPLC (1% AcOH in CH₃OH : H₂O) R_T 4.30 (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{3,3}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.45$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{3,4}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 5.09$ (86%), gradient elution 30% to 90% over 20 min.

1,4-disubstituted 1,2,3-triazole member 2{3,5}. HPLC (CH₃OH : H₂O) R_T 18.19 (90%).

1,4-disubstituted 1,2,3-triazole member 2{3,6}. HPLC (CH₃OH : H₂O) R_T 12.07 (82%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{3,7}. HPLC (CH₃OH : H₂O) $R_T 6.59$ (96%), gradient elution 55% to 95% over 9 min.

1,4-disubstituted 1,2,3-triazole member 2{3,8}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 9.95$ (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{3,9}. HPLC (CH₃OH : H₂O) R_T 15.64 (85%).

1,4-disubstituted 1,2,3-triazole member 2{4,1}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 2.50$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{4,2}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.92$ (98%), gradient elution 30% to 90% over 13 min.

1,4-disubstituted 1,2,3-triazole member 2{4,3}. HPLC (CH₃OH : H₂O) R_T 15.42 (95%).

1,4-disubstituted 1,2,3-triazole member 2{4,4}. HPLC (CH₃OH : H₂O) R_T 14.47 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{4,5}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.32$ (100%), gradient elution 30% to 90% over 20 min.

1,4-disubstituted 1,2,3-triazole member 2{4,6}. HPLC (CH₃OH : H₂O) R_T 10.20 (80%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{4,7}. HPLC (CH₃OH : H₂O) R_T 13.88 (97%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{4,8}. HPLC (CH₃OH : H₂O) R_T 11.89 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{4,9}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 9.05 (81%), gradient elution 55% to 95% over 20 min.

1,4-disubstituted 1,2,3-triazole member 2{5,1}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 8.64 (96%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{5,2}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 9.90$ (99%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{5,3}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 4.05$ (94%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{5,4}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 2.39$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{5,5}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.49$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{5,6}. HPLC (CH₃OH : H₂O) R_T 10.70 (80%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{5,7}. HPLC (CH₃OH : H₂O) R_T 13.57 (92%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{5,8}. HPLC (CH₃OH : H₂O) R_T 13.06 (85%).

1,4-disubstituted 1,2,3-triazole member 2{5,9}. HPLC (CH₃OH : H₂O) R_T 10.60 (84%).

1,4-disubstituted 1,2,3-triazole member 2{6,1}. HPLC (CH₃OH : H₂O) R_T 17.45 (94%).

1,4-disubstituted 1,2,3-triazole member 2{6,2}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 2.50 (84%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{6,3}. HPLC (CH₃OH : H₂O) R_T 15.19 (84%).

1,4-disubstituted 1,2,3-triazole member 2{6,4}. HPLC (CH₃OH : H₂O) R_T 9.54 (100%).

1,4-disubstituted 1,2,3-triazole member 2{6,5}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 2.52 (89%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{6,6}. HPLC (CH₃OH : H₂O) R_T 9.76 (80%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{6,7}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 3.12$ (98%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{6,8}. HPLC (CH₃OH : H₂O) R_T 17.21 (94%).

1,4-disubstituted 1,2,3-triazole member 2{6,9}. HPLC (CH₃OH : H₂O) R_T 15.34 (95%).

1,4-disubstituted 1,2,3-triazole member 2{7,1}. HPLC (CH₃OH : H₂O) R_T 15.91 (100%).

1,4-disubstituted 1,2,3-triazole member 2{7,2}. HPLC (CH₃OH : H₂O) R_T 15.72 (86%).

1,4-disubstituted 1,2,3-triazole member 2{7,3}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 13.95$ (99%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{7,4}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 9.05$ (90%), gradient elution 30% to 90% over 14 min.

1,4-disubstituted 1,2,3-triazole member 2{7,5}. HPLC (1% AcOH in CH₃OH : H_2O) R_T 2.54 (90%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{7,6}. HPLC (CH₃OH : H₂O) R_T 9.79 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{7,7}. HPLC (CH₃OH : H₂O) R_T 14.25 (99%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{7,8}. HPLC (CH₃OH : H₂O) R_T 16.53 (96%).

1,4-disubstituted 1,2,3-triazole member 2{7,9}. HPLC (CH₃OH : H₂O) R_T 14.96 (86%).

1,4-disubstituted 1,2,3-triazole member 2{8,1}. HPLC (CH₃OH : H₂O) R_T 17.71 (92%).

1,4-disubstituted 1,2,3-triazole member 2{8,2}. HPLC (1% AcOH in CH₃OH : H_2O) $R_T 4.18$ (81%), gradient elution 30% to 90% over 9 min.

1,4-disubstituted 1,2,3-triazole member 2{8,3}. HPLC (CH₃OH : H₂O) R_T 15.13 (84%).

