
Supplement

This supplement provides the R code and documentation for the application examples presented in

the paper “An Introduction to Recursive Partitioning: Rationale, Application and Characteristics

of Classification and Regression Trees, Bagging and Random Forests”. It was created by means of

the Sweave function for mixing R and LATEX code (Leisch 2002).

Classification and Regression Trees

• Select a working directory, where all created objects and figures will be stored.

> setwd("~/myfolder")

• Read in the data set.

> dat_smoking <- read.table("dat_smoking.txt")

The variable intention_to_smoke is the binary response variable. The other variables are

two binary and two numeric predictor variables.

(If SPSS data frames are supposed to be read, attach the package foreign and use the

functions read.spss and as.data.frame to create an appropriate R data frame.)

• Attach the add-on package party.

> library("party")

(If packages have not been installed previously, they can be installed with the install.packages

command. Use the option dependencies = TRUE to ensure all necessary functions from other

packages are also available.)

• Fit and plot a classification tree.

> myctree <- ctree(intention_to_smoke ~ ., data = dat_smoking)

The association between the response variable intention_to_smoke and all other variables

in the data set, as indicated by the . symbol in the function call, is modeled.

The default parameter settings in the function ctree guarantee that variable selection is

unbiased (Hothorn, Hornik, and Zeileis 2006).

A classification tree is fitted automatically, because the response variable is a factor. (The

“c” in ctree does not stand for “classification”, but refers to the conditional inference tests

employed in split selection.) For a numeric response, a regression tree would be fitted.

Make sure your response variable is correctly encoded!

This can be checked, e.g., by means of:

> class(dat_smoking$intention_to_smoke)

An Introduction to Recursive Partitioning 2

[1] "factor"

> plot(myctree)

friends_smoke
p < 0.001

1

none one or more

Node 2 (n = 92)

ye
s

no

0

0.2

0.4

0.6

0.8

1

alcohol_per_month
p = 0.039

3

≤≤ 1 >> 1

Node 4 (n = 29)
ye

s
no

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 79)

ye
s

no

0

0.2

0.4

0.6

0.8

1

Model-Based Recursive Partitioning

• Make available the data set from the add-on package lme4.

> data("sleepstudy", package="lme4")

• Select some subjects. (Otherwise fitting will take a while, because all combinations of sub-

jects need to be compared for parameter instabilities in their regression models.)

> dat_sleep <- subset(sleepstudy, Subject %in% c(308,309,335,350))

> dat_sleep$Subject <- factor(dat_sleep$Subject)

(The latter command only eliminates the remaining factor levels.)

• Fit and plot a model-based tree.

> mymob <- mob(Reaction ~ Days | Subject, data = dat_sleep,

+ control = mob_control(minsplit = 10))

The minimum number of observations per node necessary for splitting minsplit is set to

10 here, because 10 observations are available for each subject and we want to be able to

identify even single subjects with deviating model parameters.

If each observation corresponded to one subject, and subjects were partitioned w.r.t. co-

variates such as age and gender, the default value of minsplit would guarantee, as a stop

An Introduction to Recursive Partitioning 3

criterion, that in each terminal node a sufficient number of observations is available for model

fitting.

> plot(mymob)

Subject
p < 0.001

1

{309, 335} {308, 350}

Subject
p < 0.001

2

309 335

Node 3 (n = 10)

●
● ● ● ●

● ● ● ●
●

−0.9 9.9

177

492
Node 4 (n = 10)

●

●

●
●

● ●
●

● ● ●

−0.9 9.9

177

492
Node 5 (n = 20)

●●
●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−0.9 9.9

177

492

Random Forests

• Read in the data set.

> dat_genes <- read.table("dat_genes.txt")

The variable status is the binary response variable. The other variables are clinical and

gene predictor variables, of which two were modified to be relevant.

• Set control parameters for random forest construction.

> mycontrols <- cforest_unbiased(ntree=1000, mtry=20, minsplit=5)

The parameter settings in the default option cforest_unbiased guarantee that variable

selection and variable importance are unbiased (Strobl, Boulesteix, Zeileis, and Hothorn

2007).

The ntree argument controls the overall number of trees in the forest, and the mtry argument

controls the number of randomly preselected predictor variables for each split.

If a data set with more genes was analyzed, the number of trees (and potentially the number

of randomly preselected predictor variables) should be increased to guarantee stable results.

The square-root of the number of variables is often suggested as a default value for mtry.

Note, however, that in the cforest function the default value for mtry is fixed to 5 for

technical reasons, and needs to be adjusted if desired.

An Introduction to Recursive Partitioning 4

If mtry was set to the number of predictor variables in the data set, ncol(dat)-1 (= number

of columns, but not counting the column for the response variable), the procedure would be

equal to bagging.

The minimum number of observations per node necessary for splitting, minsplit, is set to a

low value here, because the sample is rather small and in random forests usually large trees

are desired. The other potential stopping criterion for the cforest function, the minimum

criterion value necessary for splitting, mincriterion, is already set to 0 per default.

The control parameters can either be stored in advance and then used in the function call,

as displayed here, or specified directly in the function call, as in the previous example.

• Set an (arbitrary) random seed and fit a random forest with the control parameters defined

above.

Note that, as a hint to the reader, random seeds are set every time random sampling or

random permutations are involved in the following.

