## **Supplementary Material**

## Concerted evolution of structure and function in a miniature

## protein

Jason W. Chin and Alanna Schepartz\*

Department of Chemistry

Yale University

New Haven, CT 06520-8107, USA

\* To whom correspondence should be addressed.

**NMR Spectroscop**y. p007 was dissolved at a concentration of approximately 1.5 mM in  $90\%H_20/10\%D_20$  containing 4 mM KCl, 205 mM NaCl, 6.5 mM Na<sub>2</sub>HPO<sub>4</sub>, 2.1 mM KH<sub>2</sub>PO<sub>4</sub> (pH 7.4). Chemical shifts were referenced in ppm from the internal standard 3- (trimethylsilyl)propionic-2,2,3,3-d<sub>4</sub> acid, sodium salt.

All spectra were recorded on a Varian 800 MHz Inova instrument at 2 °C with a sweep width of 9000 Hz. NOESY experiments were performed using a waterflip-watergate pulse sequence[1] for water suppression with 4096t2 x 500 t1 complex points. Data was acquired at mixing times of 50, 150 and 300 ms. DQF-COSY spectra (with a 60 ms mixing time) were acquired with 2048t2 x 300t1 complex points.

Data was processing was performed on a Silicon Graphics Workstation using Felix 98 (MSI Inc.). Prior to Fourier transform of the free induction decays, a Gaussian window function[2] was applied to NOESY spectra, while a Kaiser window function[2] was applied to DQF-COSY spectra. The digital resolution of the NOESY spectra was 2.2 Hz/pt. DQF COSY data was zero filled to yield a 8192 x 8192 matrix with a digital resolution of 1.1 Hz/pt. Spectra were assigned by standard methods[*3*].

| Residue | NH   | СН   | СН             | other                                   |
|---------|------|------|----------------|-----------------------------------------|
| Gly 1   |      |      |                |                                         |
| Gly 2   | 8.61 | 4.09 |                |                                         |
| Ser 3   | 8.59 | 4.51 | 3.88, 3.91     |                                         |
| Arg 4   | 8.59 | 4.39 | 1.67,1.80,1.9ª | C H 3.23, N H 7.29                      |
| Ala 5   | 8.52 | 4.34 | 1.41           |                                         |
| Thr 6   | 8.27 | 4.32 | 4.18           | C H 1.21                                |
| Met 7   | 8.62 | 4.82 | 1.97           | CH 2.56, 2.67 CH 2.08                   |
| Pro 8   |      | 4.41 | 1.93           | C H 2.01, 2.07, 2.33ª C H<br>3.68, 3.83 |
| Gly 9   | 8.69 | 3.99 |                |                                         |
| Asp 10  | 8.29 | 4.59 | 2.75, 2.67     |                                         |
| Asp 11  | 8.48 | 4.61 | 2.61, 2.69     |                                         |
| Ala 12  | 8.16 | 4.56 | 1.38           |                                         |
| Pro 13  |      | 4.48 | 1.93           | C H 2.03, 2.09, 2.32ª C H<br>3.66, 3.81 |
| Val 14  | 8.45 | 4.01 | 2.09           | С Н 0.97, 0.99                          |
| Glu 15  | 8.72 | 4.23 | 1.97, 2.03     | С Н 2.26, 2,29                          |

Table S1. 1H-NMR assignments for p007

| Residue | NH   | СН   | СН                            | other                |
|---------|------|------|-------------------------------|----------------------|
| Asp 16  | 8.41 | 4.59 | 2.65, 2.74                    |                      |
| Leu 17  | 8.31 | 4.28 | 1.66, 1.75ª                   | C H 0.89, 0.96       |
| Lys 18  | 8.32 | 4.14 | 1.60, 1.70, 1.86 <sup>b</sup> | CH 1.39, 1.49 CH 3.0 |
| Arg 19  | 8.10 | 4.19 | 1.81, 1.91ª                   | CH3.17NH7.36         |
| Phe 20  | 8.26 | 4.57 | 3.14, 3.22                    | CH7.29CH7.37         |
| Arg 21  | 8.37 | 4.15 | 1.66, 1.77, 1.88ª             | C H 3.22 N H 7.29    |
| Asn 22  | 8.45 | 4.79 | 2.86 2.96                     | NH <sub>2</sub> 7.81 |
| Thr 23  | 8.02 | 4.48 | 4.3                           | C H 1.31             |
| Leu 24  | 8.41 | 4.07 | 1.56, 1.66ª                   | C H 0.88, 0.92       |
| Ala 25  | 8.37 | 4.11 | 1.47                          |                      |
| Ala 26  | 8.03 | 4.17 | 1.46                          |                      |
| Arg 27  | 8.31 | 4.05 | 1.69, 1.85, 1.97ª             | C H 3.17 N H 7.19    |
| Arg 28  | 8.52 | 4.21 | 1.66, 1.84, 1.92ª             | N H 7.33             |
| Ser 29  | 8.25 | 4.29 | 4.02                          |                      |
| Arg 30  | 8.25 | 4.15 | 1.65, 1.9, 1.97ª              | CH3.32NH7.42         |
| Ala 31  | 8.13 | 4.28 | 1.53                          |                      |
| Arg 32  | 8.28 | 4.21 | 1.65, 1.83, 1.95ª             | N H 7.41             |

| Residue | NH   | СН   | СН                                     | other        |
|---------|------|------|----------------------------------------|--------------|
| Lys 33  | 8.18 | 4.10 | 1.60, 1.71, 1.85,<br>1.92 <sup>b</sup> | CH1.45CH3.01 |
| Ala 34  | 8.20 | 4.26 | 1.49                                   |              |
| Ala 35  |      |      | 1.5                                    |              |
| Arg 36  |      |      | 1.66, 1.78, 1.88ª                      |              |
| Ala 37  | 8.12 | 4.26 | 1.48                                   |              |
| Ala 38  | 8.07 | 4.25 | 1.47                                   |              |
| Ala 39  | 7.93 | 4.25 | 1.47                                   |              |
|         |      |      |                                        |              |

a) or proton, b) or proton.

Table S2. Long range (*i*, *i*+5 and longer) NOEs observed in p007.

- G2CH R30CH
- G2 C H S29 C H
- R4CH R27CH
- A5 C H F20 C H
- M7 NH L17 C H
- M7 C H F20 C H
- M7 C H F20 C H

- M7 C H F20 C H
- M7 C H F20 C H
- P8 C H 17 C H
- P8 C H 20 C H







Figure S2. The amide-amide region of p007 in a 300 ms NOESY spectrum.

**Figure S3.** A summary of short and medium range NOEs for p007. A bar indicates NOE connectivity between protons on different residues. For the N, NN or N the height of the bar indicates the classification of the NOE as strong medium or weak.





Figure S4. Long range NOEs observed for p007 in a 300 ms NOESY.

References:

- 1. Piotto, M., Saudek, V., and Sklenar, V. (1992) *Journal of Biomolecular NMR 2*, 661-665.
- 2. Canvanagh, J., Fairbrother, W. J., Palmer, A. G., and Skelton, N. J. (1996) *Protein NMR spectroscopy*, Academic Press, New York.
- 3. Wüthrich, K. (1986) *NMR of proteins and nucleic acids*, Wiley, New York.