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1 Response of deterministic two-component networks
to constant and oscillatory signals

For a general network ofN components, our starting point is the kinetic equations
for the evolution of each species

dni

dt
= J+

i (n1, n2, . . . , nN) − J−
i (n1, n2, . . . , nN), (1.1)

where

ni → macroscopic concentration of theith molecular species,

J+
i → total synthesis rate (production flux),

J−
i → total degradation rate (relaxation flux),

Following Paulsson [1,2] we define the elasticities,

Hij = − n̄j

J̄i

(

∂J̄+
i

∂n̄j

− ∂J̄−
i

∂n̄j

)

, (1.2)

giving the relative change of the reaction fluxes for component i after a change in
thej component. As in main text, we use bars to denote that concentrations and
reaction fluxes are evaluated atequilibrium(t → ∞).

Another quantities of interest are the time scalesτi defined as [1,2]

1

τi

=
J̄i

n̄i

. (1.3)

SinceJ̄+
i = J̄−

i ≡ J̄i, 1/τi is usually taken as the degradation rate of theith com-
ponent assuming linear degradation. We note, however, thatthis very same defi-
nition can be applied to cases of non-linear degradation of achemical species by
a different one, when considering a quasi-steady state approximation as valid [3].
For instance, in the case of hyperbolic consumption of a molecular componentni

by another speciesnj in an enzymatic reaction, the relaxation flux can be written
as

J̄−
i =

δin̄i

1 + n̄j/Kj

, (1.4)

and one simply defines then an effective decay rate of the form1

τeff
i

= δi

1+n̄j/Kj
.

2



To quantify the responses of the network we use thesusceptibilitiessi, defined
as the relative change in the concentration of componenti at equilibrium, after a
change in the input signal,

si =
n̄I

n̄i

dn̄i

dn̄I

. (1.5)

Hornung and Barkai [4] showed that the susceptibilities can be expressed in
terms of the elasticitiesHij by differentiating Eq. (1.1) at equilibrium with re-
spect ton̄I. If we consider two isolated interacting molecular speciesi, j, the
susceptibility of speciesi due to a change in speciesj is simply

sij = −Hij

Hii

. (1.6)

We used double index notation here to denote that the susceptibilities sij give the
local response of the network elementi due to its direct interaction with com-
ponentj, and we term this aspairwise susceptibilities. The susceptibilitiessi

defined in Eq. (1.5) give theglobal response of elementi due to a change in input
signal, and contain the effect of signal propagation through all connected network
components. It is straightforward to show following [4] that susceptibilitiessi in
a detection network ofN components, can be expressed in terms of the pairwise
ones solving the algebraic equation

S · s = −sI , (1.7)

whereS is the matrix of pairwise susceptibilitiessij, {i, j = 1, . . . , N} (with
diagonal elementssii = −1) , s the vector of global susceptibilitiessi, {i =
1, . . . , N} andsI the vector of pairwise susceptibilities due to the direct interac-
tion of the input with the network components,siI, {i = 1, . . . , N}. Solving Eq.
(1.7) forN = 2 (only sensor and output components) gives Eq. (1) in main text.

If the input is a constant signal, the amplitude of the outputresponse is pro-
portional to the global susceptibilitysO (Fig. S1). If the input is an oscillatory
signal, the amplitude of the response will also depend on signal frequency. To see
this, consider a single speciesn with birth/death kinetics whose production rate is
periodically forced

dn

dt
= α · (1 + an sin (ωt)) − δnn. (1.8)

This is a linear differential equation with a time-dependent term which can be
readily solved, for instance, by a Laplace transformation.The result is

n(t) =
α

δn

− c1 · e−δnt + αan
δn sin (ωt) − ω cos (ωt)

ω2 + δ2
n

. (1.9)
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The second term is a transient, therefore at long timesn oscillates around the
equilibrium valueα/δn. The sine and cosine terms can be written in a compact
form by using the relation

sin (ωt + arg(z)) =
sin (ωt)

|z| Re(z) +
cos (ωt)

|z| Im(z), (1.10)

from which we get that the oscillating part has the amplitude

A(ω) =
anα

√

ω2 + δ2
n

. (1.11)

Therefore, thesquaredamplitude decays as a function of the forcing frequency
with a bandwidthωBW = δn.

If an oscillatory signal is propagated through a network ofN components, the
output will also oscillate around the stationary mean with the frequency of the in-
put, and an amplitude dependent on this frequency and the network characteristics
(time scales, susceptibilities, etc.). Since we are interested in the amplitude of the
response around the equilibrium value, we linearize the kinetic equations defining
therelativedeviations from equilibrium as

∆ni =
ni − n̄i

n̄i

, (1.12)

and then the amplitude of the relative deviations is given by

Ai ≡
max [ni(t)] − n̄i

n̄i

. (1.13)

To first order approximation, the relative deviations evolve according to the
set of linear equations

∆n

dt
= M · ∆n + q(t). (1.14)

The matrixM is the normalized Jacobian of the kinetic Eqs. (1.1),

Mij =
n̄j

n̄i

(

∂J̄+
i

∂n̄j

− ∂J̄−
i

∂n̄j

)

, (1.15)

which, using the definition for the elasticities, Eq. (1.2),and for the time scales,
Eq. (1.3), can be expressed as [1]

Mij ≡ −Hij

τi

. (1.16)
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The vectorq(t) contains the explicit time-periodic terms, which can be gener-
ally written as

qi(t) = ai sin(ωt + φi). (1.17)

Samoilov et al. [5] show that, at long times, the solution of the system of equations
(1.14) oscillates with an stationary amplitude given by

A(ω)
t→∞−→ |(iωI − M)−1γ|, (1.18)

where
γi = aie

iφi . (1.19)

Therefore the relative deviations from equilibrium oscillate with a squared ampli-
tude

A2(ω)
t→∞−→ (iωI − M)−1γ · γ†(−iωI − MT )−1. (1.20)

For the specific case of an oscillatory input signalnI, with dynamics described
by Eq. (1.8), acting on two-component network of sensornS and outputnO

species, the normalized Jacobian matrix reads

M = −









HII

τI
0 0

HSI

τS

HSS

τS

HSO

τS
HOI

τO

HOS

τO

HOO

τO









, (1.21)

and the time–periodic vectorq(t) is simply

q(t) =







aI

τI
sin (ωIt)

0
0





, (1.22)

since we are considering propagation of a single oscillatory signal with amplitude
aI and frequencyωI, impinging on a network at equilibrium. Then

γ · γ† =









a2

I

τ2

I

0 0

0 0 0
0 0 0









. (1.23)

We also note that the stability of the equilibrium state of the two-component
module is given by the determinant and the trace of its Jacobian matrix. The
Jacobian determinant is in this case given by,

Jac ≡ 1

τSτO

(HSSHOO − HSOHOS) =
HSS

τS

HOO

τO

(1 − sSOsOS), (1.24)
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and the trace by

Tr ≡ −
(

HSS

τS

+
HOO

τO

)

. (1.25)

If Jac > 0 andTr < 0, the network steady state is stable. The self-elasticities
areHii = 1 if there is no autoregulation of thei network components,Hii < 1
for positive autoregulation andHii > 1 for negative autoregulation. Therefore for
the network to be in a stable equilibrium state we should keep0 < Hii < 1 for
positive autoregulation andsSOsOS < 1 in the case of positive feedback.

