

Supplemental Figure 1. Morphology of Podostemaceae.
(A-C) Light micrographs of *Terniopsis brevis* (A),*Cladopus doianus* (B), and *Hydrobryum japonicum* (C).
(A) Shoot (S) arising from the lateral side of the subcylindrical root (R) of *T. brevis*.
(B) Leaves (L) arising near the lateral side of the ribbonlike root (R) of *C. doianus*.
(C) Leaves (L) arising from the dorsal surface of the crustose root (R) of *H. japonicum*.
L, leaf; R, root; S, shoot. Bars = 1 mm.

Supplemental Figure 2. Structure and Phylogeny of Podostemaceae STM Genes.

(A) Alignment of inferred amino acids of Tm *STM*, Hj *STM* and Cd *STM* to those of *Arabidopsis thaliana STM*. Identical residues are shaded (black boxes highlight invariant amino acids, and gray boxes show conserved amino acids among Podostemaceae *STM*s), and dashed lines are added to maximize alignment. Horizontal lines show conserved domains, i.e., MEINOX domain, ELK domain and homeodomain.

(B) Neighbor Joining tree of *KNOX* genes using amino acid sequences of three conserved domains (Supplemental Dataset 1). Podostemaceae *STM* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches. Bar indicates 0.05 amino acid substitutions per site.

(C) Strict consensus of the 4611 Most Parsimonious trees using amino acid sequences of three conserved domains (Supplemental Dataset 1). Podostemaceae *STM* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches.

Supplemental Figure 3. Structure and Phylogeny of Podostemaceae WUS Genes.

(A) Alignment of inferred amino acids of Tm *WUS*, Hj *WUS* and Cd *WUS* to those of *Arabidopsis thaliana WUS*. Black boxes highlight invariant amino acids and gray boxes show conserved amino acids among Podostemaceae *WUS* genes. Dashed lines are added to maximize alignment. Horizontal lines show conserved domains, homeodomain, WUS box and EAR-like domain, which characterize *WUS* genes.

(B) Neighbor Joining tree of *WOX* family genes based on amino acid sequences of Homeodomain (Supplemental Dataset 2). Podostemaceae *WUS* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches. Bar indicates 0.1 amino acid substitutions per site.

(C) Strict consensus of the 12 Most Parsimonious trees of *WOX* family genes based on amino acid sequences of Homeodomain (Supplemental Dataset 2). Podostemaceae *WOX* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches.

Supplemental Figure 4. Structure and Phylogeny of Podostemaceae ARP Genes.

(A) Alignment of inferred amino acids of *TmPHAN*, *HjPHAN* and *CdPHAN* to those of *A. thaliana AS1*. Black boxes highlight invariant amino acids, and gray boxes show conserved amino acids among Podostemaceae *ARP* genes. Dashed lines are added to maximize alignment. Horizontal lines show conserved MYB and CTD domains.

(B) Neighbor Joining tree of *ARP* genes based on amino acid sequences of conserved MYB domains (Supplemental Dataset 3). Podostemaceae *ARP* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches. Bar indicates 0.1 amino acid substitutions per site.
(C) Strict consensus of the 195 Most Parsimonious trees of *ARP* genes based on amino acid sequences of conserved MYB domains (Supplemental Dataset 3). Podostemaceae *ARP* genes are marked by arrowheads. Bootstrap values (>50%) are indicated above branches.

Supplemental Figure 5. Results of RT-PCR analyses of gene expression in different organs of *Hydrobryum japonicum*, and *Cladopus doianus*.

(A) Hj *STM*, Hj *WUS*, and Hj *PHAN* expression in *H. japonicum*. Total RNA was extracted from several kinds of organs (young vegetative shoots, mature leaves, young reproductive shoots, flower buds, mature flowers, roots, and root tips). Transcripts were amplified by 32 cycles of PCR with gene-specific primers. Similar results were obtained from two biological replicates. The expression of Hj *GAPDH* was used as a control.

