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Supplementary Information

Equations used in variable updates.

The update for disease locus alleles Qfi and Qmi, jointly with selector variables selQ,fi and selQ,mi, is
analogous to that for Mfi and Mmi (Equation 2), with the substitution of P (di|Qfi, Qmi, penetrance)
for P (Mi,obs|Mfi,Mmi):

(Qfi, Qmi, selQ,fi, selQ,mi | Markov Blanket) ∝
P (Qfi | Qf , selQ,fi) · P (Qmi | Qm, selQ,mi)

· P (di | Qfi, Qmi, penetrance)
· P (selQ,fi | selmarker,fi) · P (selQ,mi | selmarker,mi)
· Πoffspring=jP (Qij | Qfi, Qmi, selQ,ij).

Here,

P (selQ,fi|selmarker,fi) =

{
1− θ for selQ,fi = selmarker,fi

θ for selQ,fi 6= selmarker,fi

where θ is the probability of recombination between the marker and the disease locus; that is, individual
i ’s disease locus and marker alleles come from different haplotypes with probability θ.

For founders, P (Qfi|Qf , selQ,fi) is replaced by

P (Qfi) =

{
a if Qfi = Q

1− a if Qfi = q

where a is a constant describing the frequency of the disease allele in the founder population.

If the unphased marker genotype Mi,obs is unobserved, it is updated according to the distribution
P (Mi,obs|Mfi,Mmi) (Equation 3). If the phenotype di is unobserved, it is updated according to the
distribution P (di|Qfi, Qmi, penetrances), determined by the penetrance matrix.

Simulated Tempering.

In our chain, at λ = 0, the penetrances, recombination rate, mutation rate, and frequency of the disease
allele are assigned their desired values (recombination rate=θ, mutation rate=0, freq(Q) as set by user,
penetrances as described in the user-specified matrix). At λ = 1, all parameters are relaxed to uniform
probabilities to allow faster mixing (recombination rate=.5, disease locus mutation rate=.5, marker mu-
tation rate=m−1

m , where m is the number of possible marker alleles; freq(Q)=.5, P (di = j | g = k) = 1/n,
where n is the number of levels of the trait). At intermediate values of λ, each parameter pλ is a linear
combination: pλ = (1− λ) ∗ pλ=0 + λ ∗ pλ=1.
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At each iteration, the temperature of the chain is updated according to a Metropolis-Hastings algo-
rithm. The first 50,000 iterations of each sampler run are used to fine-tune the rate of temperature transi-
tions according to the Robbins-Munro method [27]. After this fine-tuning, the chain is sampled whenever
λ = 0, when its stationary distribution coincides with the desired posterior distribution P (Y | X, θ).

To assess whether simulated tempering was effective in improving the mixing, we examined the lag-k
autocorrelation of P (X,Y | θ) for runs of the Gibbs sampler with and without simulated tempering,
starting from the same initial configuration. Whenever the tempered chain visited λ = 0, we recorded
P (X,Y ) for both chains. Figure S5 shows the correlation between P (X,Yi | θ = .10) and P (X,Yi+k | θ =
.10) for visits i and i+ k to λ = 0, for 1 ≤ k ≤ 100. The autocorrelation with simulated tempering (with
7 temperatures) quickly drops to below .05, “near-independence” levels, while the autocorrelation for a
run of the sampler without simulated tempering remains above .3 even for k = 100. This demonstrates
that simulated tempering effectively improved the mixing of our Gibbs sampler.

We also examined the effects of simulated tempering on the burn-in time required to reach stationarity.
Figure S6 shows the Gelman-Rubin statistics we obtained for P (X,Y | θ) for a simulated 18-person
pedigree (Figure S1D). Without simulated tempering, a burn-in time of 64000 iterations was not sufficient
to achieve Gelman-Rubin statistics less than 1.05 for all values of θ; in contrast, with simulated tempering,
a burn-in time of 1000 iterations sufficed, implying that the Gibbs sampler had reached its stationary
distribution.

Parameter values in Superlink Online, Merlin, SOLAR, and LOT.

In Superlink Online, we performed a two point analysis with the disease allele frequency set to the
simulated value, .25. When treating phenotypes d = 1 and d = 2 as unaffected, we used the recessive(.99)
penetrance model. When treating phenotypes d = 2 and d = 3 as affected, we used the dominant(.99,.99)
model. In both Merlin and SOLAR, we used “dummy” monomorphic markers at 11.1, 25.5, 45.8, and
80.4 cM away from the simulated marker to enable calculation of LOD scores at θ = .1, .2, .3, and .4
by a Haldane map. In Merlin, we used the –assoc function, treating the trichotomous phenotype as
a quantitative trait, with and without the -inverseNormal option. In SOLAR, we used the multipoint
function. In LOT, we analyzed each set of 100 families together, with the disease and marker allele
frequencies set to the simulated values, .25 and .5. We treated d = 3 as the most severe phenotype and
d = 1 as the least severe.