Using expressions (1.21) and (1.23) in Eq. (1.20) and rearranging terms we
arrive to Eqs. (2-3) in the main text.

To check the validity of the linear approximations involvedin the response to
constant or oscillatory signals, we numerically solved thekinetic equations for a
linear genetic cascade (see “Models” section) and obtainedthe amplitude of the
output response for a step input signal of the type

dnI

dt
= αI · (1 + aI) − δInI, (1.26)

or for an oscillatory input signal of the form (1.8). Within the linear approxima-
tion, the relative change in the output following a step signal of amplitudeaI is
given by theωI → 0 limit of Eqs. (2-3) in main text. This limit depends only on
signal amplitude and output susceptibility,

A2(0) =
a2

I
s2

O

H2
OO

. (1.27)

Thus, for all types of networks and small input perturbations, the relative ampli-
tudeA of the output response varies linearly with output susceptibility sO. This
is shown in Fig. S1A for the genetic cascade. AtaI = 0.01 (black circles), the
response is exactly linear in the whole susceptibility range, while at perturbations
higher than 10% of the equilibrium value (aI = 0.1, red circles), it deviates from
linearity, but increases monotonically with susceptibility.

For an oscillatory signal the output will oscillate at the same frequency with
an amplitude given to linear order by Eqs. (2-3) in main text.In Fig. S1B we
show that this approximation reproduces quite accurately the frequency dependent
amplitude of a genetic cascade when signal changes up to 50% the equilibrium
value (aI = 0.5, blue symbols).

1.1 Frequency detection properties of a linear cascade

As a measure of the frequency detection performance in different modules, we use
the range of proper frequency transmission given by the system bandwidth,ωBW .
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We employ the standard definition [16]

A(ωBW ) ≥ Amax√
2

, (1.28)

i.e., the bandwidth is the range of frequencies where the squared amplitude of the
response is above one half of its maximum value. For systems behaving as low-
pass filters, such as the linear cascade,Amax is given by the amplitude atωI = 0.
ThereforeωBW is given by the solution of the equation

A2(ωBW ) =
A2(0)

2
. (1.29)

A look at Eq. (4) in main text shows that, for fixed time scales,the bandwidth
is independent of the output susceptibilitysO. How does it depend on the time
scales of the cascade components? First, one sees that when all degradation rates
δi are similar, the larger the degradation rate (faster time scales) the larger the
bandwidth, and viceversa (compare red curve withδI = δS = δO = 2 and black
curve,δI = δS = δO = 1, in Fig. S2A). Moreover, being the product of three
low-pass filters, the bandwidth is limited by the slowest time scale of the system.
This is illustrated in Fig. S2A (blue curve), with the response of a linear cascade
where the module components, sensor and output species, arefast (δS = δO = 2)
but the input signal has a lower degradation rate (δI = 1) limiting the range
of transmitted frequencies. In this case, the response is exactly the same if the
slowest time scale is either in the sensor or the output species. Another feature of
linear cascades is that adding successive layers slows downoutput response [6].
A single component with periodically forced production rate, Eq. (1.8), has a
bandwidth given by its degradation rate, Eq. (1.11) and dot-dashed line/shaded
region in Fig. S2B. If this single oscillatory component is taken as an input acting
on a second element, the output response is given by the solution of Eq. (1.20)
with

M = −
(

HII

τI
0

HOI

τO

HOO

τO

)

, (1.30)

which yields

A2(ωI) =
a2

I

τ 2
I

s2
OI

H2
OO

/τ 2
O

(

ω2
I

+
H2

II

τ2

I

)(

ω2
I

+
H2

OO

τ2

O

) . (1.31)

Even for the same time scales,δI = δO = 1, the second filter reduces the band-
width, dashed line in Fig. S2B. The bandwidth is further decreased by adding an
intermediate species, and thus forming a three-layered cascade (solid line in Fig.
S2B and Eq. (4) in main text).
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1.2 Simultaneous determination of bandwidth and susceptibil-
ity for two-component networks

In order to compare amplitude/frequency detection features of two-component
network motifs in a consistent way, we fix the sign and susceptibility of the in-
put/sensor interaction, which we denote ass∗

SI
(s∗

SI
= 2 for Figures in main text).

Each two-component module is then characterized by the signand ranges of its re-
maining interactions, given as pairwise susceptibilitiessij, and by the time scales
of each component, given as the inverse of the degradation ratesδi. Throughout
the paper we take similar time scales for each node in the network, including the
signal, and fixδi = 1. We also allow pairwise susceptibilities to vary in the range
sij ∈ [smin, smax]. We takesmin = 0 andsmax = 5 in main text.

Next we find, for the simplest two-component networks analyzed here (pos-
itive and negative feedbacks, positive and negative autoregulations, and coher-
ent/incoherent feed-forward loops) which is the relevant interaction parameter de-
termining the bandwidth of the oscillatory response. For the feedback module
(both positive and negative), the difference with the linear cascade comes only
through the extra term in the denominator, Eqs. (3) in main text. Then the differ-
ence in bandwidth, for fixed time scales, depends only upon the product of suscep-
tibilities sOSsSO. To compare positive and negative feedbacks on the same footing
we take the absolute value of this product and denote it asfeedback strength(FS).
To calculate the bandwidth of the oscillatory response as a function of FS, we gen-
erate a random uniform distribution of pairwise susceptibilities sOS andsSO in the
interval[smin, smax] [4] (providing all possible FS values), calculate the theoret-
ical response amplitude using Eqs. (2)-(3) in main text and obtain the bandwidth.
Plotting the bandwidth as a function of FS we obtain the blackcurves in Fig. 2
in main text. Next, we determine the output susceptibility range compatible with
each FS value. This is easily obtained from Eq. (1) in main text. For instance, for
negative feedback the output susceptibility is

sO =
sOSs

∗
SI

1 + FS
. (1.32)

Therefore, for each FS value the maximum possible susceptibility sO corresponds
to the casesOS = smax giving the upper red curve in Fig. 2C. The minimum
value ofsO, on the other hand, is obtained by the minimum value of sensor/output
susceptibilitysOS compatible with a given FS, which issOS = FS/smax (if
smin = 0), and generates the lower red curve in Fig. 2C. All possible combina-
tions ofsOS andsSO values will give output susceptibilitiessO lying between these
curves (grey shaded region in Figures 2C,D).

