Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens.

Quincey LaPlant, Vincent Vialou, Herbert E Covington III, Dani Dumitriu,

Jian Feng, Brandon Warren, Ian Maze, David M Dietz, Emily L Watts, Sergio D Iñiguez, Ja Wook Koo, Ezekiell Mouzon, William Renthal, Fiona Hollis, Hui Wang, Michele A Noonan, Yanhua Ren, Amelia J Eisch, Carlos A Bolaños, Mohamed Kabbaj, Guanghua Xiao, Rachael L Neve, Yasmin L Hurd, Ronald S Oosting, Gouping Fan, John H Morrison, and Eric J Nestler

Supplementary Online Information

Supplementary Figures 1-4 Supplementary Tables 1 and 2

Supplemental Figure S1. mRNA profiling of methyl-binding domain proteins (Mbd's) after chronic cocaine. (a) qPCR analysis of NAc of chronic (7 days) cocaine treated mice indicated lack of regulation of Mbd's at 4 and 24 hrs, with the exception of a significant increase in Mbd3 at 4 hrs (*P<0.05, n=7) and Mbd1 at 24 hrs (*P<0.05, n=16). (b) However, Mbd1 and other Mbd's were unaltered in the NAc of self-administering rats examined 24 hours after the last cocaine dose.

Supplemental Figure S2. **Relative Dnmt mRNA levels in NAc of mice and rats.** Data expressed as fold difference from the average level of all Dnmts from 20 control mice and 6 control rats. Dnmt3a shows the highest expression in the NAc. Dnmt expression was measure by qPCR.

Supplemental Figure S3. Experimental manipulation of DNA methylation does not alter locomotor activity or learning. (a) Locomotor activity was measured by photobeam breaks in the CPP chamber during the first day of saline training. We found no significant locomotor effects of subcutaneous methionine, intra-NAc RG108, or intra-NAc HSV-Dnmt3a. (b) Mice given intra-NAc injections of HSV-GFP or HSV-Dnmt3a spend equally more time with a novel, substituted object compared to non-substituted objects. Mice were repeatedly (3 times, 5 min each) exposed to 3 objects with 3 min intervals between test sessions. On the final trial, one object is substituted with a novel object. (c) HSV-GFP and HSV-Dnmt3a treated mice become equally disinterested in a single novel object upon reexposure. Mice were repeatedly exposed to a single object for 5 min with 1 hr intervals between test sessions.

Supplemental Figure S4. NAc mRNA profiling of Dnmt1, Mbd1, and Mbd4 following social defeat. (a) qPCR analysis of NAc of mice subjected to chronic (10 days) social defeat taken 1 or 10 days after social interaction tests (Day 12 and 21) indicated lack of significant regulation of Dnmt1, Mbd1, and Mbd4 (*P*>0.05).

Supplemental Table 1

Fig. 3	Treatment	Mouse	Cocaine dose (mg/kg)	Pref score (sec)	SEM
а	METHIONINE	Wt	7.5	63.48	51.67
	SALINE	Wt	7.5	257.92	61.35
с	RG108	Wt	10	304.58	26.05
	VEHICLE	Wt	10	85.17	39.78
	RG108	Wt	15	286.35	39.32
	VEHICLE	Wt	15	214.58	55.91
g	HSV-DNMT3a	Wt	7.5	47.27	37.28
	HSV-GFP	Wt	7.5	170.17	71.69
	HSV-DNMT3a	Wt	10	130.97	40.06
	HSV-GFP	Wt	10	246.85	35.14
h	AAV-Cre	floxed-Dnmt3a	7.5	428.48	46.77
	AAV-GFP	floxed-Dnmt3a	7.5	243.64	70.11
	AAV-Cre	floxed-Dnmt1	7.5	275.51	61.70
	AAV-GFP	floxed-Dnmt1	7.5	251.91	36.11

Pref, preference; wt, wildtype.

Supplemental Table 2

Mouse Primers		
Dnmt1 fwd	atcctgtgaaagagaaccctgt	
Dnmt1 rev	ccgatgcgatagggctctg	
Dnmt3a-1 fwd	gagggaactgagaccccac	
Dnmt3a-1 rev	ctggaaggtgagtcttggca	
Dnmt3b_fwd	gttaatgggaacttcagtgaccaa	
Dnmt3b_rev	ctgcgtgtaattcagaaggct	
mbd2	GACGAGACCCTTCTGTCTGC	
mbd2_R	TGGACTCGCTCTTCCTGTTT	
mbd3	AGCCACAACTGGCACGTTAC	
mbd3_R	GCTGGCGACTCTTATTCATCTTG	
mbd4	GGACAACAGAGTCCGTGGAG	
mbd4_R	ATCACCAGGTCCTTTCCATCT	
mecp2	CAAACAGAGAGGAGCCTGTGGACAG	
mecp2_R	TTTATTTCAGTTAATCGGGAAGCTTTG	
ChIP primers (mouse)		
mPro_dnmt3a-500_fwd	gcgtttggtagagctcaagg	
mPro_dnmt3a-500 _rev	gaccggcaccctactgataa	
mPro_dnmt3a-2000_fwd	CTAATTCCCAGCTCGCTTTG	
mPro_dnmt3a-2000 _rev	ACATGCCAGGCTATTGGAAC	

Rat Primers		
Rn_DNMT1_fwd	CTCGTGGTCTCCTTCCTCAG	
Rn_DNMT1_rev	AGGGGAAGAGAGATGGCATT	
Rn_DNMT3a_fwd	ACGCCAAAGAAGTGTCTGCT	
Rn_DNMT3a_rev	CTTTGCCCTGCTTTATGGAG	
RN_DNMT3b_fwd	CATAAGTCGAAGGTGCGTCGT	
RN_DNMT3b_rev	ACTTTTGTTCTCGCGTCTCCT	
RN_mecp2_fwd	GGACGCGAAAGCTTAAACAG	
RN_mecp2_rev	CTGGAGCTTTGGGAGATTTG	
RN_mbd4_fwd	ATCTCCGTGCAAAAACCATC	
RN_mbd4_rev	TGATTTTCCCAAAGCCAGTC	
RN_mbd3_predicted_fwd	AACACTGCACTGCCTGTACG	
RN_mbd3_predicted_rev	ACAGCAGCGTCTCATCTGTG	
RN_mbd2_fwd	ACCTGGGAAATGCTGTTGAC	
RN_mbd2_rev	TTGCTTGAAAATGGATGCAG	
RN_mbd1_fwd	GCCTGGTGAAAGAAGACTGC	
RN_mbd1_rev	AGTTCTGTGGGCTCTGGATG	