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SUPPLEMENTAL MATERIAL 

Derivation of 1D analytical concentration profiles 

Steady-state post-enrichment, 1D model 

The steady-state equations of change for diffusing species A, B, and C are: 

          (1) 

         (2) 

         (3) 

 

The boundary conditions are: 

          (4) 

          (5) 

           (6) 

           (7) 

          (8) 

where J is the flux.  These conditions state that the flux from the reaction surfaces are diffusion-

limited (hence they do not contain rate constants and do not depend on reactant concentration) 

and constant at steady-state.  As a basis of calculation, we allow the surface reaction of B, B(0), 

to reach an arbitrary constant value of B0 at steady-state, which will ultimately depend on system 

parameters such as the reaction rate constants and total amount of protein present in the embryo 

(see below). 
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Solving for A: 

            

  

0AmxA             (9)  

where A0 is the concentration of A at x=0. We see that A is linear, and the flux of A is constant 

over all x from 0 to L. 

          

 

Solving for B: 

            

With steady flux at x=0 and zero flux at x=L, we expect the concentration of B to achieve an 

arbitrary steady value we will denote by the constant B0, such that 

        (10) 

We see that the flux of B is 
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so the flux of B at 0 is 

      

and the flux of B at L is 
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Solving for C: 

       

        

 

       

We can solve for c1 by considering the zero flux condition at x=0: 
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Plugging in for c1, we obtain 

    

The flux of C is 

     

Similarly to the case for B, with a steady flux of C at x=L, we expect the concentration of C to 

attain a steady value at x=0 that we will denote C0, such that 
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Plugging in for c2, we obtain 
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       (11) 

The flux of C is 

   

So the flux at x=0 is 

    

And the flux at x=L is 

        

which, as expected, is equal to the flux of B at x=0.  Of course, the flux of B at x=0 must be equal 

and opposite of the flux of A at x=0.  Likewise, the flux of C at x=L must be equal and opposite 

to the flux of A at x=L.  Hence, 
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Hence, 
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A0, which determines the relative concentration of A in the system, is left as a tunable parameter. 

 

The total concentration can then be calculated by 
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In order to test the ability of our model to correctly predict the overall concentration 

gradient, we measured fluorescence intensity along the A/P axis of embryos expressing MEX-

5::GFP (with background fluorescence subtracted) and used data from the central 40um of the 

A/P axis (L), and used values for the diffusion coefficients (DA, DB, DC) measured with FCS.  

Species intensity (A0, B0, C0) and reaction (kB) parameters were tuned to minimize squared error.  

Diffusion coefficients for slow system components (B and C) were constants equal to 0.4 µm2/s 

and 1.0 µm2/s, respectively, while the diffusion coefficient for the fast species (A) was constant 

and equal to 15 µm2/s (all of which are within experimental error of our FCS measurements).  As 
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a basis for calculation, the total intensity at the anterior pole (x=0µm) was normalized to Total(0) 

= 5 (a.u.). 

The rate constants used in our modeling are modified such that ][Pkkk Iphysccytoplasmi   and 

M

tot
Iphyssurface K

E
kkk   (assuming first order surface reactions), where kphys is the physiological rate 

constant, 
S

S
kI

][
  is an (unknown) constant relating fluorescence intensity (S) to cytoplasmic 

concentration ([S]), [P] is the (unknown) concentration of the putative cytoplasmic phosphatase, 

Etot is the (unknown) total surface concentration of enzyme on the reaction surface, KM is the 

Michaelis constant, and kphys is the physiological rate constant.  The modified rate constants 

estimated from the modeling were kA=0.065 µm/s, kB = 0.0025 s-1, and kC = 0.2 µm/s, and the 

concentration parameters (a.u.) were estimated to be A0 = 1, B0 = 2.1, C0 = 1.9.   

