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1 Response of deterministic two-component networks
to constant and oscillatory signals

For a general network ¥ components, our starting point is the kinetic equations
for the evolution of each species

dni

pn = J (ni,ng,...,nyx) — J; (n,na,...,ny), (1.2)

)

where
n; — macroscopic concentration of tti molecular species,
J; — total synthesis rate (production flux),
J; — total degradation rate (relaxation flux),

Following Paulsson [1, 2] we define the elasticities,

n; (0J  0J
Hi' - —TJ Lo L 5 12
! J; (8@ on; ) (12)
giving the relative change of the reaction fluxes for componafter a change in
the j component. As in main text, we use bars to denote that coratemts and

reaction fluxes are evaluatedegjuilibrium (t — o).
Another quantities of interest are the time scaledefined as [1, 2]

(1.3)

SinceJ;" = J; = J;, 1/7; is usually taken as the degradation rate ofithecom-
ponent assuming linear degradation. We note, howeverititgavery same defi-
nition can be applied to cases of non-linear degradationobfeanical species by

a different one, when considering a quasi-steady stateajppation as valid [3].
For instance, in the case of hyperbolic consumption of a cubde component;

by another species; in an enzymatic reaction, the relaxation flux can be written
as

= 0in;

JS = 1.4
! 1+ n;/K; (1.4)
d;

and one simply defines then an effective decay rate of the fgrm= TR TR
T; ]



To quantify the responses of the network we usestiseeptibilities;;, defined
as the relative change in the concentration of componanhequilibrium, after a
change in the input signal,
S; = —

o dn. (1.5)

Hornung and Barkai [4] showed that the susceptibilities camXpressed in
terms of the elasticitied];; by differentiating Eq. (1.1) at equilibrium with re-
spect ton;. If we consider two isolated interacting molecular species the
susceptibility of speciesdue to a change in specigss simply

H;,
Sij = —Fj (1.6)

We used double index notation here to denote that the sulsiiéips s;; give the
local response of the network elementiue to its direct interaction with com-
ponentj, and we term this apairwise susceptibilities. The susceptibilities
defined in EqQ. (1.5) give thglobal response of elementdue to a change in input
signal, and contain the effect of signal propagation thhoaijconnected network
components. It is straightforward to show following [4] tlsaisceptibilitiess; in
a detection network oV components, can be expressed in terms of the pairwise
ones solving the algebraic equation

S:s=—sg, a.7)

whereS is the matrix of pairwise susceptibilities;, {i,7 = 1,..., N} (with
diagonal elements;; = —1) , s the vector of global susceptibilities, {i =
1,..., N} ands, the vector of pairwise susceptibilities due to the direttrac-
tion of the input with the network components,, {i = 1,..., N}. Solving Eq.
(1.7) for N = 2 (only sensor and output components) gives Eq. (1) in main tex

If the input is a constant signal, the amplitude of the outpsponse is pro-
portional to the global susceptibility, (Fig. S1). If the input is an oscillatory
signal, the amplitude of the response will also depend amesiigequency. To see
this, consider a single speciesvith birth/death kinetics whose production rate is
periodically forced

d
ditl =a- (14 a,sin(wt)) — d,n. (1.8)
This is a linear differential equation with a time-deperntdenm which can be
readily solved, for instance, by a Laplace transformatiidre result is
a Op sin (wt) — w cos (wt)

N X ot .
n(t) 5 e " +aa e

(1.9)



The second term is a transient, therefore at long timescillates around the
equilibrium valuea/6,,. The sine and cosine terms can be written in a compact
form by using the relation

sin (wt) cos (wt)

Re(z) +

sin (wt 4 arg(z)) = Im(z), (1.10)

E ||

from which we get that the oscillating part has the amplitude

apQ

Aw) = —2 (1.11)

Therefore, thesquaredamplitude decays as a function of the forcing frequency
with a bandwidthu,, = 9,,.

If an oscillatory signal is propagated through a networkiofomponents, the
output will also oscillate around the stationary mean whid frequency of the in-
put, and an amplitude dependent on this frequency and thwretharacteristics
(time scales, susceptibilities, etc.). Since we are isterkin the amplitude of the
response around the equilibrium value, we linearize thetldrequations defining
therelative deviations from equilibrium as

An; = = 3 (1.12)

and then the amplitude of the relative deviations is given by

max [n;(t)] — i

A = (1.13)

n;

To first order approximation, the relative deviations eechccording to the
set of linear equations

Ad? =M -An + q(t). (1.14)
The matrixM is the normalized Jacobian of the kinetic Egs. (1.1),
n; (0JF  0J
My =2 = - =2 1.15
n; (anj anj> ’ (1.19)

which, using the definition for the elasticities, Eq. (1.&)d for the time scales,
Eq. (1.3), can be expressed as [1]
M;; = — Hy (1.16)

T;




The vectorg(t) contains the explicit time-periodic terms, which can beggen
ally written as

qi(t) = a;sin(wt + ¢;). (1.17)

Samoilov et al. [5] show that, at long times, the solutiorhaf $ystem of equations
(1.14) oscillates with an stationary amplitude given by

A(w) E2 | (iwI — M)~ '~|, (1.18)
where ‘
Vi = a;e". (1.19)

Therefore the relative deviations from equilibrium osd#l with a squared ampli-
tude
A% (w) =X (iwI — M) 'y - At (—iwI — M) (1.20)

For the specific case of an oscillatory input sigmalwith dynamics described
by Eg. (1.8), acting on two-component network of sensgrand outputn,,
species, the normalized Jacobian matrix reads

Hpy
Hy H HO
M = — =&l o SO (1.22)
TS Ts Ts
Hor Hos Hoo
TO TO TO

and the time—periodic vecta(t) is simply

2L sin (wit)
q(t) = ( 0 ), (1.22)
0

since we are considering propagation of a single oscilfatmnal with amplitude
a; and frequency,, impinging on a network at equilibrium. Then

90 0
I

vy¥'=10 00 (1.23)
0 00

We also note that the stability of the equilibrium state @& ttvo-component
module is given by the determinant and the trace of its Jacoliatrix. The
Jacobian determinant is in this case given by,

1 H,s H
(HSSHOO - HsoHos) - =L Rudci

TsTo Ts To

Jac = (1 - 330505)7 (1-24)



and the trace by

Tr=— (HSS + HOO). (1.25)
Ts To

If Jac > 0 andTr < 0, the network steady state is stable. The self-elasticities
are H;; = 1 if there is no autoregulation of thienetwork components/;; < 1
for positive autoregulation anH;; > 1 for negative autoregulation. Therefore for
the network to be in a stable equilibrium state we should keep H;; < 1 for
positive autoregulation ang,s,s < 1 in the case of positive feedback.

