Total Synthesis of Fostriecin: Via a Regio- and Stereoselective Polyene Hydration, Oxidation and Hydroboration Sequence

Dong Gao and George A. O'Doherty* Department of Chemistry, West Virginia University Morgantown, WV 26506

Supporting Information:

Table of Contents

Page

S5	General Methods and Materials
S6	Experimental Procedure for ((E)-pent-2-en-4-ynyloxy)(tert-
	butyl)dimethylsiane (A).
S6	Experimental Procedure for (E)- 5-(benzyldi methylsilyl)pent-2-en-4-
	ynyloxy)(<i>tert</i> -butyl)dimethylsilane (12).
S7	Experimental Procedure for (<i>E</i>)-5-(trimethylsilyl)pent-2-en-4-yn-1-ol (B). [‡]
S8	Experimental Procedure for (E) -5-(trimethylsilyl)pent-2-en-4-ynal (13).
S9	Experimental Procedure for (2 <i>E</i> , 4 <i>E</i>)-ethyl-2-methyl-7-
	(trimethylsilyl)hepta-2,4-dien-6-ynoate (14a).
S9	Experimental Procedure for (2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-
	dien-6-yn-1-ol (C). ^{\ddagger}
S10	Experimental Procedure for (2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-
	dien-6-ynal (15a).
S 11	Experimental Procedure for (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i>)-ethyl-4-methyl-9-
	(trimethylsilyl)nona-2,4,6-trien-8-ynoate (10).

1

S12	Experimental Procedure for (2E,4E,6S,7S)-ethyl-6,7-dihydroxy-4-methyl-
	9-(trimethylsilyl)nona-2,4-dien-8-ynoate (D). [‡]
S13	Experimental Procedure for $(2E, 4E)$ -ethyl-4-methyl- $((4S, 5S)-5-(2-$
	(trimethylsilyl)ethynyl)-2-oxo-1,3-dioxolan-4-yl)penta-2,4-dienoate (16).
S14	Experimental Procedure for (R,2E,4E)-ethyl-7-tert-butyldimethylsiloxy-4-
	methyl-9-(trimethylsilyl)nona-2,4-dien-8-ynoate (17).
S15	Experimental Procedure for (E,4R,5R,7R)-ethyl-4,5-dihydroxy-7-tert-
	butyldimethylsiloxy-4-methyl-9-(trimethyl silyl)non-2-en-8-ynoate (E). [‡]
S16	Experimental Procedure for (E,4R,5R,7R)-ethyl-4,5-bistriethylsilyl-7-tert-
	butyldimethylsilyl-4-methyl-9-(trimethylsilyl)non-2-en-8-ynoate (18).
S17	Experimental Procedure for $(E,4R,5R,7R)$ -ethyl-4,5-bistriethylsilyl-7- <i>tert</i> -butyldimethylsilyl-4-methyl-9-non-2-en-8-ynoate (19).
S18	Experimental Procedure for $(2E,4S,5R,7R,8Z)$ -ethyl-7- <i>tert</i> - butyldimethylsiloxy-4-methyl-2,2,4-trimethyl-1',3'-dioxolan-4-yl)-9- (3,3,4,4-tetramethylborolan-1-yl)nona-2 8-dienoate (23)
S19	Experimental Procedure for $(2E,4R,5R,7R,8Z)$ -ethyl-4,5-bistriethylsilyl-7-
	tert-butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-
	dioxaborolan-2-yl)nona-2,8-dienoateate (25a).
S20	Experimental Procedure for (2E,4R,5R,7R,8Z)-4,5-bistriethylsilyl-7-tert-
	butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
	yl)nona-2,8-dien-1-ol (26a).
S21	Experimental Procedure for (2E,4R,5R,7R,8Z)-4,5-bistriethylsilyl-7-tert-
	butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
	yl)nona-2,8-dienal (27).
S22	Experimental Procedure for (1Z,3R,5R,6R,7E,9R)-4,5-bistriethylsilyl-7-