 

FEMLAB 

Multi-dimensional solutions to the partial differential equations were found using the 

finite element method (FEM) via COMSOL 3.5a (FEMLAB) software.  FEM analysis is a useful 

tool for calculating solutions to complicated systems of equations over complex geometries 

including intricate biological problems (Reddy, 1993; Sun et al., 2009). Briefly, the finite 

element method calculates the solution to complicated systems by breaking the geometry of a 

given system into subdomains, or finite elements.  Solutions to each finite element are calculated 

by approximating solutions to the partial differential equations over that element as a linear sum 

of algebraic polynomials where the undetermined coefficients of these polynomials are valued 

according to the governing partial differential equations.  The finite elements themselves are not 

fixed throughout solving the governing system of equations but may change to reduce the error 
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in approximation over a given element and maintain continuity of the solution over all elements 

(Reddy, 1993). 

 Here, we used a simple oval geometry (major and minor axes of 50µm and 30µm, 

respectively) centered about the origin, consisting of two spatially identical and opposite reactive 

surfaces, the anterior and posterior, to represent the dividing embryo.  The A to B reactions were 

allowed to occur only on the anterior surface, the B to C reaction again occurred everywhere 

within the cytoplasmic region and the C to A reaction was allowed to occur only on the posterior 

surface.  All reactions rates used to calculate the multi-dimensional solutions were first order.  

Diffusion coefficients for slow system components (B and C) were constants equal to 0.4 µm2/s 

and 1.0 µm2/s, respectively, while the diffusion coefficient for the fast species (A) was constant 

and equal to 15 µm2/s (all of which are within experimental error of our FCS measurements).  As 

a basis for calculation, the concentration of A at the anterior pole (far left anterior node) was 

considered a known quantity and set equal to 1 (a.u.).  The modified rate constants (see above) 

used in the modeling were kA=0.02 µm/s, kB = 0.001 s-1 and kC = 0.5 µm/s.  
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Analytical concentration profiles with reactive species B 

The governing equations are identical to those for the non-reacting B species, however the zero-

flux boundary condition at x= L must be allowed to take some finite value, β. Thus, the general 

equation for species B becomes 
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We allow the flux of B to attain some finite value, β, at steady-state such that 



 10

  
























L
D

k
aBDkL

D

k
aDk

dx

dB
DJ

B

B
BB

B

B
BB

Lx
BB expexp 0  

































 L

D

k
DkaL

D

k
DkaL

D

k
DkB

B

B
BB

B

B
BB

B

B
BB expexpexp0  












































 L

D

k
L

D

k
DkaL

D

k
DkB

B

B

B

B
BB

B

B
BB expexpexp0  
















































L
D

k
L

D

k
Dk

L
D

k
DkB

a

B

B

B

B
BB

B

B
BB

expexp

exp0 

 



























































































 x
D

k
B

L
D
k

L
D
k

x
D
k

x
D
k

Dk

L
D
k

DkB

B
B

B

B

B

B

B

B

B

B

B

BB

B

B
BB

exp

expexp

expexpexp

0

0 

 







































































































 x
D

k
B

D

k

L
D

k
L

D

k

x
D

k
x

D

k

D

L
D

k
DkB

dx

dB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
BB

exp

expexp

expexpexp

0

0 

 

where β is a constant.  Thus, the flux of B is given by 
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We can use the explicit expression for B to solve for C by integration 
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Finally, we specify that C attains a constant value, C0, at x=0: 
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Similarly, the flux of C at x=L is 
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We can verify that the flux of B at x=0 equals the sum of the flux of C at x=L and the flux of B at 
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Finally, the flux of A at x=0 must be equal and opposite to the flux of B at x=0, such that 

mD

L
D

k
L

D

k

L
D

k
DkB

BDk A

B

B

B

B

B

B
BB

BB 




























































expexp

exp

2

0

0



 




























































L
D

k
L

D

k

L
D

k
DkB

D
B

D

Dk
m

B

B

B

B

B

B
BB

AA

BB

expexp

exp
2

0

0



 

And the concentration profile of A is given by 
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The (constant) flux of A is given by
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The total concentration profile is then given by 
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