Using expressions (1.21) and (1.23) in Eg. (1.20) and regimg terms we
arrive to Eqgs. (2-3) in the main text.

To check the validity of the linear approximations involiadhe response to
constant or oscillatory signals, we numerically solvedkimetic equations for a
linear genetic cascade (see “Models” section) and obtdime@mplitude of the
output response for a step input signal of the type

dn;
dt

=a;, - (14+a;)—dny, (1.26)

or for an oscillatory input signal of the form (1.8). Withing linear approxima-
tion, the relative change in the output following a step algsf amplitudeq; is
given by thew, — 0 limit of Egs. (2-3) in main text. This limit depends only on
signal amplitude and output susceptibility,

2

2
aISO

= . 1.27
H?, ( )

A%(0)

Thus, for all types of networks and small input perturbagicthe relative ampli-
tude A of the output response varies linearly with output susbdyi s,. This
is shown in Fig. S1A for the genetic cascade. dit= 0.01 (black circles), the
response is exactly linear in the whole susceptibility egivghile at perturbations
higher than 10% of the equilibrium value:{ = 0.1, red circles), it deviates from
linearity, but increases monotonically with susceptiili

For an oscillatory signal the output will oscillate at thengafrequency with
an amplitude given to linear order by Egs. (2-3) in main tdxtFig. S1B we
show that this approximation reproduces quite accuratelyrequency dependent
amplitude of a genetic cascade when signal changes up to B®%dauilibrium
value @; = 0.5, blue symbols).

1.1 Frequency detection properties of a linear cascade

As a measure of the frequency detection performance irrdifteanodules, we use
the range of proper frequency transmission given by thesysandwidthwgyy .
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We employ the standard definition [16]

(1.28)

i.e., the bandwidth is the range of frequencies where tharegiamplitude of the
response is above one half of its maximum value. For systahauving as low-
pass filters, such as the linear cascatlg,,. is given by the amplitude at;, = 0.
Thereforewgyy is given by the solution of the equation

A%(0)
R

A (wpw) = (1.29)
A look at Eq. (4) in main text shows that, for fixed time scakbg bandwidth
is independent of the output susceptibility. How does it depend on the time
scales of the cascade components? First, one sees that IMiegradation rates
0; are similar, the larger the degradation rate (faster tinadesy the larger the
bandwidth, and viceversa (compare red curve Wjth= 6 = §, = 2 and black
curve,§; = ds = dp, = 1, in Fig. S2A). Moreover, being the product of three
low-pass filters, the bandwidth is limited by the slowestgistale of the system.
This is illustrated in Fig. S2A (blue curve), with the resperof a linear cascade
where the module components, sensor and output specidasta(®e = 6, = 2)
but the input signal has a lower degradation rate & 1) limiting the range
of transmitted frequencies. In this case, the responseaistigxthe same if the
slowest time scale is either in the sensor or the output espeginother feature of
linear cascades is that adding successive layers slows dotpat response [6].
A single component with periodically forced productioneraEqg. (1.8), has a
bandwidth given by its degradation rate, Eq. (1.11) andddstied line/shaded
region in Fig. S2B. If this single oscillatory component ikga as an input acting
on a second element, the output response is given by thewobftEq. (1.20)
with

u g
M_—<I}(§I HOO) (1.30)
TO TO
which yields
2 2 2 2
AZ(wI) — a; SOIHOO/TO (131)

72 2 2 '
T 2 Hip 2 H50
I <(,¢jl + 7_12 WI + Tg

Even for the same time scales,= ¢, = 1, the second filter reduces the band-
width, dashed line in Fig. S2B. The bandwidth is further dasesl by adding an
intermediate species, and thus forming a three-layerezhdagsolid line in Fig.
S2B and Eq. (4) in main text).



1.2 Simultaneous determination of bandwidth and susceptibil-
ity for two-component networks

In order to compare amplitude/frequency detection featwfetwo-component
network motifs in a consistent way, we fix the sign and susioiipt of the in-
put/sensor interaction, which we denotesas(s;, = 2 for Figures in main text).
Each two-component module is then characterized by thessigmanges of its re-
maining interactions, given as pairwise susceptibiliigsand by the time scales
of each component, given as the inverse of the degradatieada Throughout
the paper we take similar time scales for each node in theanktincluding the
signal, and fixjy; = 1. We also allow pairwise susceptibilities to vary in the rang
sij € [smin, smax]. We takesmin = 0 andsmaxz = 5 in main text.

Next we find, for the simplest two-component networks aredylaere (pos-
itive and negative feedbacks, positive and negative agitedons, and coher-
ent/incoherent feed-forward loops) which is the relevatgraction parameter de-
termining the bandwidth of the oscillatory response. Fer filedback module
(both positive and negative), the difference with the Imeascade comes only
through the extra term in the denominator, Egs. (3) in maih tEhen the differ-
ence in bandwidth, for fixed time scales, depends only up@ptbduct of suscep-
tibilities s,sss0. TOo compare positive and negative feedbacks on the saniadoot
we take the absolute value of this product and denoteféedback strengt{FS).
To calculate the bandwidth of the oscillatory response asetion of FS, we gen-
erate a random uniform distribution of pairwise susceliti€s s,s andss, in the
interval[smin, smax] [4] (providing all possible FS values), calculate the tietor
ical response amplitude using Egs. (2)-(3) in main text drtdia the bandwidth.
Plotting the bandwidth as a function of FS we obtain the blaakes in Fig. 2
in main text. Next, we determine the output susceptibiligge compatible with
each FS value. This is easily obtained from Eq. (1) in maih téar instance, for
negative feedback the output susceptibility is

505521
So = T+ 7S (1.32)
Therefore, for each FS value the maximum possible susdytik, corresponds
to the cases,s = smax giving the upper red curve in Fig. 2C. The minimum
value ofs,, on the other hand, is obtained by the minimum value of sénstput
susceptibility s,s compatible with a given FS, which is,s = F'S/smax (if
smin = 0), and generates the lower red curve in Fig. 2C. All possiblaluoa-
tions of s, ands;, values will give output susceptibilities, lying between these
curves (grey shaded region in Figures 2C,D).

