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Supplemental Experimental Procedures 

 

Drosophila strains 

Zygotic BicD null larvae are trans-heterozygous for a BicD null allele (r5) that introduces 

a translational stop after codon 50 of 782 [1] and a chromosomal deficiency that removes 

the entire BicD locus (Df(2L)TW119, also known as Df119). As reported previously [1, 

2], the vast majority of null mutants fail to eclose, with those that do dying in the next 

few hours. Survival and fertility of the trans-heterozygotes is fully rescued by BicD 

transgenes [2, 3], indicating that the observed defects do not arise from additional 

mutations in the background. UAS-Fmr1::GFP flies where kindly provided by Fen-Biao 

Gao [4]. Even with strong GAL4 drivers we observed relatively weak overexpression of 

FMRP::GFP, constituting only ~20% of the amount of endogenous FMRP. The null 

allele Fmr1Δ50M [5] was obtained from the Bloomington Drosophila Stock Center. This is 

a P-element excision allele removing flanking DNA, including the 5' non-coding exons 

and the first coding exon, of the Fmr1 gene. The null allele Fmr11 was kindly provided 

by Fen-Biao Gao [4]. This allele has an 11-nucleotide deletion that, owing to the frame 

shift, results in a stop codon after amino acid 126. The chromosomal defiency 

Df(3R)BSC526, which uncovers the Fmr1 locus, was obtained from the Bloomington 

Drosophila Stock Center.  

Egl::GFP, driven from a ubiquitously-expressed tubulin promoter, and UAS-BicD 

are described in [3] and [6], respectively. The tub-BicD::mCherry construct was 

generated by modifying the tub-BicD::eGFP construct described in [3]. The 

BicD::mCherry fusion fully rescues survival and fertility of BicDr5/Df119 animals. Gal4 

drivers used were elavC155 (pan-neuronal; Bloomington Drosophila Stock Center) and 

ppk1.9 (Class IV da neurons; kindly provided by Darren Williams [7]). Dhc64C alleles 

are described in [8]; Khc alleles are described in [9]. UAS-EB1::GFP was a kind gift of 

Hiro Okhura [10]. 

To assay BicD and FMRP colocalization and FMRP motility upon mild BicD 

overexpression, elavC155-GAL4 flies were crossed with w; tubBicD::mCherry; UAS-

Fmr1::GFP. FMRP motility and protein levels in wild-type and BicD mutants were 

assessed using third instar larval brains from the following crosses: (1) elavC155-GAL4 
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crossed to UAS-Fmr1::GFP and (2) w, elavC155-GAL4; BicDDf119/CyO Actin:GFP crossed 

to w; BicDr5/CyO Actin:GFP; UAS-Fmr1::GFP/TM6b,Tb. To show that FMRP levels are 

not affected by even very strong BicD overexpression, elavC155-GAL4; UAS-BicD was 

crossed to UAS-Fmr1::GFP. 

The following crosses were used for the analysis of dendritic morphology in ddaC 

neurons in figure 4: (1) BicDDf119/CyO Actin:GFP; ppk1.9-GAL4, UAS-CD8::GFP 

crossed to w; BicDr5/CyO Actin:GFP, (2) UAS-CD8::GFP; UAS-BicD; Fmr1Δ50M/ 

TM6b,Tb crossed to ppk1.9-GAL4; Fmr1Δ50M/ TM6b,Tb, (3) UAS-CD8::GFP;; Fmr1Δ50M/ 

TM6b,Tb crossed to ppk1.9-GAL4; Fmr1Δ50M/ TM6b,Tb, (4) ppk1.9-GAL4; Fmr1Δ50M/ 

TM6b,Tb crossed to UAS-CD8::GFP; Df(3R)BSC526/TM6b,Tb, (5) ppk1.9-GAL4; 

Fmr1Δ50M/ TM6b,Tb crossed to UAS-CD8::GFP; Fmr11/TM6b,Tb. 

 

Primary neuronal cell culture 

Third instar larval brains were isolated, disaggregated and cells cultured as previously 

described in [11]. Cells appear round immediately after plating and differentiate during 

the following three to four days. Consistent with previous observations [11], we were 

unable to observe a clearly differentiated axon in the vast majority of cells.  Cells were 

analyzed after 5 to 7 days of culture. 