	tert-butyldimethylsilyl-6-methyl-1-(4,4,5,5-tetramethyl-1,3,2-
	dioxaborolan-2-yl)dodeca-1,7,11-trien-1-ol (29).
S23	Experimental Procedure for (4R,5E,7R,8R,10R,11Z)-7,8-bistriethylsilyl-
	10-tert-butyldimethylsilyl-7-methyl-12-(4,4,5,5-tetramethyl-1,3,2-
	dioxaborolan-2-yl)dodeca-1,5,11-trien-4-ylacrylate (30).
S24	Experimental Procedure for (R)-5,6-dihydro-6-((1 E ,3 R ,4 R ,6 R ,7 Z)-3,4-bistriethylsilyl-6- <i>tert</i> -butyldimethylsilyl-3-methyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-dienyl)pyran-2-one (32).
S25	Experimental Procedure for (R) -5,6-dihydro-6- $((1E,3R,4R,6R,7Z,9Z,11E)$ -
	3,4-bistriethylsilyl-6-tert-butyldimethyl silyl-13-tert-butyldiphenylsilyl-3-
	methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (33).
S26	Experimental Procedure for (R)-5,6-dihydro-6-((1E,3R,4R,6R,7Z,9Z,11E)-
	3,4-bistriethylsilyl-6-tert-butyldimethyl silyl-13-hydroxy-3-methyltrideca-
	1,7,9-11-tetraenyl)pyran-2-one (34) and (<i>R</i>)-5,6-dihydro-6-
	((1 <i>E</i> ,3 <i>R</i> ,4 <i>R</i> ,6 <i>R</i> ,7 <i>Z</i> ,9 <i>Z</i> ,11 <i>E</i>)-3-triethylsilyl-6- <i>tert</i> -butyldimethyl silyl-4,13-
	dihydroxy-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (35).
S29	Experimental Procedure for (R)-5,6-dihydro-6-((1E,3R,4R,6R,7Z,9Z,11E)-
	3-bistriethylsilyl-4-hydroxy-6-tert-butyldimethylsilyl-13-tert-
	butyldiphenylsilyl-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (5).
S30	Experimental Procedure for Fostriecin (1).
S32-S33	¹ H and ¹³ C NMR spectra of A
\$34-\$35	¹ H and ¹³ C NMR spectra of 12
S36-S37	¹ H and ¹³ C NMR spectra of B
S38-S39	¹ H and ¹³ C NMR spectra of 13
S40-S41	¹ H and ¹³ C NMR spectra of 14a

- S42-S43 ¹H and ¹³C NMR spectra of C
- S44-S45 ¹H and ¹³C NMR spectra of **15a**
- S46-S47 1 H and 13 C NMR spectra of **10**
- S48-S49 ¹H and ¹³C NMR spectra of **D**
- S50-S51 ¹H and ¹³C NMR spectra of **16**
- S52-S53 ¹H and ¹³C NMR spectra of **17**
- S54-S55 ¹H and ¹³C NMR spectra of E
- S56-S57 ¹H and ¹³C NMR spectra of **18**
- S58-S59 ¹H and ¹³C NMR spectra of **19**
- S60-S61 ¹H and ¹³C NMR spectra of 23
- S62-S63 ¹H and ¹³C NMR spectra of **25a**
- S64-S65 ¹H and ¹³C NMR spectra of **26a**
- S66-S67 ¹H and ¹³C NMR spectra of 27
- S68-S69 ¹H and ¹³C NMR spectra of **29**
- S70-S71 ¹H and ¹³C NMR spectra of **30**
- S72-S73 ¹H and ¹³C NMR spectra of **32**
- S74-S75 ¹H and ¹³C NMR spectra of 33
- S76-S77 ¹H and ¹³C NMR spectra of **34**
- S78-S79 ¹H and ¹³C NMR spectra of **35**
- S80-S81 ¹H and ¹³C NMR spectra of **5**
- S82 ¹H spectra of **1**