For modules with autoregulation in one of the component's,day the output



element,H,, # 1, we define theutoregulation strengtflARS) as
ARS = |Hpo — 1. (1.33)

The amplitude/frequency detection features for neggibg(ive) autoregulation
as a function of ARS are similar to those for negative(posjtieedback and we
plot them in Fig. S3: increasing ARS in negative autoregoraimproves band-
width but decreases amplitude detection, while the oppdshavior is observed
for positive autoregulation.

For modules with feed-forward connections between inpat antput ele-
ments,s,; # 0, the bandwidth is determined by the relative contributibhe
second term in the numerator of Eq. (7) in main text, acting hgh-pass filter.
Thus we define theelative strengthRS= |s,;/s.|) as the relevant interaction
parameter for frequency detection in feed-forward loops ¢lear that the high-
pass filter term dominates whap, > s?, which is only possible for incoherent
FFLs, wheresign(ss; - sos) # sign(so;). This regime of high-pass filtering of an
oscillatory signal effectively takes place for RS.3 (Fig. 3 in main text), mean-
ing that low frequency oscillations are transmitted witreamplitude smaller than
Amaz/V/2 (strictly speaking, circuits in this regime aband-pasdilters, since
there is always a cutoff at very high frequencies due to ttrengic time scales of
the components, but we use the denominaltiig-passan order to stress the dif-
ference with the low-pass regime at fixed time scales). Toe-pass behavior of
the incoherent FFL (illustrated with trajectories in Fid: i® main text) is shown
in Fig. S4 for the whole range of input frequencies (grey sgispat RS=6. In
order to compare with the negative feedback case at the sasoeibility and
similar frequency detection regime (FS=6), we also plotribgative feedback
oscillatory response with black circles.

The relevant interaction parameters determining frequéetection, together
with the corresponding susceptibility ranges for each eséhparameter values,
are provided in Table S1.

2 Amplitude of fluctuations within the linear noise
approximation

For small number of molecules, as it is usually the case inadigg reactions in-
side cells, the proper mathematical framework to deschbenetwork dynamics
is the master equation for the evolution of probabilitie$h&f number of molecu-
lar species [7]. The kinetic equations (1.1) describe dméyevolution of average
number of molecules [12] (related to the macroscopic camagonsn; by the

“system size” or volume factdr” as(n;) = V'n;) . The amplitude of the fluctua-
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tions around this average numbetsequilibrium assuming small fluctuations, is
usually obtained following two alternative routes

1) Starting from the master equation, there can be deexadtequations for
the time evolution of first and second moments of moleculelrann[8, 9].
Linearizing around the equilibrium state, one obtains goyev algebraic
equation for the covariance of the fluctuations around stetate [9, 10].
The linear approximation should be valid in principle whesrethe equi-
librium point is far from a bifurcation, and the size of thediuation is
not too large. Numerical simulations show that for steadyest far from
bifurcations, this is a good approximation even for largetfiations. For
an analysis of fluctuations using the Lyapunov equation aetcal points
see [11]. With the same notation used in Section 1 for readhxes and
elasticities, the Lyapunov equation can be expressed 3§ [1,

M-oc+o-MT+ D=0, (2.34)

where M is the normalized Jacobian matrix, whose elements are define
as in Eq. (1.16)p is the matrix of normalized covariances,; = ((n; —
n;j)(n; —n;))/n;n; (note thato,; is the squared coefficient of variation for
fluctuations of the component), andD the diffusion matrix whose ele-
ments depend on the reaction fluxes, system size and stmiehric coef-
ficients [1, 2]. To solve the algebraic equation (2.34) weiassthat each
molecular reaction affects a single species (which is wedgs the case, but
it holds for the genetic networks studied here) and thus= 0, Vj # i.
For an analysis of cases where the diffusion matrix is najahal but can
be transformed to diagonal and the Lyapunov equation spbesiRef. [9].
Moreover, if each reaction adds or removes a single molethéediagonal
diffusion elements, which give the individual noise strrsgD;, take the
simple form [1]

2 1
VT_li TZ’7
whereV is the system volume. In practice we take a volume factor for
each molecular specie¥;f as an effective parameter to change the noise
strengths. Although we use Eq. (2.35) for the systems imegsd here,
all analytical results are expressed in terms of generaensirengthd;.

For instance, if speciesis produced as a burst 6fmolecules condensed
in a single reaction, while decaying linearly with a time stamtr; (a sit-
uation commonly considered for mRNA transcription in prokdic gene
expression [8]),

1/7;

¢ Sba, L5, (2.36)
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its noise strength takes the form

p, - 1£0 (2.37)

TiVﬁi ’

2) A second derivation starts again from the master equadiott performs a
system size expansion [12] which can be used to derive Lamgeuations
for the dynamical variables. The approximations involvethis procedure
are discussed in Ref. [7]. Linearizing around the equiliristates, one
gets again a system of linear Langevin equations for the évmoéution of
the fluctuations. These define a multivariate Ornstein-klbgek process
which can be solved by standard methods (Gardiner (198%), pi8lding
again the Lyapunov equation (2.34).

Both approaches are equivalent and thus no additional ajppatiens are in-
volved. The advantage of using the Langevin formalism i§ #mwe see below,
the power spectrum of the fluctuations can be readily obtafr@m the same
matrix definitions as above.

2.1 Solution of the Lyapunov equation for two-component mod-
ules

It is instructive to consider first the solution of the Lyapurequation (2.34) for
a general system of two species,andn,. The Jacobian and diffusion matrices

read 0o
i Dy 0
v (B E)o-(20) e
Species 1 may stand for mRNA and 2 for protein, for instancd,then we can

study different forms of autoregulation. If they denotdefi€nt proteins, one can
treat all kind of feedback interactions between both sgeadenever the con-
densed two-variable description is a proper approximafidre aim is to express
the noise covariances in terms of the same deterministintijies (susceptibil-

ities, time scales and elasticities) used for the desonpdf the amplitude and
frequency response in Section 1. The result for the auto@nees is

, i L H

o) = ot (1 + 59 ;3/ Tl) + ot s? ;/ s (2.39)
, Is L H

oy = o (1 + 51 ;/TZ> + 0”{”53 ;3/7—2, (2.40)
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where

H H.
Ty = —Tr(M) = =L 4 =2 (2.41)
1 T2
asin Eq. (1.25),
5 — Mo
1 H117
H21
= —— 2.42
52 H227 ( )

are the susceptibilities of species 1 and 2 respectivelyhis case global and
pairwise susceptibilities are the same), and the intrinsise prefactors are given
by

int DiTi 1

o = .