 

In vivo imaging 

Third instar larvae were dissected and mounted in Ca2+-free saline (130 mM NaCl, 36 

mM sucrose, 5 mM KCl, 4 mM MgCl2, 2 mM CaCl2, 5 mM HEPES (pH 7.3) and 0.5 

mM EGTA) to prevent muscle contraction. Primary neurons were plated in Lab-Tek 

chambered cover glasses (Thermo Scientific). Larvae and cells were imaged at 22-23°C 

using a spinning disk UltraVIEW ERS confocal microscope (PerkinElmer) using a 

63/1.4NA oil-immersion PlanApo Olympus objective and an Orca ER CCD camera 

(Hamamatsu). Image series, from a single focal plane, lasted from 2 to 6 min both for 

cells and larvae. Larval fillets were imaged only during the first 20 min following 

dissection, although robust cargo transport in these and other neurons was maintained for 

at least 30 min after dissection. Chordotonal organ neurons were imaged because, unlike 
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in other larval neuronal cell types in situ, it was possible to image and analyze 

FMRP::GFP transport due to their relatively simple shape, which permits filming in a 

single focal plane. 

 

Analysis of FMRP::GFP motility 

Motile FMRP::GFP particles were tracked manually using ImageJ and run length, net 

movement and velocity calculated using Microsoft Excel. Run length was defined as the 

distance a particle moves before a reversal or a pause. Net displacement was defined as 

the total direct distance a particle moves during the whole time of observation.  

Mean run length was calculated by averaging the values for all runs for a given 

genotype (i.e. considering the different movements of the same particle as independent 

events). The mean velocity of ~ 0.2 μm/s, stated in the legend to figure 1, was also 

calculated by averaging the values for all runs for a given genotype. Mean net 

displacement was calculated by averaging the net displacement of each individual 

particle. The data in figure 3 quantifying FMRP::GFP motility in neuronal culture were 

obtained from 40 to 60 movies per genotype. 6 to 10 independent primary cultures were 

prepared per genotype. Quantification of motility in chordotonal organs was based on 

imaging 12 and 18 BicD mutant and wild-type larval fillets, respectively. 

 

GST pull downs, immunoprecipitation from embryo extracts and yeast two hybrid 

assays 

The K730M substitution is encoded by the BicDr11 allele [1]. In heteroallelic 

combinations with BicD null mutant alleles, BicDr11 behaves as a null allele based on 

phenotypic analysis [1]. As described above, only a very small proportion of BicD null 

mutants eclose from the pupal case, with those that do dying in the next few hours [1, 2].  

Thus, K730M mutant material cannot be readily used for biochemistry. We therefore 

previously assayed the effect of this substitution on Egl and Rab6 binding by expressing 

epitope-tagged versions of wild-type or K730M BicD in egg chambers in the presence of 

endogenous BicD and/or with binding assays with recombinant proteins or the yeast two-

hybrid system [3].    



 5

GST pull downs were conducted as described [3]. Briefly, 3 μg of GST-fused 

wild-type and K730M BicD CTD (aa 538-782) or GST protein alone was coupled to 5 μl 

of glutathione sepharose beads. These beads were incubated with 600 μl of 0 – 18 h 

embryonic extract (prepared in DXB buffer as described [3] and pre-cleared with 

gluthathione sepharose) by rotating for 1 h at 4°C. Following 2 washes in DXB buffer 

and 3 washes in PBS, samples were resuspended in 50 μl LDS sample buffer, 

electrophoresed on a 4-12% Bis-Tris gel (Invitrogen) and analyzed by Coomassie 

staining or western blotting. Immunoprecipitation with anti-BicD ([12]; obtained from 

the Developmental Studies Hybridoma Bank (DSHB) developed under the auspices of 

the NICHD and maintained by The University of Iowa, Department of Biology, Iowa 

City,  IA 52242) was as described [3]. RNase treatments used 5 μl of RNase cocktail 

(RNaseA and RNase T1 (Ambion)) per 100 μl of extract. 5 μl of RNase inhibitor 

(Promega) was added per 100 μl of extract in controls for these experiments. RNase 

positive and negative samples were incubated at 30°C for 20 min. In control experiments, 

RNA was purified from extracts following such treatments; RNA was fully degraded by 

the RNase treatment, whereas RNA integrity was not affected in the RNase negative 

extract. 