General Methods and Materials. ¹H and ¹³C NMR spectra were recorded on Jeol (270 MHz) and Varian VXR-600 (600 MHz) spectrometers. Chemical shifts are reported relative to internal tetramethylsilane (δ 0.00 ppm) or CDCl₃ (δ 7.26 ppm) for ¹H NMR and CDCl₃ (δ 77.0 ppm) for ¹³C NMR. Infrared (IR) spectra were obtained on a Prospect MIDAC FT-IR spectrometer. Optical rotations were measured with a Jasco DIP-370 digital polarimeter in the solvent specified. Melting points were determined with Electrothermal Mel-Temp apparatus and are uncorrected. Flash column chromatography was performed on ICN reagent 60 (60-200 mesh) silica gel. Analytical thin-layer chromatography was performed with precoated glass-backed plates (Whatman K6F 60Å, F_{254}) and visualized by quenching of fluorescence and by charring after treatment with panisaldehyde or phosphomolybdic acid or potassium permanganate stain. R_f values are obtained by elution in the stated solvent ratios (v/v). Ether, THF, methylene chloride and triethylamine were dried by passing through activated alumina (8 x 14 mesh) column with argon gas pressure. Commercial reagents were used without purification unless otherwise noted. Melting points are uncorrected. Air and/or moisture-sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven/flamed-dried glassware and standard syringe/septa techniques.

((E)-pent-2-en-4-ynyloxy)(tert-butyl)dimethylsiane (A).[‡]

To a stirred solution of 2-penten-4-yn-1-ol **11** (10 g, 121.8 mmol) in 100 mL of CH₂Cl₂ at room temperature was added Et₃N (42.4 mL, 304.5 mmol), TBSCl (23.8 g, 158.4 mmol) and DMAP (0.73 g, 6.1 mmol). After 15 hours, the reaction was quenched with saturated sodium bicarbonate aqueous solution and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, flash chromatography on silica gel (9:1 (v/v) hexanes/EtOAc) afforded compound **A** as a viscous oil (22.7 g, 95% yield): R_f = 0.59 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2955, 1740, 1463; ¹H NMR (CDCl₃, 270 MHz) δ 6.30 (ddd, J = 15.8, 4.0, 4.0 Hz, 1H), 5.75 (dddd, J = 15.8, 2.2, 2.2, 2.2 Hz, 1H), 4.23 (dd, J = 3.7, 2.5 Hz, 2H), 2.87 (d, J = 1.7 Hz, 1H), 0.91 (s, 9H), 0.69 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 144.3, 107.5, 82.1, 77.3, 62.7, 25.8 (3C), 18.3, -5.4 (2C); HRMS (CI) calcd for [C₁₁H₂₀OSi + Na]⁺: 218.3522, Found: Sample was not charged well enough for electrospray. EI was not available.

(E)- 5-(benzyldi methylsilyl)pent-2-en-4-ynyloxy)(tert-butyl)dimethylsilane (12).

To a solution of alcohol **A** (25.1 g, 128.1 mmol) in 150 mL of THF was added *n*-BuLi (2.3 M in hexane, 65.0 mL, 149.5 mmol) at -78 °C. After 30 minutes, TMSCI (18.1 g, 166.4 mmol) was added dropwise. The mixture was stirred for 2 hours and quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with EtOAc, the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) to yield compound **12** (30.6 g, 89% yield) as a viscous oil. R_f = 0.58 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2980; ¹H NMR (CDCl₃, 270 MHz) δ 6.25 (ddd, *J* = 15.8, 4.2, 4.0 Hz, 1H), 5.79 (ddd, *J* = 15.8, 2.2, 2.0 Hz, 1H), 4.21 (dd, *J* = 4.2, 2.2 Hz, 2H), 0.90 (s, 9H), 0.18 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 143.6, 108.6, 103.6, 94.4, 62.7, 25.8 (3C), 18.3, -0.07 (3C), -5.4 (2C); HRMS (CI) calcd for [C₁₄H₂₀OSi₂ + Na]⁺: 282.4701 Found: Sample was not charged well enough for electrospray. EI was not available.

(E)-5-(trimethylsilyl)pent-2-en-4-yn-1-ol (B).[‡]

A mixture of 150 mL AcOH/H₂O/THF : 3/1/1 was added to silyl acetylene **12** (26.8 g, 100.0 mmol) at room temperature. The reaction was stirred for 12 hours and quenched with saturated K₂CO₃ aqueous solution. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v)

hexane/EtOAc) provided compound **B** (13.2 g, 86% yield) as a colorless oil. $R_f = 0.25$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3363, 2959, 1600, 1494; ¹H NMR (CDCl₃, 270 MHz) δ 6.27 (ddd, J = 15.8, 5.2, 5.0 Hz, 1H), 5.74 (ddd, J = 16.1, 2.0, 1.8 Hz, 1H), 4.20 (dd, J = 4.4, 3.7 Hz, 2H), 2.20 (bs, 1H), 0.17 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz): δ 142.9, 110.2, 103.0, 95.2, 62.6, -0.17 (3C); HRMS (CI) calcd for [C₈H₁₄OSi + Na]⁺: 176.2722, Found: Sample was not charged well enough for electrospray. EI was not available.