1,4-disubstituted 1,2,3-triazole member 2{8,4}. HPLC (CH₃OH : H₂O) R_T 13.99 (94%).

1,4-disubstituted 1,2,3-triazole member 2{8,5}. HPLC (CH₃OH : H₂O) R_T 15.00 (98%).

1,4-disubstituted 1,2,3-triazole member 2{8,6}. HPLC (CH₃OH : H₂O) R_T 10.37 (81%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{8,7}. HPLC (CH₃OH : H₂O) R_T 14.56 (98%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{8,8}. HPLC (CH₃OH : H₂O) R_T 19.70 (98%).

1,4-disubstituted 1,2,3-triazole member 2{8,9}. HPLC (CH₃OH : H₂O) R_T 18.19 (90%).

1,4-disubstituted 1,2,3-triazole member 2{9,1}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.50$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{9,2}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.51$ (89%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{9,3}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.51$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{9,4}. HPLC (CH₃OH : H₂O) R_T 15.12 (82%).

1,4-disubstituted 1,2,3-triazole member 2{9,5}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.51$ (84%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{9,6}. HPLC (CH₃OH : H₂O) $R_T 8.85$ (90%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{9,7}. HPLC (CH₃OH : H₂O) R_T 12.84 (98%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{9,8}. HPLC (CH₃OH : H₂O) R_T 18.94 (81%).

1,4-disubstituted 1,2,3-triazole member 2{9,9}. HPLC (CH₃OH : H₂O) R_T 14.20 (100%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,1}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.54$ (83%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,2}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.65$ (100%), gradient elution 30% to 90% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,3}. HPLC (CH₃OH : H₂O) R_T 14.43 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,4}. HPLC (CH₃OH : H₂O) R_T 10.11 (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,5}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.52$ (100%), gradient elution 30% to 90% over 26 min.

1,4-disubstituted 1,2,3-triazole member 2{10,6}. HPLC (CH₃OH : H₂O) R_T 11.85 (82%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,7}. HPLC (CH₃OH : H₂O) R_T 16.73 (94%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{10,8}. HPLC (CH₃OH : H₂O) R_T 14.47 (82%).

1,4-disubstituted 1,2,3-triazole member 2{10,9}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 3.40$ (100%), gradient elution 30% to 90% over 20 min.

1,4-disubstituted 1,2,3-triazole member 2{11,1}. HPLC ($CH_3OH : H_2O$) $R_T 16.80$ (86%).

1,4-disubstituted 1,2,3-triazole member 2{11,2}. HPLC (CH₃OH : H₂O) R_T 14.34 (96%).

1,4-disubstituted 1,2,3-triazole member 2{11,3}. HPLC (CH₃OH : H₂O) R_T 14.66 (86%).

1,4-disubstituted 1,2,3-triazole member 2{11,4}. HPLC ($CH_3OH : H_2O$) $R_T 16.15$ (86%).

1,4-disubstituted 1,2,3-triazole member 2{11,5}. HPLC ($CH_3OH : H_2O$) $R_T 16.67 (98\%)$.

1,4-disubstituted 1,2,3-triazole member 2{11,6}. HPLC (CH₃OH : H₂O) R_T 15.32 (81%).

1,4-disubstituted 1,2,3-triazole member 2{11,7}. HPLC ($CH_3OH : H_2O$) R_T 19.41 (100%).

1,4-disubstituted 1,2,3-triazole member 2{11,8}. HPLC ($CH_3OH : H_2O$) R_T 19.88 (95%).

1,4-disubstituted 1,2,3-triazole member 2{11,9}. HPLC (CH₃OH : H₂O) R_T 17.04 (95%).

1,4-disubstituted 1,2,3-triazole member 2{12,1}. HPLC (CH₃OH : H₂O) $R_T 20.38$ (81%), gradient elution 55% to 95% over 35 min.

1,4-disubstituted 1,2,3-triazole member 2{12,2}. HPLC (CH₃OH : H₂O) $R_T 20.29$ (97%), gradient elution 55% to 95% over 35 min.

1,4-disubstituted 1,2,3-triazole member 2{12,3}. HPLC (1% AcOH in $CH_3OH : H_2O) R_T 2.90$ (93%), gradient elution 30% to 90% over 13 min.

1,4-disubstituted 1,2,3-triazole member 2{12,4}. HPLC (CH₃OH : H₂O) R_T 12.17 (81%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{12,5}. HPLC (CH₃OH : H₂O) R_T 14.48 (98%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{12,6}. HPLC ($CH_3OH : H_2O$) $R_T 11.41$ (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{12,7}. HPLC (CH₃OH : H₂O) R_T 15.25 (96%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{12,8}. HPLC ($CH_3OH : H_2O$) $R_T 13.92$ (84%), gradient elution 55% to 95% over 21 min.