(B) Cd *STM* and Cd *WUS* expressions in *C. doianus*. Total RNA was extracted from several kinds of organs (young vegetative shoots, mature leaves, roots, and root tips). Transcripts were amplified by 40 cycles of PCR with gene-specific primers. Similar results were obtained from two biological replicates. The expression of Cd *STM* or Cd *WUS* was weakly detected from the root tips or mature leaves in replicated experiment. The expression of Cd *GAPDH* was used as a control.

	Contained organ	Leaf	Shoot apex	Bract	Floral organ	Root
Sample						
Young vegetative shoots		+	+	_	-	+
Mature leaves	S	+	_	_	-	_
Young reproductive shoots		_	+	+	_	+
Floral buds		_	+	+	+	+
Mature flower	ſS	_	+	+	+	_
Roots		_	_	_	_	+
Root tips		– or +*	– or +*	_	_	+

Supplemental Table 1. Organs Contained in Samples Used in RT-PCR Analysis.

*Dessected samples of root tips may include leaf and shoot apex, because a new vegetative shoot arises in close proximity to the root meristem.

Species	Collection site
Hydrobryum japonicum	Ogawa River, Kagoshima Prefecture, Japan
Cladopus doianus	Sendai River, Kagoshima Prefecture, Japan
Cladopus doianus	Amori River, Kagoshima Prefecture, Japan
Terniopsis minor	Pong Nam Ron stream, Chanthaburi, Thailand

Supplemental Table 2. Sample Collection Sites.

Supplemental Table 3.

GenBank Accession Numbers for Genes Isolated in This Stu	Jdy.
--	------

Species	Gene	Accession number
Hydrobryum japonicum	Hj STM	AB512740
	Hj <i>WU</i> S	AB512741
	Hj <i>PHAN</i>	AB512742
	Hj GAPDH	AB512750
Cladopus doianus	Cd STM	AB512743
	Cd WUS	AB512744
	Cd PHAN	AB512745
	Cd GAPDH	AB512751
Terniopsis minor	Tm STM	AB512752
	Tm WUS	AB512753
	Tm <i>PHAN</i>	AB512754
Polypleurum stylosum	Ps STM	AB512746
Weddellina squamulosa	Ws STM	AB512748

Gene	Species	Accession Number
Aa KNOX1	Acetabularia acetabulum	AF170172
BELL1	Arabidopsis thaliana	U39944
Bn <i>hd1</i>	Brassica napus	Z29073
Bo STM	Brassica oleracea	AF193813
CRKNOX1	Ceratopteris richardii	AB043954
CRKNOX2	Ceratopteris richardii	AB043956
CRKNOX3	Ceratopteris richardii	AB043957
DOH1	Dendrobium grex	AJ276389
H1	Arabidopsis thaliana	X801227
hirz	Antirrhinum majus	AY072736
Hop1	Pisum sativum	AF063307
HOS59	Oryza sativa	AB061818
HOS66	Oryza sativa	BAB55660
Hvh21	Hordeum vulgare	AF022390
Hv KNOX3	Hordeum vulgare	X83518
ina	Antirrhinum majus	AY072735
Kn1	Zea mays	X61308
KNAP1	Malus domestica	Z71978
KNAP2	Malus domestica	Z71979
KNAP3	Malus domestica	Z71980
KNAT1	Arabidopsis thaliana	U14174
KNAT2	Arabidopsis thaliana	U14175
KNAT3	Arabidopsis thaliana	X92392
KNAT4	Arabidopsis thaliana	X92393
KNAT5	Arabidopsis thaliana	NM119356
KNAT6S	Arabidopsis thaliana	AB072361
KNAT7	Arabidopsis thaliana	AF308451
LET12	Solanum lycopersicum	AF000142
LET6	Solanum lycopersicum	AF000141
LG3	Zea mays	AF100455
MKN1-3	Physcomitrella patens	AF285148
MKN2	Physcomitrella patens	AF285147
MKN4	Physcomitrella patens	AF284817
Mt KNOX1	Medicago trunculata	AF308454
NTH1	Nicotiana tabacum	AB025573
NTH15	Nicotiana tabacum	AB004785

Supplemental Table 4. Gene Accession Numbers for KNOX Phylogeny.