(E)-5-(trimethylsilyl)pent-2-en-4-yna1 (13).

13

To a solution of alcohol **B** (10.4 g, 67.5 mmol) in 100 mL of CH₂Cl₂ was added MnO₂ (58.0 g, 672 mmol) at room temperature. After 16 hours, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided compound **13** (9.3 g, 91% yield) as a colorless oil. $R_f = 0.23$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3369, 2989,1680; ¹H NMR (CDCl₃, 270 MHz) δ 9.54 (d, J = 7.2, Hz, 1H), 6.57 (d, J = 15.8 Hz, 1H), 6.44 (dd, J = 15.8, 7.4 Hz, 1H), 0.22 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 193.1, 140.1, 132.1, 111.4, 100.6, -0.56 (3C); HRMS (CI) calcd for [C₈H₁₂OSi + H]⁺: 153.0736, Found: 153.0730.

(2E, 4E)-ethyl-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-ynoate (14a).

14a

To a solution of triethyl-2-phosphonopropionate (15.6 g, 65.7 mmol) in 200 mL of THF was added *n*-BuLi (2.3 M, 27.4 mL, 63.0 mmol) at -78 °C. After stirring for 30 minutes, aldehyde **13** (8.32 g, 54.8 mmol) in 10 mL of THF was added dropwise. After 2 hours, the reaction was quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided compound **14a** (12.2 g, 91% yield) as a colorless oil. $R_f = 0.32$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2986, 1708; ¹H NMR (CDCl₃, 270 MHz) δ 7.14 (dd, *J* = 11.9, 1.2 Hz, 1H), 6.90 (dd, *J* = 15.3, 11.9 Hz, 1H), 5.90 (d, *J* = 15.3 Hz, 1H), 4.20 (q, *J* = 7.2, 2H), 1.96 (d, *J* = 1.2 Hz, 3H), 1.29 (t, *J* = 7.2, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 167.8, 137.4, 136.5, 129.9, 117.3, 103.9, 100.8, 60.8, 14.2, 12.9, -0.25 (3C); HRMS (CI) calcd for [C₁₃H₂₀O₂Si + H]⁺: 237.1311, Found: 237.1306.

(2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-yn-1-ol (C).[‡]

To a solution of ester **14a** (8.69 g, 36.8 mmol) in 100 mL of THF was added DIBAL-H (92.0 ml, 1.0 M in hexanes, 92.0 mmol) dropwise at -78 °C. After 30 minutes, the reaction was quenched by adding 5 mL of acetone and 150 mL of 20% sodium potassium tartrate solution. The mixture was warmed to room temperature, diluted with ether (100 mL) and stirred for 1 hour. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided allylic alcohol C (6.66 g, 93% yield) as a colorless oil. $R_f = 0.20$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3427, 2982; ¹H NMR (CDCl₃, 270 MHz) δ 6.88 (dd, *J* = 15.3, 11.1 Hz, 1H), 6.13-6.07 (m, 1H), 5.58 (d, *J* = 15.6 Hz, 1H), 4.05 (s, 2H), 1.71 (d, *J* = 0.8 Hz, 3H), 0.80 (s, 1H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 141.0, 138.4, 123.4, 110.4, 104.8, 96.9, 67.7, 14.3, -0.10 (3C); HRMS (CI) calcd for [C₁₁H₁₈OSi + H]⁺: 195.1205, Found: 195.1216.

(2E, 4E)-2-methyl-7-(trimethylsilyl)hepta-2,4-dien-6-ynal (15a).

To a solution of alcohol C (6.66 g, 34.3 mmol) in 80 mL of CH_2Cl_2 was added MnO_2 (29.9 g, 343.3 mmol) at room temperature. After 18 hours, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided compound **15a** (6.24 g, 94% yield) as a colorless oil. $R_f = 0.64$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹)

3370, 2990, 1456; ¹H NMR (CDCl₃, 270 MHz) δ 9.45 (s, 1H), 7.04 (dd, J = 15.3, 11.4 Hz, 1H), 6.82 (d, J = 11.4 Hz, 1H), 6.04 (d, J = 15.3 Hz, 1H), 1.87 (d, J = 1.0 Hz, 3H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 194.4, 146.3, 139.5, 136.7, 119.5, 103.5, 103.0, 9.70, -0.31 (3C); HRMS (CI) calcd for [C₁₉H₂₄O₂Si + Na]⁺: 335.1438, Found: 335.1439.