For modules with autoregulation in one of the components, let’s say the output
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element,HOO 6= 1, we define theautoregulation strength(ARS) as

ARS ≡ |HOO − 1|. (1.33)

The amplitude/frequency detection features for negative(positive) autoregulation
as a function of ARS are similar to those for negative(positive) feedback and we
plot them in Fig. S3: increasing ARS in negative autoregulation improves band-
width but decreases amplitude detection, while the opposite behavior is observed
for positive autoregulation.

For modules with feed-forward connections between input and output ele-
ments,sOI 6= 0, the bandwidth is determined by the relative contribution of the
second term in the numerator of Eq. (7) in main text, acting asa high-pass filter.
Thus we define therelative strength(RS≡ |sOI/sO|) as the relevant interaction
parameter for frequency detection in feed-forward loops. It is clear that the high-
pass filter term dominates whens2

OI
≫ s2

O
, which is only possible for incoherent

FFLs, wheresign(sSI · sOS) 6= sign(sOI). This regime of high-pass filtering of an
oscillatory signal effectively takes place for RS> 3.3 (Fig. 3 in main text), mean-
ing that low frequency oscillations are transmitted with anamplitude smaller than
Amax/

√
2 (strictly speaking, circuits in this regime areband-passfilters, since

there is always a cutoff at very high frequencies due to the intrinsic time scales of
the components, but we use the denominationhigh-passin order to stress the dif-
ference with the low-pass regime at fixed time scales). The high-pass behavior of
the incoherent FFL (illustrated with trajectories in Fig. 3F in main text) is shown
in Fig. S4 for the whole range of input frequencies (grey symbols) at RS=6. In
order to compare with the negative feedback case at the same susceptibility and
similar frequency detection regime (FS=6), we also plot thenegative feedback
oscillatory response with black circles.

The relevant interaction parameters determining frequency detection, together
with the corresponding susceptibility ranges for each of these parameter values,
are provided in Table S1.

2 Amplitude of fluctuations within the linear noise
approximation

For small number of molecules, as it is usually the case in signaling reactions in-
side cells, the proper mathematical framework to describe the network dynamics
is the master equation for the evolution of probabilities ofthe number of molecu-
lar species [7]. The kinetic equations (1.1) describe only the evolution of average
number of molecules [12] (related to the macroscopic concentrationsni by the
“system size” or volume factorV as〈ni〉 = V ni) . The amplitude of the fluctua-
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tions around this average numbersat equilibrium, assuming small fluctuations, is
usually obtained following two alternative routes

1) Starting from the master equation, there can be derivedexactequations for
the time evolution of first and second moments of molecule numbers [8,9].
Linearizing around the equilibrium state, one obtains a Lyapunov algebraic
equation for the covariance of the fluctuations around steady state [9, 10].
The linear approximation should be valid in principle whenever the equi-
librium point is far from a bifurcation, and the size of the fluctuation is
not too large. Numerical simulations show that for steady states far from
bifurcations, this is a good approximation even for large fluctuations. For
an analysis of fluctuations using the Lyapunov equation nearcritical points
see [11]. With the same notation used in Section 1 for reaction fluxes and
elasticities, the Lyapunov equation can be expressed as [1,2]

M · σ + σ · MT + D = 0, (2.34)

whereM is the normalized Jacobian matrix, whose elements are defined
as in Eq. (1.16);σ is the matrix of normalized covariances,σij = 〈(ni −
n̄j)(nj − n̄j)〉/n̄in̄j (note thatσii is the squared coefficient of variation for
fluctuations of thei component), andD the diffusion matrix whose ele-
ments depend on the reaction fluxes, system size and stoichiometric coef-
ficients [1, 2]. To solve the algebraic equation (2.34) we assume that each
molecular reaction affects a single species (which is not always the case, but
it holds for the genetic networks studied here) and thusDij = 0, ∀j 6= i.
For an analysis of cases where the diffusion matrix is not diagonal but can
be transformed to diagonal and the Lyapunov equation solved, see Ref. [9].
Moreover, if each reaction adds or removes a single molecule, the diagonal
diffusion elements, which give the individual noise strengths Di, take the
simple form [1]

Di ≡ Dii =
2

V n̄i

1

τi

, (2.35)

whereV is the system volume. In practice we take a volume factor for
each molecular species (Vi) as an effective parameter to change the noise
strengths. Although we use Eq. (2.35) for the systems investigated here,
all analytical results are expressed in terms of general noise strengthsDi.
For instance, if speciesi is produced as a burst ofb molecules condensed
in a single reaction, while decaying linearly with a time constantτi (a sit-
uation commonly considered for mRNA transcription in prokaryotic gene
expression [8]),

φ
ki−→ b xi, xi

1/τi−→ φ, (2.36)
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its noise strength takes the form

Di =
(1 + b)

τiV n̄i

. (2.37)

2) A second derivation starts again from the master equation, and performs a
system size expansion [12] which can be used to derive Langevin equations
for the dynamical variables. The approximations involved in this procedure
are discussed in Ref. [7]. Linearizing around the equilibrium states, one
gets again a system of linear Langevin equations for the timeevolution of
the fluctuations. These define a multivariate Ornstein-Uhlenbeck process
which can be solved by standard methods (Gardiner (1985) [13]), yielding
again the Lyapunov equation (2.34).

Both approaches are equivalent and thus no additional approximations are in-
volved. The advantage of using the Langevin formalism is that, as we see below,
the power spectrum of the fluctuations can be readily obtained from the same
matrix definitions as above.

2.1 Solution of the Lyapunov equation for two-component mod-
ules

It is instructive to consider first the solution of the Lyapunov equation (2.34) for
a general system of two species,n1 andn2. The Jacobian and diffusion matrices
read

M = −
(

H11

τ1
H12

τ2
H21

τ1
H22

τ2

)

, D =

(

D1 0
0 D2

)

. (2.38)

Species 1 may stand for mRNA and 2 for protein, for instance, and then we can
study different forms of autoregulation. If they denote different proteins, one can
treat all kind of feedback interactions between both species, whenever the con-
densed two-variable description is a proper approximation. The aim is to express
the noise covariances in terms of the same deterministic quantities (susceptibil-
ities, time scales and elasticities) used for the description of the amplitude and
frequency response in Section 1. The result for the autocovariances is

σ1 = σint
1

(

1 + s2

H12/τ1

Tav

)

+ σint
2 s2

1

H11/τ1

Tav

, (2.39)

σ2 = σint
2

(

1 + s1

H21/τ2

Tav

)