! 2 Hy,+sjH;
As discussed by Paulsson [1;2], can be interpreted as the total rate for returning
to equilibrium (time scale for relaxation) after intrindlactuations. For the case
Hy, = 0, and with the noise strengtli3; given by Eq. (2.35), the expression for
the autocovariances, Egs. (2.39)-(2.40), recover that &f[Re For a general
Hi, it has the same form, except that intrinsic noise amplitwdescorrected by
the susceptibilities. In any case, the coefficient of vasrabf fluctuations for
each component; can be separated into an intrinsic contribution due to ite ow
fluctuations corrected by terms proportionalstdZ;; (expressing how the action
of n; on the other component feeds back on itself), plus a forceextinsic
contribution arising from fluctuations in the other compaineweighted by the
static susceptibility and time averaging.

Next we solve the case studied here, that of a signal actiagwo-component
module, with the Jacobian matrix given by Eq. (1.21). Theyasktriction is
that signal dynamics is not affected by any of the module acomepts. For a
discussion on the effect of correlations among signal amhdtream components
see Ref. [14]. Proceeding as previously, solving the Lyap@omation (2.34) and
rearranging the results in terms of susceptibilities ame tscales we arrive at the
following expression for the autocovariance of the outputtfiations:

(2.43)

4 H,./
UO = O'Zont (1 +SSO ;S/ O)
. H,,/
+ 050 "T"/ .
) Ttot J H Hir Hoo
+ ool |82l ac 4 @ HoolTo  Hiwe ) (5 g
T,, Jac+ ZLLTtot T,, Jac+ ZLLTtot
I av T av
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whereJac is the two—component Jacobian determinant given by Eq1)172°
the total relaxation time for intrinsic fluctuations,

T, = Hy1 /71 4 Hss/Ts + Hoo /o, (2.45)

and the intrinsic noises;"’ are again given by Eq. (2.43).

The first two terms in the previous Eq. (2.44) are identicdhetwo-species
system discussed above, Eq. (2.40), and represent agaeffdoe of intrinsic
output fluctuations (first term) corrected by possible femttiof the output on the
sensor element, plus the fluctuations induced in the outpilitdosensor species it-
self (second term). The third term represents the effedgois$ noise propagated
through the two-component network. It contains two conitrdns: one weighted
by the total susceptibility?, which takes into account signal noise propagated to
the output through the sensor element, and other (presé&ifiLinmotifs) depend-
ing on the direct input/output interactief},. The case withr’™* = ¢ = () (only
signal noise) has been analyzed by Hornung and Barkai [4]revtieey have
shown that for the simple circuits studied here, positivedfeack (or autoregu-
lation) is the only architecture giving noise reductionhwmiespect to the linear
cascade at similar susceptibility values. The importari¢aking into account all
possible noise contributions is discussed in the next@ectaking the coherent
FFL as an example.

In Fig. S5A, the theoretical prediction for the output noiagiance Eq. (2.44),
expressed as a coefficient of variation, is numericallydedéd with Gillespie sim-
ulations [15] for three different networks: a linear caseécd), a coherent FFL
(blue) and an incoherent FFL (green). The noise strengtleméa and output
species is fixed through their “system size” parametérs- V,, = 1, and signal
noise is varied monotonically increasifig. We note that for the same suscep-
tibility the coherent FFL (blue) can be tuned to decreasa mitput noise with
respect to the linear cascade.

2.2 Analysis of noise/susceptibility trading in coherent FFLs

From the results of Fig. 5B in main text and the previous FigA $/e conclude
that coherent FFLs usually have better SNR in amplitude timear cascades.
In order to see how this is possible, we compare the totalubutpise for both
networks at the same total susceptibilityj, = s¢ = s, (recall that input/sensor
interactionsg; is also fixed). To simplify the analysis, we assume equal soates
and noise strengths in all components= 7 = 7, =7, D, = Ds = D, = D.
Then substituting in Eq. (2.44) the output noise variancehe linear cascade

can be written as ,
DT S 3
lc O 2
=— |1 — 2.46
O-O 2 ( + 28%[ + 880)7 ( )
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where we have used the relatieps = s, /ss; for the linear cascade. The first,
second and third terms are the contributions of intrinséniser propagated and
signal propagated fluctuations on output in “units” of nogseplitudesD7 /2.
Proceeding in the same way, we have for the coherent FFL

me _ D7 [}, (50 = 501)®

o
? 2 252,

+ ;(332 +s2)|, (2.47)
where we have used,s = (s, — Sor)/ss; for the sensor/output susceptibility in
coherent FFLs. Then we see that the extra direct interastjpadds noise to the
term accounting for signal noise propagation(third terrbriackets), buteduces
noise propagated through the sensor species (second ¥ergan calculate the
conditions for which the effective noise reduction in thes@ species is larger
than signal noise amplification. Expressing everythingeinmis of the relative
strength (RS) defined above for feed-forward loops, we find tha

8
RS <

— 2.48
— 4—{—8%]7 ( )

for total noise reduction, which depends only on the direput/sensor interac-
tion, and not on total susceptibility. Thus, far, < 2 we have noise levels in the
coherent FFL lower than those of a linear cascade at equivsignal sensitivity
(recall thatRS < 1 for the coherent FFL, and that this analysis holds for equal
noise strengths and time scales). This is illustrated in B§C, where we plot
output coefficient of variation as a function of output sysi®lity at ss;, = 2 for

the linear cascade (red) and the coherent FFL (blue). Thefése interactions
are varied sampling the interval; € [0, 5] uniformly, as in Fig. 5 in main text.