(2E,4E,6E)-ethyl-4-methyl-9-(trimethylsilyl)nona-2,4,6-trien-8-ynoate (10).

10

To a solution of aldehyde **15a** (5.57 g, 29.0 mmol) in 70 mL of toluene was added yield (13.1 g, 37.7 mmol), the mixture was refluxed for 5 hours. After cool it down to room temperature, the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided compound **10** (7.15 g, 94% yield) as a colorless oil. $R_f = 0.60$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2988, 1719; ¹H NMR (CDCl₃, 270 MHz) δ 7.30 (d, J = 15.6 Hz, 1H), 6.96 (dd, J = 15.3, 11.6 Hz, 1H), 6.38 (d, J = 11.6 Hz, 1H), 5.93 (d, J = 15.6 Hz, 1H), 5.78 (d, J = 15.3 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 1.93 (d, J = 0.73 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 167.0, 147.9, 137.9, 136.9, 136.1, 118.5, 114.9, 104.4, 100.1, 60.3, 14.3, 12.7, -0.20 (3C); HRMS (CI) calcd for [C₁₅H₂₂O₂Si + Na]⁺: 285.1287, Found: 285.1281.

(2*E*,4*E*,6*S*,7*S*)-ethyl-6,7-dihydroxy-4-methyl-9-(trimethylsilyl)nona-2,4-dien-8ynoate (D).[‡]

D

To a 500 mL round bottom flask was added *tert*-butyl alcohol (100 mL), H₂O (100 mL), K₃Fe(CN)₆ (26.8 g, 81.9 mmol), K₂CO₃ (11.3 g, 81.9 mmol), KHCO₃ (8.24 g, 81.9 mmol), CH₃SO₂NH₂ (2.60 g, 27.3 mmol), (DHD)₂-PHAL (420 mg, 0.55 mmol, 2 mol %) and OsO_4 (69 mg, 0.27 mmol, 1 mol %). The mixture was stirred at room temperature for 30 minutes and then cooled to 0 °C. To this solution was added trienoate 10 (7.15 g, 27.3 mmol) in 5 mL of CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C overnight. Saturated aqueous sodium sulfite solution (50 mL) was added to quench the reaction while stirring vigorously. Ethyl acetate (60 mL) was added to the reaction mixture, the aqueous layer was further extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with 2 N KOH (40 mL) and brine (20 mL) to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (1:1 (v/v) hexane/EtOAc)provided the compound **D** (6.47 g, 80% yield). $R_f = 0.19$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3446, 2983, 1762; $[\alpha]_{D}^{25}$ +14° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ δ 6.88 (dd, J = 15.3, 11.1 Hz, 1H), 6.15 (d, J = 12.1 Hz, 1H), 5.62 (d, J = 15.6 Hz, 1H), 4.30-4.21 (m, 4H), 1.84 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 0.18 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 172.9, 139.3, 138.0, 125.4, 111.5, 104.5, 97.5, 76.7, 72.2, 62.2, 14.1, 13.8, -0.12 (3C); HRMS (CI) calcd for $[C_{15}H_{24}O_4Si + Na]^+$: 318.4254, Found: Sample was not

charged well enough for electrospray. EI was not available.

(2*E*,4*E*)-ethyl-4-methyl-((4*S*,5*S*)-5-(2-(trimethylsilyl)ethynyl)-2-oxo-1,3-dioxolan-4yl)penta-2,4-dienoate (16).