Yeast two-hybrid assays used the vectors pGAD424 and pGBDU-C1 [13]. 

pGAD424 carries the LEU2 marker gene, and pGBDU-C1 carries the URA3 marker 

gene. Fragments of Drosophila BicD or FMRP were PCR-amplified and cloned in frame 

with the Gal4p transactivation domain in pGAD424 or the Gal4p DNA binding domain 

in pGBDU-C1, respectively. The integrity of all inserts was confirmed by sequencing.  

Plasmids were transformed into the yeast two-hybrid strains PJ69-4a or PJ69-4α [13], 

and pairs of BicD and FMRP fragments introduced into the same cells by mating. 

Successful mating was confirmed by plating on –LEU/–URA medium. Interactions 

between the bait and prey, which result in expression of HIS3 and ADE2 were assayed by 

plating on –HIS/–LEU/–URA medium for 72-96 hours. Due to the relatively weak 

interaction of FMRP and the BicD CTD, growth conditions were made less stringent by 

including adenine in the medium.  
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Liquid chromatography mass spectrometry/mass spectrometry 

Gel bands were excised, washed, alkylated, and in-gel digested with trypsin.  The 

extracted peptides were separated by nanoscale liquid chromatography (LC Packings, 

Armsterdam, Netherlands) on a reverse phase C18 column (150 X 0.075 mm ID, flow 

rate 0.25 μl/min). The eluate was introduced directly into a Q-STAR hybrid tandem mass 

spectrometer (MDS Sciex, Ontario, Canada). Spectra were searched against a NCBI non-

redundant database with MASCOT MS/MS Ions search (www.matrixscience.com). 

 

Western blotting of larval brain extracts 

Larval brains were dissected and crushed with a pestle on ice in a 1.5 ml tube. Extracts 

were then denatured via boiling in LDS and separated on NuPAGE 4-12% Bis-tris 

precast gels (Invitrogen) or transferred onto PVDF membranes for immunoblotting. For 

western blotting, the following primary antibodies were used: mouse anti-BicD 1B11 

(1:500); mouse anti-FMRP 5A11 and 5B6 (1:500) (all from DHSB); rabbit anti-β-actin 

(1:3000; Abcam) and rabbit anti-Egl (1:5000; [14] (a kind gift of Caryn Navarro and 

Ruth Lehmann). HRP-conjugated secondary antibodies and ECL reagent (Amersham) 

were used for detection.  

 

Immunostaining and detection of mitochondria 

Dissection of third instar larval neuromuscular system fillets was performed as previously 

described [15]. Larvae were dissected in Ca2+-free solution and fillets fixed immediately 

afterwards (15 min in 4% paraformaldehyde in PBS). Samples were then blocked for 1 h 

at room temperature in 5% bovine serum albumin (Sigma) in PBS/0.1% NP-40. Primary 

antibodies (mouse anti-GFP (1:500; Roche) and rabbit anti-HRP (1:300; Jackson 

Immunoresearch)) were applied overnight at 4°C and secondary, fluorescently-

conjugated antibodies were incubated for 1 h at room temperature. 6 washes of 15 min 

each with PBS/0.1% NP-40 were conducted after antibody incubations.   

Dorsal ddaC neurons were imaged with a Biorad Radiance or Zeiss 710 confocal 

microscope using a 25x/0.8 NA oil immersion or a 20x/0.8NA air objective. Images 

shown in figures 4 and S2 are a projection of 30 to 40 z-sections. ddaC neurons are an 

established model to study neuronal morphology as they present the following 
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advantages: 1) they are class IV neurons, i.e. they harbour the highest level of 

morphological complexity that can be found in the larval epithelium,  thus allowing the 

scoring of detailed aspects of neuronal shape and 2) ddaC neurons are the only class IV 

neurons present in the dorsal side of a larva; it is therefore possible to correctly attribute 

dendritic arbors to the cell body they originated from, allowing a single neuron to be 

scored. 