Species Accession Number Gene NTH20 Nicotiana tabacum AB025714 NTH22 Nicotiana tabacum AB025715 NTH23 Nicotiana tabacum AB004797 NTH9 Nicotiana tabacum AB025713 OSH1 D16507 Oryza sativa OSH15 Oryza sativa AB016071 OSH3 Oryza sativa AB028882 OSH43 Oryza sativa AB028884 OSH45 Oryza sativa D49704 OSH6 Oryza sativa AB028883 OSH71 Oryza sativa AB028885 Ph STM Petunia hybrida AY112704 PKn1 Ipomoea nil AB015999 PKn2 Ipomoea nil AB016000 PKn3 Ipomoea nil AB016002 POTH1 Solanum tuberosum U65648 Ra STM Ruscus aculeatus AB300055 RS1 Zea mays L44133 SBH1 Glycine max L13663 Sk KNOX1 Selaginella kraussiana AY667449 Sk KNOX2 Selaginella kraussiana AY667450 SKN1 Picea mariana U90091 SKN2 Picea mariana U90092 Sr STM1 Streptocarpus rexii AY655753 Ss STM1 AY655754 Streptocarpus saxorum STM Arabidopsis thaliana U32344 THox2 Solanum lycopersicum U76410 TKn1 Solanum lycopersicum U32247 TKn2 Solanum lycopersicum U76407 TKn3 U76408 Solanum lycopersicum TKn4 Solanum lycopersicum AF533597 Wknox1 Triticum aestivum AB182943

Supplemental Table 4. (Continued).

Gene	Species	Accession Number
Am WUS	Antirrhinum majus	AY162209
SI WUS	Solanum lycopersicum	AJ538329
Os WOX5A	Oryza sativa	AM234751
Os WUS	Oryza sativa	AM234746
Ph <i>WUS</i>	Petunia x hybrida	AF481951
Pt WOX5A	Populus trichocarpa	AM234765
Pt WOX5B	Populus trichocarpa	AM234766
WOX1	Arabidopsis thaliana	NM112682
WOX10	Arabidopsis thaliana	NM101923
WOX11	Arabidopsis thaliana	AY251402
WOX12	Arabidopsis thaliana	NM121787
WOX13	Arabidopsis thaliana	NM119720
WOX14	Arabidopsis thaliana	NM101922
WOX2	Arabidopsis thaliana	NM125325
WOX3/PRS	Arabidopsis thaliana	NM128422
WOX4	Arabidopsis thaliana	AY251396
WOX5	Arabidopsis thaliana	NM111961
WOX6	Arabidopsis thaliana	AY251399
WOX7	Arabidopsis thaliana	NM120659
WOX8	Arabidopsis thaliana	NM123966
WOX9	Arabidopsis thaliana	NM128948
WUS	Arabidopsis thaliana	NM127349
Zm WOX5A	Zea mays	AM234769
Zm WOX5B	Zea mays	AM234770
Zm WUS1	Zea mays	AM234744
Zm WUS2	Zea mays	AM234745

Supplemental Table 5. Gene Accession Numbers for WOX Phylogeny.

Gene	Species	Accession Number
AS1	Arabidopsis thaliana	AF175996
At MYB124	Arabidopsis thaliana	AF371982
At <i>MYB</i> 97	Arabidopsis thaliana	AF176002
Ec PHAN	Eschscholzia californica subsp. californica	AY228766
Gm <i>PHANa</i>	Glycine max	AY790252
Gm PHANb	Glycine max	AY790253
Hv <i>GAMYB</i>	Hordeum vulgare subsp. vulgare	X87690
SI PHAN	Solanum lycopersicum	AF148934
Lj <i>PHANa</i>	Lotus japonicus	AY790244
Lj <i>PHANb</i>	Lotus japonicus	AY790245
Lt GAMYB	Lolium temulentum	AF114162
Mt PHAN	Medicago trunculata	AF308453
Os GAMYB	Oriza sativa	X98355
Os RS2	Oriza sativa	AB064519
PHAN	Antirrhinum majus	AJ005586
Ps <i>PHAN</i>	Pisum sativum	AF299140
RS2	Zea mays	AF126489
Sk ARP	Selaginella kraussiana	AY667452
Sv ARP	Selaginella viticulosa	AY667453

Supplemental Table 6. Gene Accession Numbers for ARP Phylogeny.