To a solution of diol **D** (4.81 g, 16.2 mmol) in 60 mL of CH₂Cl₂ was added pyridine (4.68 mL, 56.9 mmol) and (Cl₃CO)₂CO (5.78 g, 19.5 mmol) in 10 mL of CH₂Cl₂ at 0 °C. After 3 hours, the reaction was quenched by slow addition of saturated NH₄Cl.aqueous solution. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided acetonide **16** (4.76 g, 91% yield) as a colorless oil. R_f = 0.61 (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2989, 1714; [α]²⁵_D -80° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 6.81 (dd, *J* = 15.6, 11.4 Hz, 1H), 6.21 (d, *J* = 11.4 Hz, 1H), 5.74 (d, *J* = 15.6 Hz, 1H), 5.02 (d, *J* = 5.2 Hz, 1H), 4.70 (d, *J* = 5.4 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 1.84 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 166.9, 153.1, 136.2, 132.4, 128.9, 115.0, 103.7, 99.7, 82.7, 75.9, 62.9, 14.0, 11.6, -0.23 (3C); HRMS (CI) calcd for [C₁₆H₂₂O₅Si + H]⁺: 322.1317, Found: 333.1306.

(*R*,2*E*,4*E*)-ethyl-7-*tert*-butyldimethylsiloxy-4-methyl-9-(trimethylsilyl)nona-2,4-dien-8-ynoate (17).

17

To a solution of carbonate 16 (103 mg, 0.32 mmol) in 5 mL of CH₂Cl₂ was added Pd₂(dba)₃·CHCl₃ (7 mg, 0.007 mmol), PPh₃ (4 mg, 0.13 mmol), Et₃N (98 mg, 0.97 mmol) and HCO₂H (46 mg, 0.97 mmol) at room temperature. After 4 hours, the reaction mixture was quenched with saturated NH_4Cl . aqueous solution. The organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated to afford the crude product. To a solution of the above crude alcohol in 0.5 mL of DMF was added imidazole (66 mg, 0.97 mmol) and TBSCI (72 mg, 0.48 mmol) at room temperature. After 0.5 hour, the reaction mixture was purified by flash chromatography on silica gel (8:2 (v/v)) hexane/EtOAc) without work up to provide compound 17 (43 mg, 34% yield for two steps) as a colorless oil with 30% of the recovered starting material. $R_f = 0.36$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2968, 1690; $[\alpha]^{25}_{D}$ -20° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 6.84 (dd, J = 15.3, 11.4 Hz, 1H), 5.92 (d, J = 11.4 Hz, 1H), 5.51 (d, J = 15.3Hz, 1H), 4.27 (dd, J = 7.7, 4.7 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 2.49-2.41 (m, 2H), 1.83 (s, 3H), 1.27 (t, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.19 (s, 9H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 62.5 MHz) & 173.2, 138.8 138.0, 128.0, 109.4, 105.0, 96.3, 71.4, 60.8, 45.6, 25.7 (3C), 18.2, 17.5, 14.2, -0.03 (3C), -5.1, -5.3; HRMS (CI) calcd for $[C_{21}H_{38}O_3Si_2 + Na]^+$: 416.6875, Found: Sample was not charged well enough for electrospray. EI was not available.

(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-dihydroxy-7-*tert*-butyldimethylsiloxy-4-methyl-9-(trimethyl silyl)non-2-en-8-ynoate (E).[‡]

E

To a 100 mL round bottom flask was added t-butyl alcohol (20 mL), H₂O (20 mL), K₃Fe(CN)₆ (3.03 g, 9.22 mmol), K₂CO₃ (1.27 g, 9.22 mmol), KHCO₃ (0.93 g, 9.22 mmol), CH₃SO₂NH₂ (0.29 g, 3.07 mmol), (DHQD)₂-PHAL (99 mg, 0.13 mmol, 4 mol %) and OsO₄ (16 mg, 0.062 mmol, 2 mol %). The mixture was stirred at room temperature for 30 minutes and then cooled to 0 °C. To this solution was added dienoate 17 (1.18 g, 3.07 mmol) in 2 mL of CH₂Cl₂ dropwise and the reaction was stirred vigorously at 0 °C for 8 hours. Saturated aqueous sodium sulfite solution (20 mL) was added to quench the reaction while stirring vigorously. Ethyl acetate (40 mL) was added to the reaction mixture, and after separation of the layers, the aqueous layer was further extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with 2 N KOH (10 mL) and brine (20 mL) to remove the methanesulfonamide, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (1:1 (v/v) hexane/EtOAc) provided the compound E (0.53 g, 40% yield). R_f = 0.46 (1:1 (v/v)) hexane/EtOAc); IR (neat, cm⁻¹) 3446, 2983, 1762; $[\alpha]^{25}{}_{D}$ +52° (*c* 1.0, CHCl₃); ¹H NMR $(CDCl_3, 270 \text{ MHz}) \delta 7.01 \text{ (d, } J = 15.8 \text{ Hz}, 1\text{H}), 6.13 \text{ (d, } J = 15.6 \text{ Hz}, 1\text{H}), 4.73 \text{ (dd, } J = 15.6 \text{ Hz}, 1\text{H})$ 4.7, 4.5 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.06-4.02 (m, 1H), 3.64 (bs, 1H), 2.58 (s, 1H), 1.84-1.80 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.26 (s, 3H), 0.88 (s, 9H), 0.16 (s, 12H), 0.15