For immunofluorescence of primary neurons, cells were fixed in 4% 

formaldehyde for 10 min. BicD was detected using antibodies raised in rabbit against 

amino acids 1-543 of Drosophila BicD, expressed in bacteria and purified using an N-

terminal His tag. FMRP was detected using a mixture of mouse anti-FMRP 5A11 and 

5B6 (1:500). Samples were imaged using a Zeiss 710 confocal microscope. 

For analysis of the distribution of mitochondria in primary neurons, cells were 

cultivated for 5 days after plating and then incubated with 4 nM Mitotracker Green-FM 

(Invitrogen) for 15 min, washed twice with fresh medium and imaged. 

 

Quantitative RT-PCR (RT-qPCR) 

cDNA was synthesized from total RNA (2.5 μg) from third instar larval brains using 

random hexamer primers and Superscript III (Invitrogen). RT-qPCR reactions were 

carried out with the ABI7900 Taqman thermocycler (Applied Biosystems). Reaction 

mixtures for amplification contained 0.5 μl of each gene expression assay (AB Biotech), 

5 μl of 2x Master Mix (AB Biotech), 1 μl of cDNA (~50 ng) and water to 10 μl.  

The gene expression assays used were Fmr1 (Dm02136378) and β-actin 

(Dm02361909) (http://www3.appliedbiosystems.com/AB_Home/index.htm). Values for 

gene expression in each case were calculated relative to a standard curve of Fmr1 

expression whose consistency from different samples was confirmed in each case using 

β-actin expression. For each genotype, duplicate experiments were performed for each of 

3 different RNA preparations. 

 

RNAi  experiments in cultured D-mel cells 

Portions of the coding regions of BicD and GFP were amplified with flanking T7 

promoter sequences. Predicted off-target free amplicons (Drosophila RNAi Screening 
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Center; http://www.flyrnai.org) were generated using the following primer pairs (T7 

sequences are lower case): 

 

BicD: 

T7BicDRNAiF: taatacgactcactatagggCGAACTTAAATCTCCTGACGGCAC 

T7BicDRNAiR: taatacgactcactatagggAGATGTGGGTAAGAGTTTGAACATC 

 

GFP: 

T7GFPRNAiF: taatacgactcactatagggCTTCAGCCGCTACCCCGACCAC 

T7GFPRNAiR: taatacgactcactatagggCAGCACGGGGCCGTCGC 

 

The amplicons were used to generate dsRNAs using standard protocols. For each 

treatment, 2 x 106 D-mel cells (Invitrogen; a derivative of S2 cells that grows in serum-

free medium) were treated with 30 μg of dsRNA for 4 days. Cells were then lysed, and 

