Wilting_Supplemental Figure 1

А

Wilting_Supplemental Figure 2

ΗE IHC: α -Hdac1 IHC: α -Hdac2 Δ" A' A *MxCre*⁺ B' В B' MxCre⁺;Hdac1KO C' **C**" MxCre⁺; Hdac1KO;Hdac2HET C D' D'' D MXCre⁺;DKO

Wilting_Supplemental Figure 5

Wilting_Supplemental Figure 6

MxCre⁺

0

Legends of supplementary figures.

Supplemental Figure 1. A. Schematic representation of wild-type (*Hdac1WT*), conditional knock-out (*Hdac1cKO*) and null-allele (*Hdac1KO*) of Hdac1. Black arrow heads indicate the position of *loxP* sequences. Arrows indicate primers used for genotype purposes. B. Western blot analysis of protein lysates from tamoxifen (4-OHT) treated (200 nM) $RCM2^+$;*Hdac1^{L/+}*;*Hdac2^{+/-}* and $RCM2^+$;*Hdac1^{L/L}*;*Hdac2^{-/-}* MEFs. Asterix indicates a background signal, which becomes visible only in the absence of Hdac2.

Supplemental Figure 2. A. Sequence analysis of wild-type Hdac1 and Hdac1^{D99A} and Hdac1^{Y303F} mutants B. Sequence analysis of wild-type Hdac2 and Hdac2^{D100A} and Hdac1^{Y304F} mutants. Boxed areas indicate the amino acid substitution in the Hdac1 and Hdac2 mutants. C/D. Hdac activity of wild-type and mutant Hdac1 (C) or Hdac2 (D) as measured by incubating immunoprecipitated wild-type and mutant Hdac1 or Hdac2 with a fluorigenic acetylated substrate. Hdac activity is presented as percentage activity relative to the Hdac activity of wild-type Hdac1 and Hdac2. Hdac1 and Hdac2 western blot analysis of 293T total cell lysates containing wild-type or mutant Hdac1 or Hdac2, as used for immunoprecipitation. Cdk4 served as a loading control.

Supplemental Figure 3. A. Westernblot analysis of protein lysates of *Hdac2*^{+/+}, *Hdac2*^{+/-} and *Hdac2*^{-/-} MEFs expressing either control shRNA or *Hdac1* shRNA. Note the up regulation of Hdac2 upon knockdown of Hdac1. Cdk4 was used as loading control. B. Cell cycle analysis of *Hdac2*^{+/+} and *Hdac2*^{-/-} MEFs expressing empty vector (V), a control shRNA (C) or *Hdac1* shRNA (KD) using BrdU-PI FACS. C. Growth curve analysis of *Hdac2*^{+/+} and *Hdac2*^{-/-} MEFs expressing either empty vector (squares), control shRNA (diamonds) and *Hdac1* shRNA (open circles). D. Senescence-associated β-galactosidase staining of *Hdac2*^{-/-} MEFs expressing either control shRNA or *Hdac1* shRNA.

Supplemental Figure 4. Representative photographs of hematoxylin-eosin stained bone-marrow sections of $MxCre^+$ (A), *MxCre*⁺;*Hdac1KO* **(B)** and *MxCre*⁺;*Hdac1KO*;*Hdac2HET MxCre*⁺;*DKO* (D) (C) and mice. Immunohistochemistry using antibodies against Hdac1 (A'-D') and Hdac2 (A''-D'') reveals efficient deletion of Hdac1 in bone marrow of $MxCre^+$; Hdac1KO and $MxCre^+$; Hdac1KO; Hdac2HET mice and efficient deletion of Hdac2 in bone marrow of $MxCre^+$; DKO mice.

Supplemental Figure 5. Representative photographs of hematoxylin-eosin stained liver sections of $MxCre^{+}(A)$, *MxCre*⁺;*Hdac1KO* (B) and *MxCre*⁺;*Hdac1KO*;*Hdac2HET MxCre*⁺:*DKO* (C) and (D) mice. Immunohistochemistry using antibodies against Hdac1 (A'-D') and Hdac2 (A''-D'') reveals efficient deletion of Hdac1 in liver of MxCre+;Hdac1KO and MxCre⁺;Hdac1KO;Hdac2HET mice and efficient deletion of Hdac2 in liver of *MxCre*⁺;*DKO* mice.

Supplemental Figure 6. A. Representative photographs of hematoxylin-eosin or α -Hdac1 and α -Hdac2 stained liver sections of $MxCre^+$ and $MxCre^+$;Hdac1KO;Hdac2HET mice. Arrows indicate megakaryocytes. B. Average megakaryocyte counts in $MxCre^+$, $MxCre^+$;Hdac1KO, $MxCre^+$;Hdac1KO;Hdac2HET and $MxCre^+$;DKO liver as counted in liver sections of 3 independent mice of each genotype.