
SUPPORTING INFORMATION 

 A: Mass‐action kinetics for random‐order bisubstrate and partial 
noncompetitive inhibition reaction schemes 
Let’s consider the scheme shown in Fig. 1c. Conventional mass action kinetics results in the 

following differential equations (equation (6)) for the normalized concentrations (probabilities) 

of various enzyme forms in this scheme: 
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The steady state velocity is given by 
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The steady state kinetic law for this reaction scheme can be straightforwardly obtained by 

equating right-hand sides of equation (A.1) to zero and using normalization condition 

e1+e2+e3+e4= 1 to express enzyme probabilities as a function of [S] and [I]. Using the results in 

equation (A.2) leads to a slightly cumbersome rate expression is given by[1,3] 
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where K1 to K11 are combination of rate constants 
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In the quasi-equilibrium limit 21κ  and 43κ  are very small. Using the detailed balance condition  

( 12 24 43 31 21 42 34 13k k k k k k k k= ), the complete velocity equation is simplified to:  
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This is the kinetic law in the quasi-equilibrium limit. 

Using the same approach for the kinetic scheme shown in Fig. 1b (bisubstrate random order                         

reaction with the catalytic rate 41κ  smaller than k34 and k24) we obtain in quasi- equilibrium limit 
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B: Conformational dynamics for random‐order bisubstrate and partial 
noncompetitive inhibition reactions 

Random order bisubstrate reaction  
 Let’s consider the reaction scheme Fig. 1b: bi-substrate random order reaction. The complete 

velocity equation for this reaction scheme in the quasi- equilibrium limit is given by equation 

(A.5). When the transition rates are dependent on the conformational coordinate x of the enzyme, 



the enzyme concentrations are replaced by their steady state distributions, which can be obtained 

by solving the reaction diffusion equations (equation (17)) which in this case take the form 
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Using the ansatz given in equation (21) in equation (45) for our reaction scheme, we have 
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In the quasi-equilibrium limit, using equation (21) and (22), the coupled diffusion equations in 

equation (B.1) without diffusion terms can be solved for the local steady state probabilities 

( )0
jP x . Using the detailed balance condition for the closed loop in Fig. 1b  

( 12 24 43 31 21 42 34 13k k k k k k k k= ), together with equation (35) we have 
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Using the definitions of C1, C2, C3, C4, equation (16) and (40), the steady state velocity equation 

in equation (B.2) reduces to 
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Equation (B.4) has the same structural form as equation (A.5) with position-independent 

prefactors used as rates. 

Partial noncompetitive inhibition mechanism 
Let us consider the reaction scheme described in Fig. 1c. The complete velocity equation for this 

reaction scheme in the quasi-equilibrium limit is given by equation (A.4). When the transition 

rates are dependent on the conformational coordinate of the enzyme, one can get the four linearly 

dependent reaction diffusion equations for the steady state distributions as shown in equation 

(17) which is given by 
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Applying the ansatz in equation (21) into equation (47), we have 
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In the quasi-equilibrium limit (when 21κ and 43κ  are very small), the diffusion equations can be 

solved for local steady state probabilities ( ( )0 , 1,2,3,4iP x i = ) using the ansatz in equation (21) 

and can be simplified further using the detailed balance condition for reversible binding and 

dissociation 



Using these reduced expressions for the local steady state probabilities, the steady state velocity 

equation reduce to 
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 equation (B.7) has the same dependence on the substrate and inhibitor concentration as obtained 

from conventional mass action kinetics (equation (A.4)) with position-independent prefactors 

used as rates.                                                                                    

C: Decoupling ansatz is exact in quasi‐equilibrium limit 
Under the quasi-equilibrium condition, the catalytic rates are much slower than other transitions. 

In this limit the equations for the steady state distributions and the equilibrium distributions are 

identical. Thus equation (17) that determines the steady state distributions reduces to:
             

 

( ) ( ) ( ) ( ) ( ) ( )
1 1

0
i

N N
ss ss ss

i ij i ji j
j j

L x P x k x P x k x P x
= =

− + =∑ ∑                        (C.1) 

Using the detailed balance condition we conclude that the fluxes of individual reversible 

reactions are zero, i.e. 
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Using equation (34), equation (C.2) can be written as 
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Here we consider a trial solution for ( )ss
jP x which is given by 

( ) ( ) ( )jU xss
j jP x F x e β−=                                                                                                            (C.4) 

Using equation (C.4) in equation (C.3) we obtain 
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Hence all ( )jF x have the same dependence on conformational coordinate, i.e. ( ) ( )j jF x F x A=  

Using this relation in equation (C.4), we obtain 
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This form is the same as the ansatz in equation (21) if one takes into account equation (38). Thus 

we find that this ansatz in equation (21) is exact in the quasi-equilibrium limit. 

D: Discrete‐state model for conformational fluctuations in the quasi‐
equilibrium limit 
In the main text we have considered the effect of conformational fluctuations in the quasi-

equilibrium limit. Our results showed that in this limit, together with the detailed balance 

condition, the steady state rate law has the same dependence on the substrate concentration as in 

mass action kinetics and is independent of the conformational dynamics of the different states. 

Here we further illustrate this result by considering a discretized model for a simple enzyme 

catalyzed reaction. 

We consider two enzyme states E1 and E2 that combine reversibly with the substrate S to give the 

enzyme-substrate complex ES1 and ES2 respectively. These two interconverting enzyme-

substrate complexes dissociate to give the product P. The full kinetic scheme describing the 

discrete state approximation of our continuum model that we discuss in the main text is given in 

the following reaction scheme 
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The detailed balance condition for reversible binding is given as 

1 1 2 2 2 2 1 1f b f bk b k a k b k a=                                                  (D.2) 

 

Starting from the formalism proposed by Gopich and Szabo[14], we define a matrix K, that 

describes transitions between different states including conformational changes. The steady state 

probability Pss(i) of finding the system in the state i  can be written in the form of the following 

matrix equation 
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1 is the unit vector and †  denotes transpose. We can apply this formalism to enzymatic reactions 

scheme presented in equation A.1. 

For this the matrix K in the basis (E1, E2, ES1, ES2) is given by 
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The steady state rate can be expressed as 

1 1 2 2( ) ( )cat ss cat ssk k P ES k P ES= +                                                                                                   (D.5) 

Pss(ES1) and Pss(ES2) are the steady state probabilities and can be obtained by using Equation 

(D.3) and (D.4) 

In the quasi-equilibrium limit, the catalytic rates kcat1 and kcat2 are small and can be expressed as 

1 1catk k x= and 2 2catk k x= . Taking the limit of very small x and applying the detailed balance 

condition given in Equation (D.2), the steady state rate can be written as 

2 1
1 2

1

2 1 2 2
1 2 1 2

1 1

1

f

b f
f b f f

b kk k S
b

k
b k k bk k k k S

b b

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠         (D.6)                         

The steady state rate is independent of the interconversion rates a1 and a2 and depends on the 

ration of b1/b2 which in turn is independent of the rate of conformational transitions, i.e. the 

diffusion constants in the continuous formalism used in the main text. 