proteins analyzed by western blotting with chemiluminescent detection. 
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Figure S1. Probing potential BicD-FMRP interactions 
(A) BicD CTD interacts specifically with an FMRP fragment in the yeast two-hybrid 
assay. Yeast two-hybrid assay showing interaction between the BicD CTD and the C-
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terminal two-thirds of FMRP that is abolished by the K730M mutation in the BicD CTD. 
Strains containing interacting pairs of constructs reconstitute biosynthesis of His. Each 
strain exhibits equivalent growth in the presence of His. AD, GAL4 activation domain 
fusion; BD, GAL4 binding domain fusion. Note that, unlike when the Egl:BicD 
interaction is assayed [3], the interaction of FMRP and BicD is not strong enough to elicit 
growth under more stringent conditions (i.e. when adenine is also omitted from the 
medium).  
(B) Immunostaining of endogenous BicD and FMRP in cultured larval neurons. BicD 
was detected with a Cy5-conjugated secondary antibody and FMRP with an Alexa488-
conjugated secondary antibody. (A) Low magnification image of cell body and neurites. 
(B, C) Higher magnification views of neurites, showing examples of co-incidence of 
punctate FMRP signals and BicD signals (arrows). However, due to the very broad 
distribution of BicD in neurons it is not possible to draw a meaningful conclusion about 
the overall extent of complex formation between FMRP and BicD from these 
experiments (i.e. BicD signal would overlap with many other signals in fixed neurons just 
by chance; see main text for details of time-lapse imaging of co-transport of FMRP::GFP 
and BicD::mCherry). Note that BicD also has a much wider distribution than its cargoes 
on other cell types [16, 17] (MD and SLB, unpublished observations). This presumably 
reflects a sizeable pool of an auto-inhibited form of the protein: in the absence of binding 
of a cargo, the CTD engages in an interaction with an N-terminal region, thus preventing 
recruitment of the dynein/dynactin complex to the N-terminal region [17]. It is also 
possible that BicD transports other cargoes in these cells and that this contributes to the 
broad distribution of BicD relative to FMRP. 
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Figure S2. FMRP::GFP is functional in vivo 
(A – E) Representative images of dorsal ddaC dendritic arborization (da) neurons in 
segment 2 of third instar larvae of the indicated genotypes (visualized with UAS-
CD8::GFP expressed under the control of the class IV da neuron-specific driver ppk-
GAL4). Red arrows indicate axon; other processes are dendritic. 
(F) Quantification of terminal branch number in the dendritic arbor. Number of terminal 
branches is reduced in Fmr1Δ50M homozygous mutant and heterozygous larvae. There are 
significantly more branches in heterozygous than in homozygous mutant larvae (P < 
0.0004 (t-test)). Branching is also reduced, compared to wild-type, following 
overexpression of Fmr1::GFP under control of ppk-GAL4 in the presence of wild-type 
levels of endogenous FMRP (i.e. Fmr1+/+) (***, P < 0.001; t-test). Similar effects on 
neuronal morphology of Fmr1 loss-of-function and overexpression have previously been 
reported in other neurons; Morales et al. [18] found that both Fmr1 null mutations and 
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overexpression caused reduced extension of the axons of DC neurons in the adult 
Drosophila brain. The authors concluded that dose of FMRP may be under stringent 
regulation and that precise levels are required for proper function. Our results in dorsal 
ddaC neurons support this conclusion. ppk-GAL4 driven expression of Fmr1::GFP fully 
rescues terminal branch number defects in Fmr1+/- ddaC neurons. Thus, the FMR1::GFP 
fusion protein is functional. Note that is has previously been reported that terminal branch 
number in larval da neurons is increased in Fmr1 mutants [4]. However, these authors 
analyzed the entire cluster of da neurons on the ventral side, whereas we analyzed the 
phenotype in a single neuron (ddaC; the only class IV da neuron in the dorsal cluster). 
The differential requirements for Fmr1 in controlling the morphology of different 
neuronal cells is consistent with previous findings in Drosophila brains. Morales et al. 
[18] showed that Fmr1 mutations cause overextended axons in LNv cells, but a failure of 
axon extension in DC neurons. Cell type-specific effects of FMRP on neuronal 
morphogenesis may reflect differences in the repertoire of its mRNA targets. 
(G) Quantification of branch order of ddaC neurons. Number of branches of each order is 
reduced in Fmr1Δ50M null mutant and heterozygous larvae, and also following 
overexpression of Fmr1::GFP under control of ppk-GAL4 in the presence of wild-type 
levels of endogenous FMR1 (i.e. Fmr1+/+). Overexpression of Fmr1::GFP in ddaC does 
not significantly suppress branch order defects in Fmr1 heterozygotes or the reduced 
length of terminal branches (compare (E) with (A)); this could presumably reflect sub-
optimal levels of Fmr1 transgene expression. Indeed, given the stringent requirements for 
FMRP levels revealed by our previous experiments, we would have been surprised if all 
branching defects in Fmr1-/+ neurons could be reverted to the wild-type by our Fmr1 
overexpression. In F and G, 6 to 7 neurons (from 4 – 7 larvae) were analyzed for each 
genotype. Error bars represent s.e.m.. 
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Figure S3. Endogenous FMRP levels in BicD mutant and ΔGl-expressing larval brains 
and following depletion of BicD in D-mel tissue culture cells by RNAi. 
(A) Western blot on third instar larval brain extracts of the indicated genotypes, 
immunoblotted with anti-FMRP and anti-β-actin as a loading control. Endogenous levels 
of FMRP are decreased in BicD mutant brains (BicDr5/Df119) even in the absence of 
expression of FMRP::GFP (compare with figure 2B; see legend to figure 2B for 
quantification). Endogenous levels of FMRP are not effected by overexpression of ΔGl 
pan-neuronally (using C155-GAL4). 
(B) Depletion of BicD by RNAi in cultured D-mel cells does not reduce levels of 
endogenous FMRP. In control experiments, cells were either not treated with dsRNA (-) 
or treated with a dsRNA derived from GFP. For each treatment, 2 x 106 cells were 
incubated with 30 μg of dsRNA for 4 days. β-actin acts as a loading control. The blot 
shown is representative of two independent experiments. Note that the lower abundance 
FMRP isoform present in larval brain extracts was not detectable in these D-mel cell 
extracts. In larval brain extracts, the abundance of both isoforms is dependent on BicD 
(A). 
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Figure S4. Characterization of BicD mutant primary neuronal cultures. 
Examples of mitotracker-stained wt (A) and BicD mutant (BicDr5/Df119) (B) third instar 
larval neurons in primary culture for 5 days. Overall there was no overt difference in 
morphology between these two genotypes; cellular morphology was as variable between 
individual cells of the same genotype as it was between individual cells of the different 
genotypes. (C) Quantification of mitochondrial distribution in neurites of neuronal 
primary cultures, reveals no significant difference between wild-type and BicD mutants. 
n = 157 mitochondria in 25 cells for wild-type and 175 mitochondria in 28 cells for BicD 
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mutant. Mitochondria are transported bidirectionally along microtubules in the 
Drosophila embryo independently of BicD (SLB, unpublished observations). (D) 
Quantification of anterograde and retrograde run lengths of FMRP::GFP in wild-type 
(wt) and BicD overexpressing (o.e.) primary cultured neurons. Errors bars are s.e.m.. (E) 
Quantification of microtubule polarity in wild-type primary cultured neurons, assayed by 
filming the plus-end-tracking marker EB1::GFP (under C155-GAL4 control) [10]. A 
similar number of microtubules grow away (anterograde) and toward (retrograde) the cell 
body. n = 306 comets in total, from 27 cells. 
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Table S1.  Yeast two hybrid interactions tested between BicD and FMRP 
                   