1,4-disubstituted 1,2,3-triazole member 2{12,9}. HPLC (CH₃OH : H₂O) R_T 10.99 (82%), gradient elution 55% to 95% over 21 min.

Compd	MW	MW+H	Compd	MW	MW+H	Compd	MW	MW+H	Compd	MW	MW+H
2 {1,1}	410.59	411.35	2 {4,1}	417.55	418.35	2 {7,1}	310.48	311.25	2 {10,1}	412.57	413.30
2 {1,2}	430.58	431.25	2 {4,2}	437.53	438.95	2 {7,2}	330.47	331.20	2 {10,2}	432.56	432.95
2 {1,3}	416.56	416.70	2 {4,3}	432.51	423.90	2 {7,3}	316.44	316.85	2 {10,3}	418.53	419.25
2 {1,4}	368.47	369.30	2 {4,4}	375.42	376.25	2 {7,4}	268.36	269.20	2 {10,4}	370.45	371.25
2 {1,5}	442.59	443.40	2 {4,5}	449.55	450.35	2 {7,5}	342.48	342.90	2 {10,5}	444.25	445.30
2 {1,6}	443.58	444.30	2 {4,6}	450.53	451.25	2 {7,6}	343.47	344.90	2 {10,6}	445.56	445.95
2 {1,7}	438.56	439.35	2 {4,7}	445.51	446.25	2 {7,7}	338.45	339.30	2 {10,7}	440.54	441.75
2 {1,8}	408.58	409.35	2 {4,8}	415.53	416.95	2 {7,8}	308.26	309.25	2 {10,8}	410.55	411.35
2 {1,9}	382.54	383.30	2 {4,9}	389.49	390.30	2 {7,9}	282.42	282.95	2 {10,9}	384.47	385.30
2 {2,1}	388.50	389.95	2 {5,1}	383.53	384.30	2 {8,1}	374.52	375.25	2 {11,1}	426.59	430.00
2 {2,2}	408.49	409.35	2 {5,2}	403.52	403.75	2 {8,2}	394.51	395.80	2 {11,2}	445.58	445.95
2 {2,3}	394.47	395.80	2 {5,3}	389.49	391.20	2 {8,3}	380.48	381.25	2 {11,3}	432.56	423.90
2 {2,4}	346.38	347.20	2 {5,4}	341.41	342.20	2 {8,4}	332.40	333.20	2 {11,4}	384.47	384.30
2 {2,5}	420.50	422.35	2 {5,5}	415.53	415.95	2 {8,5}	406.52	406.95	2 {11,5}	458.60	459.00
2 {2,6}	421.49	422.95	2 {5,6}	416.52	417.25	2 {8,6}	407.51	407.90	2 {11,6}	459.58	459.80
2 {2,7}	416.47	417.25	2 {5,7}	411.50	413.05	2 {8,7}	402.49	403.25	2 {11,7}	451.56	452.32
2 {2,8}	384.54	385.25	2 {5,8}	381.51	382.35	2 {8,8}	372.50	373.25	2 {11,8}	424.58	423.40
2 {2,9}	360.45	361.20	2 {5,9}	355.48	356.30	2 {8,9}	346.47	346.20	2 {11,9}	398.54	401.15
2 {3,1}	394.55	395.80	2 {6,1}	330.47	330.90	2 {9,1}	308.46	308.95	2 {12,1}	442.59	444.30
2 {3,2}	414.54	415.00	2 {6,2}	350.46	350.90	2 {9,2}	328.45	329.25	2 {12,2}	462.58	463.00
2 {3,3}	400.51	402.90	2 {6,3}	336.43	336.95	2 {9,3}	314.43	314.95	2 {12,3}	448.56	449.00
2 {3,4}	351.43	352.85	2 {6,4}	288.34	289.25	2 {9,4}	266.34	267.20	2 {12,4}	400.47	402.25
2 {3,5}	426.55	428.15	2 {6,5}	362.47	362.85	2 {9,5}	340.46	340.90	2 {12,5}	474.59	475.85
2 {3,6}	427.54	429.15	2 {6,6}	363.46	364.20	2 {9,6}	341.45	342.90	2 {12,6}	475.58	475.85
2 {3,7}	422.52	423.30	2 {6,7}	358.43	358.85	2 {9,7}	336.43	337.90	2 {12,7}	470.56	470.80
2 {3,8}	392.54	393.35	2 {6,8}	328.45	328.90	2 {9,8}	306.24	307.90	2 {12,8}	440.28	441.90
2 {3,9}	366.50	367.30	2 {6,9}	302.41	302.90	2 {9,9}	280.41	281.25	2 {12,9}	414.54	415.00

Table 2. Mass of molecular ion peak (MW+H) of the 1,4-disubstituted 1,2,3-triazole library members