+ σint
1 s2

2

H22/τ2

Tav

, (2.40)
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where

Tav ≡ −Tr(M ) =
H11

τ1

+
H22

τ2

, (2.41)

as in Eq. (1.25),

s1 = −H12

H11

,

s2 = −H21

H22

, (2.42)

are the susceptibilities of species 1 and 2 respectively (inthis case global and
pairwise susceptibilities are the same), and the intrinsicnoise prefactors are given
by

σint
i =

Diτi

2

1

Hii + sjHij

. (2.43)

As discussed by Paulsson [1,2]Tav can be interpreted as the total rate for returning
to equilibrium (time scale for relaxation) after intrinsicfluctuations. For the case
H12 = 0, and with the noise strengthsDi given by Eq. (2.35), the expression for
the autocovariances, Eqs. (2.39)-(2.40), recover that of Ref. [1]. For a general
H12 it has the same form, except that intrinsic noise amplitudesare corrected by
the susceptibilities. In any case, the coefficient of variation of fluctuations for
each componentni can be separated into an intrinsic contribution due to its own
fluctuations corrected by terms proportional tosjHij (expressing how the action
of ni on the other component feeds back on itself), plus a forced orextrinsic
contribution arising from fluctuations in the other component –weighted by the
static susceptibility and time averaging.

Next we solve the case studied here, that of a signal acting ona two-component
module, with the Jacobian matrix given by Eq. (1.21). The only restriction is
that signal dynamics is not affected by any of the module components. For a
discussion on the effect of correlations among signal and downstream components
see Ref. [14]. Proceeding as previously, solving the Lyapunov equation (2.34) and
rearranging the results in terms of susceptibilities and time scales we arrive at the
following expression for the autocovariance of the output fluctuations:

σO = σint
O

(

1 + sSO

HOS/τO

Tav

)

+ σint
S

s2
OS

HOO/τO

Tav

+ σint
I



s2
O

T tot
av

Tav

Jac

Jac + HII

τI
T tot

av

+ s2
OI

HOO/τO

Tav

HII

τI

HOO

τO

Jac + HII

τI
T tot

av



,(2.44)
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whereJac is the two–component Jacobian determinant given by Eq. (1.21), T tot
av

the total relaxation time for intrinsic fluctuations,

T tot
av ≡ HII/τI + HSS/τS + HOO/τO, (2.45)

and the intrinsic noisesσint
i are again given by Eq. (2.43).

The first two terms in the previous Eq. (2.44) are identical tothe two-species
system discussed above, Eq. (2.40), and represent again theeffect of intrinsic
output fluctuations (first term) corrected by possible feedback of the output on the
sensor element, plus the fluctuations induced in the output by the sensor species it-
self (second term). The third term represents the effect of signal noise propagated
through the two-component network. It contains two contributions: one weighted
by the total susceptibilitys2

O
, which takes into account signal noise propagated to

the output through the sensor element, and other (present inFFL motifs) depend-
ing on the direct input/output interactions2

OI
. The case withσint

S
= σint

O
= 0 (only

signal noise) has been analyzed by Hornung and Barkai [4], where they have
shown that for the simple circuits studied here, positive feedback (or autoregu-
lation) is the only architecture giving noise reduction with respect to the linear
cascade at similar susceptibility values. The importance of taking into account all
possible noise contributions is discussed in the next section, taking the coherent
FFL as an example.

In Fig. S5A, the theoretical prediction for the output noisevariance Eq. (2.44),
expressed as a coefficient of variation, is numerically validated with Gillespie sim-
ulations [15] for three different networks: a linear cascade (red), a coherent FFL
(blue) and an incoherent FFL (green). The noise strength of sensor and output
species is fixed through their “system size” parametersVS = VO = 1, and signal
noise is varied monotonically increasingVI. We note that for the same suscep-
tibility the coherent FFL (blue) can be tuned to decrease total output noise with
respect to the linear cascade.

2.2 Analysis of noise/susceptibility trading in coherent FFLs

From the results of Fig. 5B in main text and the previous Fig. S5A we conclude
that coherent FFLs usually have better SNR in amplitude thanlinear cascades.
In order to see how this is possible, we compare the total output noise for both
networks at the same total susceptibility,slc

O
= scffl

O
≡ sO (recall that input/sensor

interactionsSI is also fixed). To simplify the analysis, we assume equal timescales
and noise strengths in all components:τI = τS = τO ≡ τ , DI = DS = DO ≡ D.
Then substituting in Eq. (2.44) the output noise variance for the linear cascade
can be written as

σlc
O

=
Dτ

2

(

1 +
s2

O

2s2
SI

+
3

8
s2

O

)

, (2.46)
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where we have used the relationsOS = sO/sSI for the linear cascade. The first,
second and third terms are the contributions of intrinsic, sensor propagated and
signal propagated fluctuations on output in “units” of noiseamplitudesDτ/2.
Proceeding in the same way, we have for the coherent FFL

σfflc
O

=
Dτ

2

[

1 +
(sO − sOI)

2

2s2
SI

+
1

8
(3s2

O
+ s2

OI
)

]

, (2.47)

where we have usedsOS = (sO − sOI)/sSI for the sensor/output susceptibility in
coherent FFLs. Then we see that the extra direct interactionsOI adds noise to the
term accounting for signal noise propagation(third term inbrackets), butreduces
noise propagated through the sensor species (second term).We can calculate the
conditions for which the effective noise reduction in the sensor species is larger
than signal noise amplification. Expressing everything in terms of the relative
strength (RS) defined above for feed-forward loops, we find that

RS ≤ 8

4 + s2
SI

, (2.48)

for total noise reduction, which depends only on the direct input/sensor interac-
tion, and not on total susceptibility. Thus, forsSI ≤ 2 we have noise levels in the
coherent FFL lower than those of a linear cascade at equivalent signal sensitivity
(recall thatRS ≤ 1 for the coherent FFL, and that this analysis holds for equal
noise strengths and time scales). This is illustrated in Fig. S5C, where we plot
output coefficient of variation as a function of output susceptibility at sSI = 2 for
the linear cascade (red) and the coherent FFL (blue). The rest of the interactions
are varied sampling the intervalsij ∈ [0, 5] uniformly, as in Fig. 5 in main text.