 

 

pGAD424 empty 

vector 

pGAD424-BicD 

1-543aa 

pGAD424-BicD 

536-782aa 

pGAD424-BicD 

K730M 536-

782aa (c) 

pGBDU-C1 

empty vector 
 

- 

 

- 

 

- 

 

- 

pGBDU-C1-FMRP 

1-681aa (FL) (a) 
 

- 

 

- 

 

- 

 

- 

pGBDU-C1-FMRP 

1-219aa 
 

- 

 

- 

 

- 

 

- 

pGBDU-C1-FMRP 

220-618aa 
 

- 

 

- 

 

+ 

 

- 

pGBDU-C1-FMRP 

220-417aa (b) 

 

+/- 

 

+/- 

 

+/- 

 

+/- 

pGBDU-C1-FMRP 

418-681aa 
 

- 

 

- 

 

- 

 

- 

+, growth in the absence of histidine; -, no growth in the absence of histidine; pGAD424, activation 

domain vector; pGBDU-C1, binding domain vector; FL, full length protein. Scored 96 h after plating. Note 

that, unlike when the Egl:BicD interaction is assayed [3], the interaction of FMRP and BicD is not strong 

enough to elicit growth under more stringent conditions (i.e. when adenine is also omitted from the 

medium). 

a, the inability of full length FMRP to interact with the BicD CTD could reflect these FMRP sequences not 

folding in the context of the fusion with the DNA binding domain or an autoinhibited conformation that is 

relieved in the 220 – 618 fragment by removing the N-terminal sequences. This truncated FMRP fragment 

could conceivably mimic a conformational change that occurs in Drosophila and contributes to forming a 

stable FMRP:BicD complex. 

b, there was very weak growth (+/-) even with the empty activation domain vector. The extent of growth 

was not detectably augmented by the FMRP sequences, suggesting that there is no significant interaction 

between FMRP 220-417 and BicD 536-782aa. 

c, the K730M mutation does not inhibit binding of the BicD CTD to other copies of BicD in the yeast two 

hybrid assay [3], indicating that is does not have a general toxic effect on protein folding or stability. 
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Movie S1. Cotransport of BicD::mCherry and FMRP::GFP in Cultured Primary Drosophila Neurons 

Consisting of two concatenated movies, A and B.  

