PI(3,5)P₂ Controls Membrane Traffic by Direct Activation of Mucolipin Ca²⁺ Release Channels in the Endolysosome

Xian-ping Dong^{1, #}, Dongbiao Shen^{1, #}, Xiang Wang^{1, #}, Taylor Dawson¹, Xinran Li¹, Qi Zhang ¹, Xiping Cheng ¹, Yanling Zhang ², Lois Weisman², Markus Delling³, and Haoxing Xu^{1, *}

¹ The Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, 3089 National Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA

² The Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA

³ The Department of Cardiology, Children's Hospital Boston, Enders 1350, 320 Longwood Avenue, Boston, MA 02115, USA

Running head: TRPML1 is an endolysosomal Ca^{2+} release channel specifically activated by PI(3,5)P₂

[#]These authors contributed equally to this work.

* To whom correspondence should be addressed: haoxingx@umich.edu

Supplementary Figures S1-S6

Supplementary Figure 1. TRPMLs and PIPs in the endocytic pathway.

Intracellular compartments in the endocytic pathways undergo cargo-dependent maturation (indicated by black arrows), membrane fusion (blue arrows), and fission/budding (red arrows). The molecular identities of intracellular compartments were defined by specific recruitment of Rab GTPases, and phosphoinositide (PIP) composition. PI(3)P is synthesized by Vps34 PI 3-kinase in early endosomes (EEs). PI(3.5)P₂ is presumed to be produced in late endosomes and lysosomes (LELs) by PIKfyve/Fab1 PI 5-kinase using PI(3)P as substrate. Endolysosomes are Ca²⁺ stores, with a luminal Ca²⁺ concentration estimated to be approximately 0.5 mM. The pH of each organelle is indicated. In endolysosomes, TRPML-mediated intra-endosomal Ca²⁺ release may activate Ca²⁺-sensor proteins such as synaptotagmin (Syt) and calmodulin (CaM) to trigger homotypic and heterotypic fusion. Early endosomes (EEs; pH 6.0; PI(3)P;) are derived from the primary endocytic vesicles after endocytosis. EEs can undergo maturation through membrane trafficking to become late endosomes (LEs; pH 5.5; PI(3)P + PI(3,5)P₂). LEs can fuse with lysosomes (LYs; pH 4.5; PI(3)P+PI(3,5)P₂) to form LE-LY hybrids. LYs can be reformed from LE-LY hybrids (LELH) in a fission-dependent mechanism. Besides fusion with LEs, LYs also fuse with autophagosomes (APs) to form autolysosomes (ALs), or fuse with the plasma membrane in exocytosis. TRPML1-3 channels are predominantly localized in LEs and LYs. Activation of TRPML channels by PI(3,5)P₂ may induce intralysosomal Ca²⁺ release. Alternatively. activation of Two-pore Channels (TPCs) by NAADP may also induce intralysosomal Ca²⁺ release. LEs, LYs, or LE-LY hybrids undergo CaM- or Syt- dependent membrane fusion or fission and budding. Retrograde transport vesicles, derived from LEs or LYs upon membrane fission, transport lipids and proteins in a retrograde direction to the trans-Golgi Network (TGN). Stars indicate membrane fusion and fission processes that are reportedly defective in both TRPML1-deficient and PI(3,5)P₂-deficent cells.

Supplementary Figure 2. Activation of TRPML1 by full length diC16 PI(3,5)P₂.

Long-chain phosphoinositide diC16 $PI(3,5)P_2$ activated wholeendolysosome I_{TRPML1} . I_{TRPML1} was elicited by voltage ramps (-140 to +140 mV; 400 ms).

Supplementary Figure 3. Specific activation of TRPML1 by $PI(3,5)P_2$.

a) Whole-endolysosome I_{TRPML1} was insensitive to PI(4,5)P₂ (1 μ M). **b)** Insensitivity of I_{TRPML1} to PI (4,5)P₂ (1 μ M) or PI(3,4,5)P₃ (1 μ M). PI(3,5)P₂ readily activated I_{TRPML1} in the same vacuole.

Supplementary Figure 4. Immuofluorescence of PI(3,5)P₂ in Lamp1-positive compartments.

Mouse fibroblast cells were immunostained with anti-PI(3,5)P₂ (green) and anti-Lamp1 (red). The majority of Lamp1-positive compartments were immunostained by anti-PI(3,5)P₂, which also recognized some Lamp1-negative compartments. Scale Bar = 10 μ m.

Supplementary Figure 5. Overexpression of TRPML1 in *fab1* Δ cells failed to restore hyperosmolarity-induced Ca²⁺ response. TRPML1 is expressed using the pCu expression vector (pCu-ML1). Hyperosmolarity-induced Ca²⁺ responses were measured using the aequorin-mediated luminescence assay. Hyperosmotic shock was induced by addition of 0.9 M NaCl. Hyperosmolarity-induced Ca²⁺ responses (normalized with baseline luminescence before hyperosmotic shock) from *fab1* Δ cells, and pCu-ML1-transformed *yvc1* Δ cells were re-plotted from Fig. 6 for comparison.

Supplementary Figure 6. Overexpression of YVC1 in $yvc1\Delta$ cells restored hyperosmolarity-induced Ca²⁺ response.

YVC1 is expressed using the pVT expression vector. Hyperosmolarity-induced Ca²⁺ responses were measured using the aequorin-mediated luminescence assay. Hyperosmotic shock was induced by addition of 0.9 M NaCl. Hyperosmolarity-induced Ca²⁺ responses from pCu-ML1-transformed *yvc1* Δ cells were re-plotted from Fig. 6 for comparison.