3 Power Spectra and Correlations of Fluctuations

To analyze fluctuations in the frequency domain, it is usefulto start from the
Langevin approximation for the stochastic dynamics [7,12,17]. Linearizing around
steady sate, one gets linear evolution equations for the fluctuations around equi-
libria. The dynamics for thenormalizedfluctuationsηi = ni−n̄i

n̄i
is given by

dηi

dt
=

N
∑

j=1

Mijηj + ζi, (3.49)

whereMij are the normalized Jacobian matrix elements defined by Eqs. (1.15)-
(1.16), andζi are Gaussian white noises obeying the fluctuation dissipation theo-
rem

〈ζi(t)ζj(0)〉 = Dij(n)δ(t), (3.50)
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where the diffusion matrixD is the same appearing in Eq. (2.34). Eqs. (3.49)-
(3.50) define a multivariate Ornstein-Uhlenbeck process whose solution is well
known [10,13]. The power spectrum matrix in stationary state,Pηij

(ω) = 〈η̂i(ω)η̂j(ω)〉
follows as [13]

Pη(ω) =
1

2π
(M + Iiω)−1

D
(

MT − Iiω
)−1

. (3.51)

We note that the correlationsCij = 〈ηi(t)ηj(0)〉 can be also obtained directly
from the Langevin formulation using the regression theorem[13,17]

dC

dt
= C · MT, (3.52)

that after a Laplace transformation leads to the set of linear algebraic equations

sC̃(s) = C̃(s) · MT + σ, (3.53)

with σ being the variance matrix. The power spectra can also be calculated from
the Laplace transform of the correlations as

Pηii
(ω) = C̃ii(iω) + C̃ii(−iω). (3.54)

3.1 Power spectra for two-component networks

Proceeding as for the noise variance, we solve first Eq. (3.51) for the simpler case
of two interacting molecular speciesn1 andn2 (mRNA/protein, protein 1/protein
2, etc.) with Jacobian and diffusion matrices given by Eq. (2.38). After some
algebra we rearrange terms as

Pη11
(ω) = D11

ω2 +
H2

22

τ2

2

∆(ω)
+ D22s

2
1

H2
11/τ

2
1

∆(ω)
, (3.55)

Pη22
(ω) = D22

ω2 +
H2

11

τ2

1

∆(ω)
+ D11s

2
2

H2
22/τ

2
2

∆(ω)
, (3.56)

where the denominator is

∆(ω) ≡
(

ω2 +
H2

11

τ 2
1

)(

ω2 +
H2

22

τ 2
2

)

+ 2
H12H21

τ1τ2

(

ω2 + α
)

, (3.57)

and

α ≡
(

s12s21

2
− 1

)

H11

τ1

H22

τ2

. (3.58)
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Similarly to the case of noise variance, the power spectrum for speciesni can be
decomposed into an intrinsic contribution whose magnitudeat zero frequency is
proportional to its noise strengthDi, and an extrinsic contribution depending on
the other species’ fluctuations and susceptibility. Consider the case thatn1 acts
directly uponn2 with no feedback (H12 = 0)

Pη11
(ω) =

D11
(

ω2 +
H2

11

τ2

1

) , (3.59)

Pη22
(ω) =

D22
(

ω2 +
H2

22

τ2

2

) + D11s
2
2

H2
22/τ

2
2

(

ω2 +
H2

11

τ2

1

) (

ω2 +
H2

22

τ2

2

) . (3.60)

Then one sees thatn1 (input) has the spectrum of a pure Poisson or birth/death
process, which is a low-pass filter with bandwidthωBW = H11/τ1, whereas the
n2 spectrum (output) has an intrinsic part given by its own Poissonian filter with
bandwidthH22/τ2, plus an extrinsic contribution which is the product of the input
and output filters scaled by the static susceptibility [14,18].

Solving Eq. (3.51) for our input/sensor/output network with Jacobian matrix
Eq. (1.21) is equally straightforward and gives Eq. (11) in main text for the output
component. We recall that this gives the spectrum of stationary fluctuations after
the output element reached steady state (for instance, following a change in signal
amplitude). For an oscillatory signal with noise, the output spectrumP (ω) can be
decomposed into an oscillatory part and a noise background [19],

P (ω) = Pfluc.(ω) + Posc.(ω), (3.61)

where the background termPfluc.(ω) is the power spectrum of the output fluctu-
ations around the mean, Eq. (11) in main text, and the oscillatory component is
given by

Posc.(ω) =
A2(ωI)

2π
[δ(ω − ωI) + δ(ω + ωI)] . (3.62)

HereA(ωI) is the amplitude of the output oscillations, given to linearapproxima-
tion by Eq. (2) in main text. The signal-to-noise ratio (SNR) can be calculated
as [19]

SNRfreq(ωI) =
2
[

limδω→0

∫ ωI+δω
ωI−δω Posc.(ω)dω

]

Pfluc.(ωI)
=

A2(ωI)

πPfluc.(ωI)
. (3.63)

To check the validity of the above expressions we show the numerical output
power spectra of three different genetic circuits in Fig. S5B. The theoretical back-
ground spectra given by Eq. (11) in main text are plotted in red (linear cascade),
blue (coherent FFL) and green (incoherent FFL). The height of the peaks at the
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oscillatory input frequencyωI = 1, marked with crosses, are proportional to the
amplitudesA2(ωI). This is shown in the inset of Fig. S5B, where we plot the
theoreticalA2(ωI) given by Eq. (2) in main text for the linear cascade (red line)
and incoherent FFL (green line) and the numerical peak heights of those modules
at different input frequencies (black circles). We note that the numerical power
spectra are divided by the bin size∆ω (the frequency resolution) to be indepen-
dent of the total sampling time, and thus are power spectral densities (power per
unit frequency). While the background termPfluc.(ω) is a power spectral density,
the oscillatory term in Eq. (3.62) is the product of aδ function (with units of in-
verse frequency) and the total power under it, therefore in order to compare with
the numerical power spectra the theoretical oscillatory power must be divided by
the resolution∆ω [20].

3.2 Analysis of frequency SNR for different two-component
modules

Similar to the analysis of noise/susceptibility features for the coherent FFL above,
we simplify parameters not depending on circuit architecture as much as possi-
ble, and assume again equal time scalesτ and noise strengthsD for all network
elements. Since we are comparing SNR of different circuits at input frequencies
where frequency transmission is maximum [A(ωI) = Amax], this usually happens
at ωI ∼ 0 (except for the incoherent FFL which can behave as a high-pass filter
for oscillatory signals). Substituting the theoretical expressions forPfluc.(ωI) and
A2(ωI) in Eq. (3.63) and taking the limitωI → 0 we have the following expression
for the SNR

SNRfreq(0) =
a2

I
τ 2

D

s2
O
Jac2

1 + s2
OS

+ s2
O
Jac2τ 4

, (3.64)

whereJac is given by Eq. (1.24). Then, for linear cascades and FFLs with no
autoregulation,Jac2 = τ 4 and the SNR reads

SNRlc,ffl
freq (0) =

a2
I

Dτ 2

s2
O

1 + s2
OS

+ s2
O

. (3.65)