(A) Primary cultured neuron from third instar larvae expressing UAS-FMRP::GFP (green; under C155-
GAL4 control) and tub-BicD::Cherry (red). Extensive colocalization of BicD and FMRP in moving 
particles can be observed. Fluorescence outside the cell comes from debris in the culture medium. Movie 
consists of four loops; each loop represents 4 min 40 s.  

(B) Close-up of one particle (arrow), showing correspondence of the BicD and FMRP signals during 
movement in both directions. Movie consists of four loops; each loop represents 3 min 54 s. 

Movie S2. Behavior of FMRP:GFP in Wild-Type, BicD, and Khc Mutant Cultured Primary Drosophila 
Neurons 

Consisting of two concatenated movies, A and B.  

(A) (Left) Primary cultured neuron from a third instar larva expressing UAS-FMRP::GFP (under C155-
GAL4 control) in the wild-type background. Some FMRP particles (e.g., arrow) can be seen moving 
bidirectionally over long distances. (Right) Primary cultured neuron from a third instar larva expressing 
UAS-FMRP::GFP (under C155-GAL4 control) in the BicD mutant background. Some FMRP particles 
(arrows) are motile but they mostly perform relatively short, oscillatory movements. In this and other 
movies BicD mutant genotype is r5/Df119. Movies consist of four loops; each loop represents 2 min 10 s 
(left) and 2 min 8 s (right). Width of region shown is 14.7 μm and 24.6 μm for wild-type and BicD mutant, 
respectively. There are higher levels of FMRP::GFP signal in the cell body of the wild-type neuron (top left 
of image) than in the cell body of the BicD mutant neuron (flanked by arrows) at the onset of filming (i.e., 
before photobleaching). This reflects reduced amounts of total protein in nervous tissue (main text Figure 
2B). 

(B) Primary cultured neuron from a third instar larva expressing UAS-FMRP::GFP (under C155-GAL4 
control) in a kinesin-1 heavy chain strong hypomorphic background (Khc17/27). Discrete FMRP particles 
cannot be readily detected above the diffuse cytoplasmic signal. Movie consists of four loops; each loop 
represents 1 min 15 s. Width of region shown is 18 μm. 

Movie S3. Behavior of FMRP:GFP in Wild-Type and BicD Mutant Chordotonal Organ Neurons In Situ 

Chordotonal organ neuronal cluster in filleted third instar larvae expressing UAS-FMRP::GFP (under 
C155-GAL4 control) in the wild-type and BicD mutant background. Dendrites and axons are above and 
below the cell body, respectively. Although most of the particles are stationary, it is possible to observe 
directed movement of some particles (arrows), which are less extensive in BicD mutants. See main text 
Figures 3E and 3F for quantification from multiple cells. The low frequency of movement of FMRP puncta 
even in wild-type cells is consistent with observations of neuronal mRNPs in other studies [11, 19, 20]. 
Movies consist of four loops; each loop represents 2 min 55 s (left) and 2 min 15 s (right). Width of region 
shown is 51.3 μm and 36.6 μm for WT and BicD mutant, respectively. N.B. reduced levels of FMRP::GFP 
signal overall in BicD mutant neurons, reflecting reduced amounts of total protein in nervous tissue. These 
movies are of projections of four z-sections of ~1 μm each. Individual z-slices were used for the 
quantitative data in main text Figures 3E and 3F, permitting more rapid imaging of particles. Fluorescence 
outside of neurons in the wild-type results from autofluorescence in oenocytes. The oenocytes are visible in 
a subset of projections of both wild-type and mutant preparations, because of variability in fillet dissection 
and mounting. 
 

 

 
 


