Supplementary Table S1; Stevens et al, AJKD, "Comparative Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study Equations for Estimating GFR Levels Above 60 mL/min/1.73 m²"

Table S1: CKD-EPI and MDRD Study Equations for Estimating GFR Expressed for Specified Race, Sex, and SCr

Race	Sex	SCr (mg/dL)	Equation
CKD-EPI Study Equation			
Black	Female	≤ 0.7	GFR = $166 \times (SCr/0.7)^{-0.329} \times (0.993)^{Age}$ GFR = $166 \times (SCr/0.7)^{-1.209} \times (0.993)^{Age}$ GFR = $163 \times (SCr/0.9)^{-0.411} \times (0.993)^{Age}$
Black	Female	> 0.7	GFR = $166 \times (SCr/0.7)^{-1.209} \times (0.993)^{Age}$
Black	Male	≤ 0.9	GFR = $163 \times (SCr/0.9)^{-0.411} \times (0.993)^{Age}$
Black	Male	> 0.9	GFR = $163 \times (SCr/0.9)^{-1.209} \times (0.993)^{Age}$
White or other	Female	≤ 0.7	GFR = $144 \times (SCr/0.7)^{-0.329} \times (0.993)^{Age}$
White or other	Female	> 0.7	GFR = $144 \times (SCr/0.7)^{-1.209} \times (0.993)^{Age}$
White or other	Male	≤ 0.9	GFR = $141 \times (SCr/0.9)^{-0.411} \times (0.993)^{Age}$
White or other	Male	> 0.9	GFR = $163 \times (SCr/0.9)^{-1.209} \times (0.993)^{Age}$ GFR = $144 \times (SCr/0.7)^{-0.329} \times (0.993)^{Age}$ GFR = $144 \times (SCr/0.7)^{-1.209} \times (0.993)^{Age}$ GFR = $144 \times (SCr/0.9)^{-0.411} \times (0.993)^{Age}$ GFR = $141 \times (SCr/0.9)^{-1.209} \times (0.993)^{Age}$ GFR = $141 \times (SCr/0.9)^{-1.209} \times (0.993)^{Age}$
MDRD Study Equation			
Black	Female	all	GFR = $175 \times SCr^{-1.154} \times age^{-0.203} \times 1.212 \times 0.742$
Black	Male	all	GFR = $175 \times SCr^{-1.154} \times age^{-0.203} \times 1.212$
White or other	Female	all	GFR = $175 \times SCr^{-1.154} \times age^{-0.203} \times 0.742$
White or other	Male	all	GFR = $175 \times SCr^{-1.154} \times age^{-0.203}$

CKD-EPI equation expressed as a single equation: GFR = 141 × min(SCr/ κ , 1) $^{\alpha}$ × max(SCr/ κ , 1) $^{-1.209}$ × 0.993 Age × 1.018 [if female] × 1.159 [if black] where SCr is serum creatinine, κ is 0.7 for females and 0.9 for males, α is -0.329 for females and -0.411 for males, min indicates the minimum of SCr/ κ or 1, and max indicates the maximum of SCr/ κ or 1.

MDRD Study equation expressed as a single equation: GFR = 175 × standardized SCr $^{-1.154}$ × age $^{-0.203}$ × 1.212 [if black] × 0.742 [if female], where SCr is serum creatinine

Conversion factors for units: GFR in mL/min/1.73 m^2 to mL/s/1.73 m^2 , ×0.0167; SCr in mg/dL to μ mol/L, ×88.4.

Abbreviations: CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GFR, glomerular filtration rate; MDRD, Modification of Diet in Renal Disease; SCr, serum creatinine.