As in the analysis of noise amplitude above, we recall thatsOS = sO/sSI for the
linear cascade, butsOS = (sO − sOI)/sSI for the FFL. Therefore, for the same
output susceptibilitysO, giving the same oscillatory amplitude atωI → 0, Eq.
(1.27), the coherent FFL (sOI > 0) will have a frequency SNR larger than the
linear cascade. The reason, as in the previous analysis, is again the reduction in
the contribution to background power spectrum of the noise propagated through
sensor component. This is shown in Fig. S5D wherePfluc.(ωI) is plotted versus
A2(ωI) at maximum transmission for the same sampling used in Fig. S5B.
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For the feedback interactions the situation is different, sinceJac2 = τ 4(1 −
FS)2 [Jac2 = τ 4(1 + FS)2] for positive(negative) feedback. Substituting in
Eq. (3.64) we see that positive feedback always decreasesSNRfreq with respect
to a linear cascade with the same oscillatory amplitude, while negative feedback
has the opposite effect. Thus the frequency SNR behaves differently than the
amplitude SNR. While amplitude SNR improves in positive feedback due to time
averaging [4], frequency SNR deteriorates due to loss of stability of the steady
state (in the limitFS → 1 the steady state becomes unstable andSNRfreq → 0).
Another observation for feedback regulation is thats2

O
Jac2 = sOSsSI which is

the susceptibility of a linear cascade; therefore the maximum SNRfreq at any
feedback strength can not be larger than the maximumSNRfreq of the linear
cascade with the same interaction strengths (as it is shown in Fig. 4C–D in main
text).

4 Regimes of frequency noise filtering

Two terms potentially giving high–pass filter behavior appear in the fluctuation
power spectrum, Eq. (11) in main text. One of them is induced by the intrinsic
output fluctuations [first term in Eq. (11)], and may be at workwhenever the sec-
ond term in the denominator∆(ω) is different from zero. This happens if there is
a feedback interaction between the output and the sensor species. Intuitively, one
could expect that a negative feedback, which accelerates dynamics [21] will be
able to accelerate also the intrinsic fluctuations. This hasbeen demonstrated the-
oretically [22] and experimentally [23] by Simpson and coworkers. They showed
that negative feedback in simple gene autoregulation or in atwo-gene system pro-
duced a shift of the power spectral density to higher frequencies. This result can be
also deduced from Eq. (11) by explicitly calculating the bandwidth of the module
noise power spectrum. Expressing the denominator∆(ω) in the alternative form

∆(ω) = Jac2 + Γω2 + ω4 (4.66)

whereJac is the Jacobian determinant defined in Eq. (1.24) andΓ is defined as

Γ =
H2

SS

τ 2
S

+
H2

OO

τ 2
O

+ 2
HSOHOS

τSτO

(4.67)

the bandwidth frequency of the module fluctuations is given by

ωmod.fluc.
BW =

1

HSS/τS

√

√

√

√

√2Jac2 − Γ
H2

SS

τ 2
S

+

√

√

√

√4
H4

SS

τ 4
S

Jac2 +

(

H2
SS

τ 2
S

Γ − 2Jac2

)2

(4.68)
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In a negative feedback, the elasticitiesHSO and HOS have opposite signs.
Therefore the Jacobian determimant (1.24) increases and the parameterΓ de-
creases, which from Eq. (4.68) it is seen to increase the frequency of the fluc-
tuations.

To find the regimes where the time scale of fluctuations can be well separated
in frequency detection, we calculate the overlap between the bandwidth ofA2(ωI)
and the bandwidth of the fluctuation spectrum,Pfluc(ωI). If this overlap is smaller
than the oscillatory bandwidth, there is a range of output frequency response free
of fluctuations. To quantify this filtering capacity, we define thefilter range(FR)
by

FR =
ωosc

BW − ovlp

ωosc
BW

sign
(

ωosc
max − ωfluc

max

)

, (4.69)

whereωosc
BW is the oscillations bandwidth,ovlp is the overlap between oscillations

and fluctuations bandwidth,ωosc
max is the maximum oscillation frequency trans-

mitted, andωfluc
max the maximum fluctuation frequency transmitted. Therefore,if

FR = 0, there is no filter range, sinceovlp = ωosc
BW . For 0 < |FR| < 1, there

is a range in oscillation bandwidth free of noise. If|FR| > 1 the system works
as a perfect filter, completely separating the time scale of transmitted oscillations
and fluctuations for the whole circuit bandwidth. The sign ofFR indicates if the
system filters fast fluctuations (FR < 0, sinceωfluc

max > ωosc
max) or slow fluctuations

(FR > 0).
As suggested by theory, we found only two type of circuits which could filter

out fluctuations by frequency content. In Fig. S6A, we show how the FR of
negative feedback circuits changes as a function of FS. We see that forFS > 5,
(FR < −1, shaded region in Fig. S6A) a negative feedback module can behave
as a perfect filter completely separating fluctuations from transmitted oscillatory
frequencies (since fluctuations are shifted to frequencieslarger than oscillatory
response bandwidth, Fig. 6A in main text). On the other hand,incoherent FFLs
may act as partial noise filters (0 < FR < 1, Fig. S6B) when input oscillations
are at high frequencies, since in this case the oscillatory response is large and
fluctuations are always slower (Fig. 6B in main text).

5 Optimal detection by two-component modules re-
quires FFL interactions

In the main text we have analyzed the simplest two–componentdetection mo-
tifs (feedbacks, autoregulations and FFLs). Mixed modules, made of a combi-
nation of two or more ’pure’ motifs, may be able to improve simultaneous am-
plitude/frequency signal detection exploiting the particular advantages of each
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simple architecture. To explore this possibility, we have generated a random
sample (105 elements) of all possible two–component modules with a uniform
distribution of interaction strengths in the rangesij ∈ [0, 5] as in Figures 2-5 in
main text. Since we also fixed the direct input-sensor interaction (sSI = 2, we
have two possibilities for the sensor-output interaction (positive or negative) plus
three possibilities (positive, negative or zero) for the remaining four interactions
(feed–forward, feedback and two autoregulations), giving2 × 34 = 162 detec-
tion circuits. We calculated output susceptibility, bandwidth, amplitude SNR and
frequency SNR for each motif in the sample. We first selected those sampling
elements giving both susceptibility and bandwidth larger than the linear cascade
limit (sO > 10, ωBW > ωLC

BW = 0.51) and identified the specific circuits. For
each of those modules we calculated the frequency of appearance in the selected
(sO, ωBW ) region, divided by the frequency of appearance in the whole(sO, ωBW )
space (Relative frequency, shown as histograms in Figure S7A). In this way, rel-
ative frequencies larger than unity indicate that the specific motif is not only ca-
pable of simultaneous amplitude and frequency optimal detection, but also that
optimal detection is robust, since for random susceptibilities there is more proba-
bility of appearance in the optimal region than in the rest ofthe space. We found,
Figure S7A, that most of the circuits in the selected regime are pure coherent
FFLs. The only mixed modules which appear with a significative frequency are
incoherent FFLs with a combination of feedbak or autoregulations of different
signs, but in a much smaller proportion than coherent FFLs. We have used the
same procedure to obtain the relative frequency of motifs with optimal signal
detection with noise, selecting those circuits with both amplitude and frequency
SNRs larger than the maximum value allowed in a linear cascadeconfiguration
(Figure S7B). Again, motifs involving coherent FFLs are necessary for optimal
detection, although mixed FFLs with positive feedback or autoregulation appear
with similar relative frequencies than pure coherent FFLs.This is in contrast with
the noiseless situation, Figure S7A.