3 Power Spectra and Correlations of Fluctuations

To analyze fluctuations in the frequency domain, it is usédustart from the
Langevin approximation for the stochastic dynamics [71IR,Linearizing around
steady sate, one gets linear evolution equations for theufitions around equi-
libria. The dynamics for theormalizedfluctuationsy; = % is given by

dn;
dt

N
=Y Mym; + ¢, (3.49)

=1

wherel;; are the normalized Jacobian matrix elements defined by Hab5)¢
(1.16), and;; are Gaussian white noises obeying the fluctuation dissipaiieo-
rem

(Gi(£)¢(0)) = Dyj(n)d(t), (3.50)
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where the diffusion matriXD is the same appearing in Eq. (2.34). Egs. (3.49)-
(3.50) define a multivariate Ornstein-Uhlenbeck procesesshsolution is well
known [10,13]. The power spectrum matrix in stationaryestay, (w) = (1;(w)n;(w))
follows as [13]

1

T A
Pry(w) = o (M + Iiw)" D (M" - Iiw) . (3.51)
We note that the correlatiords;; = (n;(¢)n;(0)) can be also obtained directly

from the Langevin formulation using the regression theofEsn17]

d
d(; _c.M" (3.52)

that after a Laplace transformation leads to the set of tinkpebraic equations
sC(s)=C(s)- M" + o, (3.53)

with o being the variance matrix. The power spectra can also beala&dd from
the Laplace transform of the correlations as

P (W) = Cyiiw) + Cy(—iw). (3.54)

3.1 Power spectra for two-component networks

Proceeding as for the noise variance, we solve first Eq. 8d61he simpler case
of two interacting molecular species andn, (MRNA/protein, protein 1/protein
2, etc.) with Jacobian and diffusion matrices given by Eq382 After some
algebra we rearrange terms as

+ L H2 /
T T
Py (w) = DHT + Dyys? Alt )1 (3.55)
H2,
w? + T— H2 /72
P, (w) = D22T + Dy 82 85 AQ?W)Q , (3.56)
where the denominator is
H? H?2 H,H.
Alw) = <w2 + Q) <w2 + 32> N it (w2 + oz), (3.57)
Ti ) T1T2
and
512521 Hyy Hoo
a= (220 1) (3.58)
2 T T2



Similarly to the case of noise variance, the power spectmspecies:; can be
decomposed into an intrinsic contribution whose magnittdeero frequency is
proportional to its noise strengih;, and an extrinsic contribution depending on
the other species’ fluctuations and susceptibility. Conmdide case that; acts
directly uponn, with no feedback £, = 0)

__ Dn
P, (W) = (o H) (3.59)
_ & 2 H222/7'22
Py, (w) = (w2 N H) + D55 (w2 " H ) (w2 " H) (3.60)

Then one sees that; (input) has the spectrum of a pure Poisson or birth/death
process, which is a low-pass filter with bandwidthy, = H,;,/7, whereas the
ny Spectrum (output) has an intrinsic part given by its own gangan filter with
bandwidthH,, /7, plus an extrinsic contribution which is the product of thpuit
and output filters scaled by the static susceptibility [B}, 1

Solving Eq. (3.51) for our input/sensor/output networkhadacobian matrix
Eq. (1.21) is equally straightforward and gives Eq. (11) aimtext for the output
component. We recall that this gives the spectrum of statipfluctuations after
the output element reached steady state (for instancewiold) a change in signal
amplitude). For an oscillatory signal with noise, the otigpectrumP(w) can be
decomposed into an oscillatory part and a noise backgrdl®id [

P(w) = Pfuc(w) + Pose. (), (3.61)

where the background ter#y,,. (w) is the power spectrum of the output fluctu-
ations around the mean, Eqg. (11) in main text, and the ogmijlacomponent is
given by
2
P (w) = Alwr) [0(w—w;) + 0(w +w))]. (3.62)
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Here A(w,) is the amplitude of the output oscillations, given to linepproxima-
tion by Eq. (2) in main text. The signal-to-noise ratio (SNRphde calculated
as [19]

2 [limg, o [ Pse @) 42(w)
SNRjreq(wr) = e = - 3.63
freq(wr) Piue.(w;) T Piye (W) ( )

To check the validity of the above expressions we show theenigad output
power spectra of three different genetic circuits in FigBSbhe theoretical back-
ground spectra given by Eq. (11) in main text are plotted th(l@ear cascade),
blue (coherent FFL) and green (incoherent FFL). The heigtiie peaks at the
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oscillatory input frequency,; = 1, marked with crosses, are proportional to the
amplitudesA?(w,). This is shown in the inset of Fig. S5B, where we plot the
theoreticalA?(w,) given by Eq. (2) in main text for the linear cascade (red line)
and incoherent FFL (green line) and the numerical peak kewjithose modules
at different input frequencies (black circles). We notet tihe@ numerical power
spectra are divided by the bin siZev (the frequency resolution) to be indepen-
dent of the total sampling time, and thus are power spectnasities (power per
unit frequency). While the background tety,. (w) is a power spectral density,
the oscillatory term in Eq. (3.62) is the product of &unction (with units of in-
verse frequency) and the total power under it, thereforgderoto compare with
the numerical power spectra the theoretical oscillatosygyanust be divided by
the resolutiomMw [20].

3.2 Analysis of frequency SNR for different two-component
modules

Similar to the analysis of noise/susceptibility featur@sthe coherent FFL above,
we simplify parameters not depending on circuit architecas much as possi-
ble, and assume again equal time scalesd noise strength® for all network
elements. Since we are comparing SNR of different circditeg@ut frequencies
where frequency transmission is maximud(g,) = A,...], this usually happens
atw, ~ 0 (except for the incoherent FFL which can behave as a high-fiéey
for oscillatory signals). Substituting the theoreticapesssions fo’s,,,. (w,) and
A%(w;) in Eg. (3.63) and taking the limit, — 0 we have the following expression
for the SNR

2,2 2 7,2
a;T sgJac

D 1+ 82,4 s2Jac?t?’
where Jac is given by Eq. (1.24). Then, for linear cascades and FFLE wnait
autoregulation/ac? = 7* and the SNR reads

SN Rjreq(0) = (3.64)

a? 52

SNR'SII ) = 1 © . 3.65
Jreq (0) D721+ 82,4+ 52 ( )

As in the analysis of noise amplitude above, we recall that= s, /ss, for the
linear cascade, but,s = (so — so;)/ss; for the FFL. Therefore, for the same
output susceptibilitys,, giving the same oscillatory amplitude @t — 0, Eq.
(1.27), the coherent FFLs{, > 0) will have a frequency SNR larger than the
linear cascade. The reason, as in the previous analysigais the reduction in
the contribution to background power spectrum of the norspggated through
sensor component. This is shown in Fig. S5D whefg. (w,) is plotted versus
A%(w;) at maximum transmission for the same sampling used in FiB. S5
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For the feedback interactions the situation is differeimces.Jac?* = 74(1 —
FS)? [Jac® = (1 + FS)?] for positive(negative) feedback. Substituting in
Eq. (3.64) we see that positive feedback always decreadds;,., with respect
to a linear cascade with the same oscillatory amplitudelentegative feedback
has the opposite effect. Thus the frequency SNR behavesratitly than the
amplitude SNR. While amplitude SNR improves in positive feszkdue to time
averaging [4], frequency SNR deteriorates due to loss diilgtaof the steady
state (in the limitF'S — 1 the steady state becomes unstable &ndz ,., — 0).
Another observation for feedback regulation is thafac> = s,sss;, Which is
the susceptibility of a linear cascade; therefore the mariny NR;,., at any
feedback strength can not be larger than the maxinsivirzs,., of the linear
cascade with the same interaction strengths (as it is shoWwigi 4C—-D in main
text).