> set.seed(2908)

> mycforest <- cforest(status ~ ., data=dat_genes, controls=mycontrols)

• Look at some trees in the forest (the same method was used to illustrate the variability of

single trees in bagging and random forests in the paper).

> xgr <- 2

> grid.newpage()

> cgrid <- viewport(layout = grid.layout(xgr, xgr), name = "cgrid")

> pushViewport(cgrid)

> for (i in 1:xgr) {

+ for (j in 1:xgr) {

+ pushViewport(viewport(layout.pos.col = i, layout.pos.row = j))

+ tr <- party:::prettytree(mycforest@ensemble[[i + j * xgr]],

+ names(mycforest@data@get("input")))

+ plot(new("BinaryTree", tree = tr, data = mycforest@data,

+ responses = mycforest@responses),

+ newpage = FALSE, pop = FALSE, type="simple")

+ upViewport()

+ }

+ }

An Introduction to Recursive Partitioning 5

simulated_gene_2
p = 0.004

1

≤≤ 10.227 >> 10.227

gene_11676
p = 0.27

2

≤≤ 3.725 >> 3.725

n = 0
y = (0.429, 0.571)

3
n = 0

y = (0.1, 0.9)

4

n = 0
y = (0.867, 0.133)

5

gene_2807
p = 0.002

1

≤≤ 6.742 >> 6.742

n = 0
y = (0.786, 0.214)

2
simulated_gene_1

p = 0.001

3

≤≤ 12.279 >> 12.279

gene_5236
p = 0.026

4

≤≤ 4.876 >> 4.876

n = 0
y = (0.125, 0.875)

5
n = 0

y = (0, 1)

6

n = 0
y = (0.75, 0.25)

7

brain_pH
p = 0.005

1

≤≤ 6.67 >> 6.67

gene_9489
p = 0.071

2

≤≤ 6.16 >> 6.16

n = 0
y = (0.867, 0.133)

3
n = 0

y = (0.375, 0.625)

4

gene_13669
p = 0.124

5

≤≤ 6.014 >> 6.014

n = 0
y = (0, 1)

6
n = 0

y = (0.375, 0.625)

7

simulated_gene_1
p = 0.003

1

≤≤ 12.413 >> 12.413

gene_1440
p = 0.002

2

≤≤ 8.204 >> 8.204

n = 0
y = (0.667, 0.333)

3
n = 0

y = (0.071, 0.929)

4

gene_8717
p = 0.026

5

≤≤ 8.023 >> 8.023

n = 0
y = (1, 0)

6
n = 0

y = (0.625, 0.375)

7

• Compute and plot the permutation importance of each predictor variable.

> set.seed(2908)

> myvarimp <- varimp(mycforest)

> barplot(myvarimp[90:100], space=0.75, xlim=c(0,0.035),

+ names.arg=rownames(myvarimp)[90:100], horiz=TRUE, cex.names=0.45,

+ cex=0.45, las=1)

gene_10430

simulated_gene_2

gene_9569

gene_21180

gene_12588

gene_11676

gene_4087

gene_8674

gene_7193

gene_5491

gene_17678

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

(Only a few genes are displayed here to save space. All but the first plot options are only

for aesthetics.)

• Prediction in terms of the predicted response class or the predicted class probabilities for

some selected subjects.

An Introduction to Recursive Partitioning 6

> subjects <- 28:32

> y <- dat_genes$status[subjects]

> y_hat <- predict(mycforest, newdata=dat_genes[subjects,])

> p_hat <- sapply(treeresponse(mycforest, newdata=dat_genes[subjects,]),

+ FUN=function(x)x[,1])

> tab <- cbind(y, y_hat, p_hat)

> rownames(tab) <- paste("subject",subjects)

The results are displayed here as a LATEX table by means of the xtable function from the

package of the same name. (Only one class probability needs to be displayed for a binary

classification problem.)

> library("xtable")

> colnames(tab)<-c("y", "$\\hat{y}$", "$\\hat{p}\\left(y=1\\right)$")

> print(xtable(tab, align="cccc", digits=c(0,0,0,2)),

+ type = "latex", sanitize.text.function = function(x){x})

y ŷ p̂ (y = 1)

subject 28 1 1 0.80

subject 29 1 2 0.46

subject 30 1 1 0.64

subject 31 2 2 0.48

subject 32 2 2 0.43

• Compute the percentage of correct predictions and the confusion matrix from the entire

learning sample or from the out-of bag (OOB) sample only.

> y_hat<-predict(mycforest)

> y_hat_oob<-predict(mycforest, OOB=TRUE)

> sum(dat_genes$status==y_hat)/nrow(dat_genes)

[1] 0.9016393

> sum(dat_genes$status==y_hat_oob)/nrow(dat_genes)

[1] 0.6721311

> table(dat_genes$status, y_hat)

y_hat

Bipolar disorder Healthy control

Bipolar disorder 28 2

Healthy control 4 27

An Introduction to Recursive Partitioning 7

> table(dat_genes$status, y_hat_oob)

y_hat_oob

Bipolar disorder Healthy control

Bipolar disorder 20 10

Healthy control 10 21

References

Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional

inference framework. Journal of Computational and Graphical Statistics 15 (3), 651–674.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports. In W. Härdle and B. Rönz

(Eds.), Proceedings in Computational Statistics, Heidelberg, pp. 575–580. Physika Verlag.

Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007). Bias in random forest variable

importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25.