6 General models and numerical simulations

The three component networks (input, sensor and output) numerically simulated
in Figures 2 and 3 of the main text follow the same general system of differential
equations

dnI

dt
= αI(1 + aI sin ωIt) − δInI,

dnS

dt
= αSFS − δSnS,
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dnO

dt
= αOFO − δOnO, (6.70)

(ωI = 0 for constant input signals) with linear degradation ratesδX. The produc-
tion termsFS andFO are given in terms of Hill functionsfact, frep for activation
and repression of the form

fact(nX, kX) =
(nX/kX)n

1 + (nX/kX)n
,

frep(nX, kX) =
1

1 + (nX/kX)n
, (6.71)

wherekX is the corresponding activation/repression threshold andn the Hill co-
efficient [24].

The expressions for sensor and output production terms in the two-component
modules simulated are listed in Table 1. For positive feedback and coherent FFLs
we use a function with OR logic for production of sensor and output species re-
spectively. The reason for this choice is that the linear cascade architecture is
recovered in the limit of large activation thresholds for the additional interactions
(fact(O, kO → ∞), fact(I, kI → ∞) for positive feedback and coherent FFL re-
spectively). These expressions hold for independent regulation of a single gene by
two species (no physical direct or indirect interaction between the two transcrip-
tion factors), but the results discussed here are the same considering other types
of logic production gates or additional cooperativity parameters.

In the numerical simulations, we fix the degradation rates (usually to unity)
and equilibrium concentrations for each species (typically in the range102−103).
Since we control for interactions with predefined susceptibilities, we recalcu-
late, either analytically or numerically, the basal production ratesαX and acti-
vation/repression thresholdskX to achieve the desired equilibrium concentrations
and pairwise susceptibilities. Hill coefficientsn are varied between 2 and 6 de-
pending on the wanted output susceptibilitysO (the susceptibility is related to
the steepnessof an effective activation function [1, 2] and thus forsO = 5, for
instance, we should usen ≥ 6).

Deterministic kinetic equations have been solved using Fortran codes and a
fourth order Runge-Kutta algorithm. For the stochastic simulations, we employed
Gillespie’s algorithm [15]. Propensities are given by the production and degra-
dation terms in Eqs. (6.70) (wherenX now represents number of molecules of
speciesX) with a suitable rescaling of basal rates and activation/repression thresh-
olds by a ’cell volume’ factorVX: α′

X
≡ αX · VX andk′

X
= kX · VX. The noise

strength in each molecular species can thus be independently varied from the other
components by its own volume factor. In the numerical simulations we change
only the input signal noise keepingVS = VO = 1 (Fig. S5A).
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The power spectral density has been numerically obtained byfast Fourier
transform of the autocorrelation function (using FFT Matlab subroutines). We run
large enough ensembles of stochastic trajectories with different initial conditions,
∼ 10, 000, to ensure convergence of the autocorrelations.

7 Model analysis from experimental data

In order to assess if the new detection properties discussedfor feed–forward loops
can be found in natural or synthetic genetic circuits, we analyzed three experimen-
tal works where simple mathematical models of incoherent and coherent FFLs can
be fitted to experiments.

Kaplan et al. [25] have recently measuredin vivo and at high resolution the
production rate of the galETK operon for a wide range of concentrations of its
two natural inducers, cAMP and galactose. Expression of GalE by these inputs is
mediated by an incoherent FFL of type I (see Figure 7A), wherethe transcription
factor CRP (activated by cAMP) activates both the galE gene andan intermediate
transcription factor GalS, which is a repressor of GalE (whose activity is depen-
dent on D-galactose). A second constitutive repressor, GalR, was removed from
the original system. The GalE-∆GalR production rate was fitted by Kaplan et al.
to a Hill function dependent on cAMP and galactose concentrations [25]. We used
this model to obtain the amplitude response (Figure 7B) and calculate the signal
detection properties shown in Figure 7C. The dynamics of the incoherent FFL is
given by the following equations:

dC

dt
= αC · [cAMP ] − δ · C,

dGS

dt
=

Ch1

1 + [galactose]/kg

− δ · GS,

dGE

dt
=

1

1 + (GS/kGs)h2
· (C/kC)h3

1 + (C/kC)h3
− δ · GE, (7.72)

whereC is activated CRP,GS ≡ GalS andGE ≡ GalE. We assume that cAMP
activates CRP in a linear fashion [25, 26]. Parameters showinga good fit to ex-
perimental data [25] arekC = kGs = kg = 5 mM, h1 = h2 = h3 = 1. For
simplicity we assume that all protein degradation rates aregiven by cell growth
and division,δ = log(2)/τdiv = 1, which implies an average cell division time
of ∼ 40 min, andαC = δ, so that active CRP at equilibrium is equal to cAMP
concentration. With these equations and parameters the GalE production rate (as-
suming CRP and GalS are at equilibrium) reproduce well the experimental input
function of the galE-∆GalR system, compare Figure 7B in main text and Figure
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2 in Ref. [25]. The negative autoregulation of GalS has not been included in the
model since it has little effect on the active repressor level and non-monotonicity
of the input function [25].

To understand the peaked shape of the production rate as a function of cAMP
levels (amplitude filter) we fix the galactose concentrationand examine how global
and pairwise susceptibilities change with cAMP, Figure S8.The susceptibilities
for this simple model are easily calculated from Eq.(7.72) :

sSI = h1,

sOS = −h2
(GS/kGs)

h2

1 + (GS/kGs)h2
,

sOI =
h3

1 + (C/kC)h3
, (7.73)

where the inputI ≡ CRP, sensorS ≡ GalS and outputO ≡ GalE and species
concentrations are at equilibrium. We see that the global susceptibility sO (red
line in Figure S8B) is positive and reaches its maximal valuesat the lowest cAMP
levels, due to the contribution of the direct CRP/GalE interaction (black dashed
line). The negative GalS/GalE susceptibility (green line)is very small at low
cAMP concentrations since the amount of repressor activated by CRP is below
threshold. Note that in Eqs. (7.73),sOI > 0 but it has the typical form of a
repressorHill function, decreasing with CRP concentration due to saturation of
the GalE promoter. ThesOS negative susceptibility, on the other hand, changes
with GalS as anactivatorHill function, and is maximal at high repressor levels.
Therefore the global susceptibility decreases with cAMP and, when the inhibitory
interaction dominates, becomes negative. The cAMP level ofzero susceptibility
corresponds to the maximum of the GalE production (asteriskand blue line in
Figure S8A) since from this point GalE production starts to decrease.