4 Regimes of frequency noise filtering

Two terms potentially giving high—pass filter behavior agpi the fluctuation
power spectrum, Eqg. (11) in main text. One of them is inducgethk intrinsic
output fluctuations [first term in Eq. (11)], and may be at watienever the sec-
ond term in the denominatdx(w) is different from zero. This happens if there is
a feedback interaction between the output and the sensciespéntuitively, one
could expect that a negative feedback, which accelerateandigs [21] will be
able to accelerate also the intrinsic fluctuations. Thiskee demonstrated the-
oretically [22] and experimentally [23] by Simpson and cokeys. They showed
that negative feedback in simple gene autoregulation otwoegene system pro-
duced a shift of the power spectral density to higher freqigsn This result can be
also deduced from Eq. (11) by explicitly calculating the daidth of the module
noise power spectrum. Expressing the denominatar) in the alternative form

A(w) = Jac® +Tw? + w* (4.66)
whereJac is the Jacobian determinant defined in Eq. (1.24)lamldefined as

H? H? HgoH,
[ = =88 4 2700 4 977507708 (4.67)

2 2
TS 75 TsTo

the bandwidth frequency of the module fluctuations is given b

1 H? H? H? 2
mod. fluc. SS SS SS
wnedflue: — = 19 Jqe2 — DIEES 4 147088 a2 4 [ 255D 9762
HSS/ Sl ac 5 \l ;1 ac ( g ac )

TS
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In a negative feedback, the elasticities, and H,s have opposite signs.
Therefore the Jacobian determimant (1.24) increases angdrametel” de-
creases, which from Eqg. (4.68) it is seen to increase thauémeey of the fluc-
tuations.

To find the regimes where the time scale of fluctuations canddeseparated
in frequency detection, we calculate the overlap betweebéamdwidth ofd*(w,)
and the bandwidth of the fluctuation spectrup,,.(w,). If this overlap is smaller
than the oscillatory bandwidth, there is a range of outpeddiency response free
of fluctuations. To quantify this filtering capacity, we defitnefilter range(FR)
by

PR Wy — ovlp

osc
BW

wherewy;; is the oscillations bandwidtlyplp is the overlap between oscillations
and fluctuations bandwidthy?*¢ " is the maximum oscillation frequency trans-

max

mitted, andw;!“¢ the maximum fluctuation frequency transmitted. Therefire,
FR = 0, there is no filter range, sineelp = w%y,. For0 < |FR| < 1, there
is a range in oscillation bandwidth free of noise.|FR| > 1 the system works
as a perfect filter, completely separating the time scaleaoinitted oscillations
and fluctuations for the whole circuit bandwidth. The sigrFa? indicates if the
system filters fast fluctuation#'® < 0, sincew?™c > wosc ) or slow fluctuations
(FR > 0).

As suggested by theory, we found only two type of circuitscligould filter
out fluctuations by frequency content. In Fig. S6A, we show hbe FR of
negative feedback circuits changes as a function of FS. &/¢hse forF'S > 5,
(FR < —1, shaded region in Fig. S6A) a negative feedback module chavee
as a perfect filter completely separating fluctuations freangmitted oscillatory
frequencies (since fluctuations are shifted to frequeneigger than oscillatory
response bandwidth, Fig. 6A in main text). On the other hammhherent FFLs
may act as partial noise filter8 & FR < 1, Fig. S6B) when input oscillations
are at high frequencies, since in this case the oscillatesponse is large and
fluctuations are always slower (Fig. 6B in main text).

sign (wosc — wfluc) , (4.69)

max max

5 Optimal detection by two-component modules re-

quires FFL interactions
In the main text we have analyzed the simplest two—compodetgction mo-
tifs (feedbacks, autoregulations and FFLs). Mixed modutesde of a combi-

nation of two or more ’pure’ motifs, may be able to improve sitaneous am-
plitude/frequency signal detection exploiting the paiac advantages of each

19



simple architecture. To explore this possibility, we haemnerated a random
sample (0° elements) of all possible two—component modules with acumif
distribution of interaction strengths in the range € [0, 5] as in Figures 2-5 in
main text. Since we also fixed the direct input-sensor ictera (s;; = 2, we
have two possibilities for the sensor-output interactjpos(tive or negative) plus
three possibilities (positive, negative or zero) for themaing four interactions
(feed—forward, feedback and two autoregulations), giing 3* = 162 detec-
tion circuits. We calculated output susceptibility, bamdiv, amplitude SNR and
frequency SNR for each motif in the sample. We first seledede sampling
elements giving both susceptibility and bandwidth lardramntthe linear cascade
limit (s, > 10,wpy > wk, = 0.51) and identified the specific circuits. For
each of those modules we calculated the frequency of appeam the selected
(so,wpw) region, divided by the frequency of appearance in the whQlewsw )
space (Relative frequency, shown as histograms in Figurg.3dAhis way, rel-
ative frequencies larger than unity indicate that the geciotif is not only ca-
pable of simultaneous amplitude and frequency optimalatiete but also that
optimal detection is robust, since for random susceptigslithere is more proba-
bility of appearance in the optimal region than in the reghefspace. We found,
Figure S7A, that most of the circuits in the selected regimeepare coherent
FFLs. The only mixed modules which appear with a signifi@afiequency are
incoherent FFLs with a combination of feedbak or autoreguia of different
signs, but in a much smaller proportion than coherent FFLs. h&¥e used the
same procedure to obtain the relative frequency of motith wptimal signal
detection with noise, selecting those circuits with botiphimde and frequency
SNRs larger than the maximum value allowed in a linear cascadéguration
(Figure S7B). Again, motifs involving coherent FFLs are resaey for optimal
detection, although mixed FFLs with positive feedback doeegulation appear
with similar relative frequencies than pure coherent FHLss is in contrast with
the noiseless situation, Figure S7A.