Supplemental Table 7. Primers Used in This Study.

Purpose	Primer set (F and R)
RT-PCR of Hj STM	HjSTM-F2 (5'-GGAAGGCGGTTCCAATAGC-3') and HjSTM-R (5'-GTCGGCGACACGTCCATAGG-3')
probe for <i>in situ</i> hybridization of Hj STM	HjSTM-F2 (5'-GGAAGGCGGTTCCAATAGC-3') and HjSTM-R2 (5'-CCAGCTCCGGTTGAGTTAG-3')
RT-PCR of Hj WUS	HjWUS-F2 (5'-GCGATTCACCACCGATCCGC-3') and HjWUS-R (5'-GAGCGTCGTGTGACTGAGAG- 3')
probe for <i>in situ</i> hybridization of Hj <i>WUS</i>	HjWUS-F1 (5'-GGCCACAAATGAAGACAACG-3') and HjWUS-R (5'-GAGCGTCGTGTGACTGAGAG- 3')
RT-PCR of Hj <i>PHAN</i>	HjARP-F1 (5'-GAGAAGCAACACCGGCAGCA-3') and HjARP-R1 (5'-ATCCCGGCTGCATTCCAACA- 3')
probe for i <i>n situ</i> hybridization of Hj <i>PHAN</i>	HjARP-F (5'-GAGAGGCAGCGGTGGAGAAC-3') and HjARPR(5'-CACTGCCTTCGGGAGCTGATG- 3')
RT-PCR of Hj GAPDH	HjGAPDH-F (5'-CCATCGCTGAATGGGAAGCTC- 3') and HjGAPDH-R (5'- CTGAGCAGACGCCATGTGGAC-3')
RT-PCR of Cd STM	CdSTM-2F (5'-ATGGAAGGCGGTTCCAATAG -3') and CdSTM-2R (5'-ACTTCCCAGGTAGCCACTGT -3')
probe for <i>in situ</i> hybridization of Cd STM	CdSTM-2F (5'-ATGGAAGGCGGTTCCAATAG -3') and CdSTM-2R (5'-ACTTCCCAGGTAGCCACTGT -3')
RT-PCR of Cd WUS	CdWUS-2F (5'-GGCAAAAATGTGTTCTACTG -3') and CdWUS-2R (5'-CTTTTGACATCTTCGTTGTG - 3')
RT-PCR of Cd GAP	Cd13GAP-2F (5'-GAAAGGGGGGGGGGGGAGCGAAAAAGG - 3') and Cd13GAP-R (5'- CTGGGTAGAGGCCATGTGGA -3')
probe for <i>in situ</i> hybridization of Tm STM	GR 5' Nested Primer (5'- GGACACTGACATGGACTGAAGGAGTA-3') and Podo-STM-Pn (5'- GACATGATCTTGGCYTTRAT-3')
probe for <i>in situ</i> hybridization of Tm <i>WUS</i>	WUS-1-R (5'-GCATDGGRAADARDGGAAGHGT-3') and WUS-HD-Fn (5'- GGTTYCARAAYCAYAARGCNCG-3')

Supplemental Table 7. (Continued).

Purpose	Primer
1stPCR for isolating 3' ends of <i>STM</i>	5'- GGNWSYYTNAARCARGARTTYAT -3'
2nd PCR for isolating of 3' ends of <i>STM</i>	5'- (CAU)4AARAARGGIAARYTNCC -3'
1stPCR for isolating 3'ends of <i>WUS</i>	5'- GGNAARATHGARGGNAARAAYGT -3'
2ndPCR for isolating 3'ends of <i>WUS</i>	5'- GGTTYCARAAYCAYAARGCNCG -3'
1st PCR for isolating 5'ends of <i>ARP</i>	5'- CAYAARAARGARGCNGCNTGG -3'
2nd PCR for isolating 5'ends of <i>ARP</i>	5'- GARAARATGGARGARATHGARGC -3'
1st PCR for isolating 3' ends of GAPDH	5'- ACNGAYAARGAYAARGCNGC -3'
2nd PCR for isolating 3' ends of <i>GAPDH</i>	5'- (CUA)4 AAYGAYGCNCCNATGTTYGT -3'