This situation is independent of the specific models and interactions, and is
expected for general incoherent FFLs showing an amplitude filter regime. As
another instance, we analyze the model proposed by Basu et al.[27] which quali-
tatively reproduces the experimental response of a synthetic band-detect circuit to
an external acyl-homoserine lactone (AHL) signal, Figure S9A. The inducer AHL
activates the expression of lambda repressor (CI) and Lac repressor (LacI). LacI
expression is inhibited by CI, effectively forming an incoherent FFL starting with
AHL/LuxR (input) and ending at LacI (output). A GFP reporterunder control
of LacI repressor monitorizes the system response, Figure S9A. The dynamical
equations provided by Basu et al. [27] are

dR

dt
= ρR[LuxR]2A2 − γRR
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dC

dt
=

αCRη3

θη3

R + Rη3

− γCC

dL

dt
=

αL1

1 + ( C
βC

)η2

+
αL2R

η3

θη3

R + Rη3

− γLL

dG

dt
=

αG

1 + ( L
βL

)η1

− γGG (7.74)

whereA ≡ external AHL concentration,R ≡ LuxR/AHL complex, C ≡CI,
L ≡LacI andG ≡GFP. Parameters are those fitting the experimental data of
BD2 strain [27],αL1 = 1µMmin−1, αL2 = 1µMmin−1, αC = 1µMmin−1,
αG = 2µMmin−1, βC = 0.008µM , βL = 0.8µM , θR = 0.01µM , γL =
0.0231min−1, γR = 0.0231min−1, γC = 0.0692min−1, ρR = 0.5µM−3min−1,
LuxR = 0.05µM , η1 = 2, η2 = 2 andη3 = 1.

Similar to the galactose system, the GFP response behaves asan amplitude fil-
ter for external AHL concentration, Figure S9B. Around to themaximum, where
the susceptibility of the output element of the incoherent FFL (LacI) is close to
zero, Figure S9C, the system filters low frequency oscillations and noise (inset
of Figure S9B). The high–pass frequency filter for an oscillatory AHL signal is
illustrated in Figure S9D, compare with Figure 3F in main text.

Different sugar utilization genes inE. coli are induced by cAMP through a
coherent FFL architecture [26]. The inducer cAMP, producedin the cell upon
glucose starvation, activates the master regulator CRP. Thiscontrols the expres-
sion of intermediate transcription factors(sensors) which are activated by specific
sugars and, together with CRP, regulate the response of several genes (outputs)
involved in the metabolism of the corresponding sugar. As inthe previous exam-
ple for the galactose system, the production rate of both sensor and output genes
has been experimentally measured for coherent FFLs controling E. coli response
to four different sugar systems: arabinose, maltose, rhamnose and fucose. Of
these, one of the simplest to analyze is the maltose utilization module, Figure 7B
in main text. Production of the sensor species, MalT transcription factor, is only
dependent upon cAMP/CRP and not on maltotriose [26]. However,MalT binds
promoters of the malEFG, malPQ and malK operons as an oligomer stabilized by
the inducer sugar [28,29]. CRP and MalT both act cooperativelyto activate MalE
and MalK production [30]. With these facts in mind, we proposed a simple math-
ematical model of a coherent FFL based on Hill type regulation functions [24] to
fit the experimental production rates of Kaplan et al. [26]. We specialized to the
malEFG and malPQ operons, since MalK is known to directly interact with MalT
in a negative feedback loop [28]. The equations for the CRP/MalT/MalE coherent
FFL used are
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Figure 1: A. Experimental input function for the malEFG regulon as a function
of external cAMP and maltotriose inducers (data from Kaplanet al. [26]). B.
Production rate of MalE generated by the model in Eqs. (7.75). All molecular
species concentrations are assumed to be at equilibrium.

dC

dt
= αC · cAMP − δ · C,

dMT

dt
=

αT + β(C/K1)
h1

1 + (C/K1)h1
− δ · MT ,

dME

dt
= αE

s(C/K2)
h2(MT /K3)

h3

1 + s(C/K2)h2(MT /K3)h3
− δ · ME, (7.75)

wheres is the inducer sugar(maltotriose)C stands for active CRP,MT for
active MalT transcription factor andME for MalE product. We fitted indepen-
dently theMalT andMalE experimental production rates to the mathematical
form given by Eqs. (7.75) using a nonlinear optimization method with constraints
(fminconsubroutine in Matlab 7.3) restricting the parameters to positive values.
We tookβ = 65 mM andαE = 50 mM from the experimental values of MalT and
MalE maximal production rates, and fitted the thresholdsK1 = 5.6, K2 = 7.6,
K3 = 7.1 mM−1 and the Hill coefficientsh1 = 1.5, h2 = 2.4, h3 = 1.3 to the
experimental data for MalT and MalE (root mean square errors0.06 and 0.07 re-
spectively, which are within the experimental 10% mean relative error [26]. We
allowed for a small basal (αT = 4.4 mM) activation of MalT by CRP, and set the
degradation rate by cell growth and divisionδ = 0.65 · log(2) h−1 as measured
from the experimental average division rate [26]. The production rate of MalE
for the model given by Eqs. (7.75) is compared to the experimental production
rate obtained by Kaplan et al. [26] in Figure 1. The simple model proposed is
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of course not unique, and different mathematical functionscan be fitted to the
experimental data. We also considered models where some MalE activation is
possible either by CRP or MalT alone, and nonlinear posttrancriptional activa-
tion of MalT by the inducer sugars. The quality of the fittings as measured by
the root mean squared error(rmse), however, was the same than for the simple
model (0.06 < rmse < 0.08) and the results for amplitude and frequency SNRs
qualitatively similar to those shown in Figure 7E,F in main text.
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Table 1: Activation/repression functions for the production termsFS

andFO

Network motif FS FO

Linear Cascade fact(I, kI) fact(S, kS)

Positive Feedback fact(I, kI) + fact(O, kO) fact(S, kS)

Negative Feedback fact(I, kI) · frep(O, kO) fact(S, kS)

Incoherent FFL fact(I, kI) frep(I, kI) · fact(S, kS)

Coherent FFL fact(I, kI) fact(I, kI) + fact(S, kS)
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