6 General models and numerical simulations

The three component networks (input, sensor and outputenaoatly simulated
in Figures 2 and 3 of the main text follow the same generaksysif differential
equations

d

CZ; = o,(1+a;sinw;t) — dny,
dn

dts = OCSFS - 55”57
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dno
dt
(w; = 0 for constant input signals) with linear degradation ratesThe produc-

tion termsF and F,, are given in terms of Hill functiong,.,, f., for activation
and repression of the form

= aoF, —dono, (6.70)

(nx /kx)"
1+ (nx/kx)™’
1
1+ (nx/kx)™’

whereky is the corresponding activation/repression thresholdratite Hill co-
efficient [24].

The expressions for sensor and output production term®itwitb-component
modules simulated are listed in Table 1. For positive feekilaamd coherent FFLs
we use a function with OR logic for production of sensor antpatispecies re-
spectively. The reason for this choice is that the lineac@ds architecture is
recovered in the limit of large activation thresholds fog #dditional interactions
(fact(O, ko — 00), faet(l, k; — o00) for positive feedback and coherent FFL re-
spectively). These expressions hold for independent atigul of a single gene by
two species (no physical direct or indirect interactionnesn the two transcrip-
tion factors), but the results discussed here are the sansdesing other types
of logic production gates or additional cooperativity paeters.

In the numerical simulations, we fix the degradation ratesidlly to unity)
and equilibrium concentrations for each species (typidalthe rangel0? — 103).
Since we control for interactions with predefined suscdjiiés, we recalcu-
late, either analytically or numerically, the basal prdtut ratesa, and acti-
vation/repression thresholds to achieve the desired equilibrium concentrations
and pairwise susceptibilities. Hill coefficientsare varied between 2 and 6 de-
pending on the wanted output susceptibility (the susceptibility is related to
the steepnessf an effective activation function [1, 2] and thus fey = 5, for
instance, we should use> 6).

Deterministic kinetic equations have been solved usingr&orcodes and a
fourth order Runge-Kutta algorithm. For the stochastic $atons, we employed
Gillespie’s algorithm [15]. Propensities are given by thhedquction and degra-
dation terms in Egs. (6.70) (where, now represents number of molecules of
speciesX) with a suitable rescaling of basal rates and activatipnégsion thresh-
olds by a 'cell volume’ factolVy: o/, = ay - Vi andk’, = ky - V. The noise
strength in each molecular species can thus be indepepdantd from the other
components by its own volume factor. In the numerical sitioites we change
only the input signal noise keeping = V,, = 1 (Fig. S5A).

fact(nX7 kx)

frep(nx, kx) (6.71)
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The power spectral density has been numerically obtaineth&tyFourier
transform of the autocorrelation function (using FFT Mataibroutines). We run
large enough ensembles of stochastic trajectories witérdift initial conditions,
~ 10,000, to ensure convergence of the autocorrelations.

7 Model analysis from experimental data

In order to assess if the new detection properties discuieséeed—forward loops
can be found in natural or synthetic genetic circuits, weyereal three experimen-
tal works where simple mathematical models of incoheredtcamerent FFLs can
be fitted to experiments.

Kaplan et al. [25] have recently measureadvivo and at high resolution the
production rate of the galETK operon for a wide range of cotregions of its
two natural inducers, CAMP and galactose. Expression oE ®glthese inputs is
mediated by an incoherent FFL of type | (see Figure 7A), whisedranscription
factor CRP (activated by cAMP) activates both the galE geneaandtermediate
transcription factor GalS, which is a repressor of GalE (séhactivity is depen-
dent on D-galactose). A second constitutive repressoR Gahs removed from
the original system. The GalB{alR production rate was fitted by Kaplan et al.
to a Hill function dependent on cAMP and galactose conceatra[25]. We used
this model to obtain the amplitude response (Figure 7B) ataliiede the signal
detection properties shown in Figure 7C. The dynamics ofritbeherent FFL is
given by the following equations:

Cil(tj = a¢-[cAMP]—0-C,

d h1

dGs  _ ¢ —5-Gs,
dt 1+ [galactose] /k,

dG g 1 (C/kc)h3

Trm - _py 7.72
dt T (Gs/he) T4 (Clkoys 0 CP (7.72)

whereC is activated CRRYs = GalS andG'y = GalE. We assume that cAMP
activates CRP in a linear fashion [25, 26]. Parameters showiggod fit to ex-
perimental data [25] ar&c = k¢, = k, = 5 mM, hl = h2 = h3 = 1. For
simplicity we assume that all protein degradation ratesgaren by cell growth
and division,0 = log(2)/74:, = 1, which implies an average cell division time
of ~ 40 min, andac = 9, so that active CRP at equilibrium is equal to cAMP
concentration. With these equations and parameters the gatiuction rate (as-
suming CRP and GalS are at equilibrium) reproduce well therexpatal input
function of the galEAGalR system, compare Figure 7B in main text and Figure

22



2 in Ref. [25]. The negative autoregulation of GalS has nohbeeluded in the
model since it has little effect on the active repressorllawe non-monotonicity
of the input function [25].

To understand the peaked shape of the production rate astofuof CAMP
levels (amplitude filter) we fix the galactose concentraséind examine how global
and pairwise susceptibilities change with cAMP, Figure $Be susceptibilities
for this simple model are easily calculated from Eq.(7.72) :

Ss1 = h17
(Gs/kas)"™
= —h2
SOS 1+(Gs/kGS>h27
Sor = L (7.73)

1+ (C/kc)h3’

where the inputf = CRP, sensof = GalS and outpu®D = GalE and species
concentrations are at equilibrium. We see that the globsdeqtibility s, (red
line in Figure S8B) is positive and reaches its maximal vaaig¢ke lowest cCAMP
levels, due to the contribution of the direct CRP/GalE inteoac(black dashed
line). The negative GalS/GalE susceptibility (green lieeyery small at low
cAMP concentrations since the amount of repressor actiayeCRP is below
threshold. Note that in Egs. (7.73,; > 0 but it has the typical form of a
repressorHill function, decreasing with CRP concentration due to sstan of
the GalE promoter. The,s negative susceptibility, on the other hand, changes
with GalS as aractivator Hill function, and is maximal at high repressor levels.
Therefore the global susceptibility decreases with cAM®, arhen the inhibitory
interaction dominates, becomes negative. The cCAMP levekod susceptibility
corresponds to the maximum of the GalE production (astersk blue line in
Figure S8A) since from this point GalE production startsecréase.

This situation is independent of the specific models andaet®ns, and is
expected for general incoherent FFLs showing an amplitutkr fiegime. As
another instance, we analyze the model proposed by BasUu2tgivhich quali-
tatively reproduces the experimental response of a syatba@hd-detect circuit to
an external acyl-homoserine lactone (AHL) signal, Figui3& SThe inducer AHL
activates the expression of lambda repressor (Cl) and Laesspr (Lacl). Lacl
expression is inhibited by ClI, effectively forming an incofret FFL starting with
AHL/LuxR (input) and ending at Lacl (output). A GFP reporterder control
of Lacl repressor monitorizes the system response, Figae Bhe dynamical
equations provided by Basu et al. [27] are

dR

o = pr[LurR]*A* — ygR
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dC acR®

FrE e

dL A1 OzLQR”S

= = —~r L

dt 1+ (4)m o 0F + R R

dG [67¢]

— = — - 7.74
di L+ (£)m 6G A

where A = external AHL concentrationR = LuxR/AHL complex, C =ClI,

L =Lacl andG =GFP. Parameters are those fitting the experimental data of
BD2 strain [27],a1, = 1luMmin™", are = 1luMmin™", ac = 1luMmin™!,

ag = 2uMmin™t, Bc = 0.008uM, B, = 0.8uM, Op = 0.01uM, v, =
0.0231mint, YR = 0.0231min"t, Yo = 0.0692min ", PR = O.5uM*3mz’n*1,
LuxR = 0.05uM,n = 2,1, = 2andn; = 1.

Similar to the galactose system, the GFP response behasasasplitude fil-
ter for external AHL concentration, Figure S9B. Around to thaximum, where
the susceptibility of the output element of the incoherdrit [Lacl) is close to
zero, Figure S9C, the system filters low frequency osciltetiand noise (inset
of Figure S9B). The high—pass frequency filter for an osatatAHL signal is
illustrated in Figure S9D, compare with Figure 3F in mairt.tex

Different sugar utilization genes iB. coli are induced by cAMP through a
coherent FFL architecture [26]. The inducer cAMP, produitethe cell upon
glucose starvation, activates the master regulator CRP.cbmols the expres-
sion of intermediate transcription factors(sensors) Wiaiee activated by specific
sugars and, together with CRP, regulate the response of kges@s (outputs)
involved in the metabolism of the corresponding sugar. Ah@previous exam-
ple for the galactose system, the production rate of bote@eand output genes
has been experimentally measured for coherent FFLs corgriél coli response
to four different sugar systems: arabinose, maltose, rleammand fucose. Of
these, one of the simplest to analyze is the maltose utdizahodule, Figure 7B
in main text. Production of the sensor species, MalT trapson factor, is only
dependent upon cAMP/CRP and not on maltotriose [26]. HowéxalT binds
promoters of the malEFG, malPQ and malK operons as an oligstakilized by
the inducer sugar [28,29]. CRP and MalT both act cooperatieehtivate MalE
and MalK production [30]. With these facts in mind, we propds: simple math-
ematical model of a coherent FFL based on Hill type regutefiimctions [24] to
fit the experimental production rates of Kaplan et al. [26 S¥pecialized to the
malEFG and malPQ operons, since MalK is known to directlgriatt with MalT
in a negative feedback loop [28]. The equations for the CRPTNIE coherent
FFL used are
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Figure 1: A. Experimental input function for the malEFG regulon as adfion
of external CAMP and maltotriose inducers (data from Kapmaml. [26]). B.
Production rate of MalE generated by the model in Egs. (7.728) molecular
species concentrations are assumed to be at equilibrium.

(2(; = a¢-cAMP —§-C,
dMrp ar + B(C/K )M
= _5'MT7
dt 1+ (C/Ky)M
dME . S(C/KQ)hQ(MT/Kg)hS
= aE1+S(C/K2)h2(MT/K3)h3 0+ Mg, (7.75)

wheres is the inducer sugar(maltotrios€) stands for active CRR}/ for
active MalT transcription factor andl/; for MalE product. We fitted indepen-
dently the Mal; and Malgr experimental production rates to the mathematical
form given by Egs. (7.75) using a nonlinear optimizationmoetwith constraints
(fminconsubroutine in Matlab 7.3) restricting the parameters tdtpesvalues.
We took( = 65 mM anda g = 50 mM from the experimental values of MalT and
MalE maximal production rates, and fitted the threshdlds= 5.6, K, = 7.6,
K5 = 7.1 mM~! and the Hill coefficientsh; = 1.5, hy = 2.4, hs = 1.3 to the
experimental data for MalT and MalE (root mean square ef@d@8 and 0.07 re-
spectively, which are within the experimental 10% meantiradaerror [26]. We
allowed for a small basabf = 4.4 mM) activation of MalT by CRP, and set the
degradation rate by cell growth and divisién= 0.65 - log(2) h~! as measured
from the experimental average division rate [26]. The pobidn rate of MalE
for the model given by Eqgs. (7.75) is compared to the experiadgroduction
rate obtained by Kaplan et al. [26] in Figure 1. The simple elquoposed is
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of course not unique, and different mathematical functicas be fitted to the
experimental data. We also considered models where somg &tdivation is
possible either by CRP or MalT alone, and nonlinear posttipinenal activa-
tion of MalT by the inducer sugar. The quality of the fittings as measured by
the root mean squared error(rmse), however, was the samddh#he simple
model (.06 < rmse < 0.08) and the results for amplitude and frequency SNRs
gualitatively similar to those shown in Figure 7E,F in maartt
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Table 1: Activation/repression functions for the production terfis
andF,

Network motif Fy F,

Linear Cascade faet(I,ky) Jact (S, ks)
Positive Feedback fuc (I, k;) + fact(O, ko) Jact (S, ks)
Negative Feedback fu.i(I,k;) - frep(O, ko) fact (S, ks)

Incoherent FFL faet(I,ky) frep(L, kp) - fact (S, ks)

Coherent FFL fact(I, k) Fact (I, kr) + fact(S, ks)
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