(s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 166.6, 152.3, 120.3, 105.5, 90.7, 74.7, 74.0, 62.5, 60.4, 37.6, 25.7 (3C), 22.6, 18.0, 14.2, -0.30 (3C), -4.6, -5.3; HRMS (CI) calcd for $[C_{21}H_{40}O_5Si_2 + Na]^+$: 451.2312, Found: 451.2307.

(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-4-methyl-9-(trimethylsilyl)non-2-en-8-ynoate (18).

18

To a solution of diol E (43 mg, 0.10 mmol) in 1 mL of CH₂Cl₂ was added 2,6-lutidine (0.12 mL, 1.0 mmol) and TESOTf (0.14 mL, 0.6 mmol) at -78 °C. Then the reaction was warmed up to -10 °C for 2 hours and quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided compound **18** (54 mg, 82% yield) as a colorless oil. $R_f = 0.52$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2986, 1752; [α]²⁵_D +14° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.00 (d, *J* = 15.8 Hz, 1H), 5.97 (d, *J* = 15.6 Hz, 1H), 4.47 (dd, *J* = 7.7, 7.2 Hz, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.73 (dd, *J* = 5.9, 5.9 Hz, 1H), 1.98-1.88 (m, 1H), 1.59-1.49 (m, 1H), 1.49 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.93 (t, *J* = 7.9 Hz, 9H), 0.88 (s, 9H), 0.65 (q, *J* = 7.9 Hz, 6H), 0.52 (q, *J* = 7.9 Hz, 6H), 0.15 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 166.7, 152.1, 120.0, 108.2, 89.1, 78.7, 76.0, 60.8, 60.2, 43.6, 25.9 (3C), 25.3, 18.2, 14.2, 7.20 (3C), 6.98 (3C), 6.88 (3C), 5.39 (3C), -0.26 (3C),

-4.1, -4.4; HRMS (CI) calcd for $[C_{33}H_{68}O_5Si_4 + Na]^+$: 679.4042, Found: 679.4037.

(*E*,4*R*,5*R*,7*R*)-ethyl-4,5-bistriethylsilyl-7-*tert*-butyldimethylsilyl-4-methyl-9-non-2en-8-ynoate (19).

19

To a solution of silvl ester 18 (315 mg, 0.48 mmol) in 5 mL of EtOH was added K₂CO₃ (199 mg, 1.48 mmol) at room temperature. After 24 hours, the reaction was quenched by adding 3 mL of 1 M NaHSO₄ and diluted with EtOAc. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided allylic alcohol 19 (258 mg, 92% yield) as a colorless oil. $R_f = 0.44$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2989, 1752; $[\alpha]^{25}_{D}$ +17° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.01 (d, J = 15.8 Hz, 1H), 5.96 (d, J = 15.8 Hz, 1H), 4.48 (ddd, J = 8.2, 6.2, 2.0 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.74 (dd, J= 6.4, 5.7 Hz, 1H), 2.39 (d, J = 2.2 Hz, 1H), 1.99 (ddd, J = 13.9, 8.2, 5.4 Hz, 1H), 1.60-1.51 (m, 1H), 1.39 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.9 Hz, 18H), 0.89 (s, 9H), $0.64 \text{ (q, } J = 7.9 \text{ Hz}, 12\text{H}), 0.14 \text{ (s, 3H)}, 0.11 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} \text{ (CDCl}_3, 67.5 \text{ MHz}) \delta$ 166.6, 152.0, 120.1, 86.1, 78.5, 76.0, 72.8, 60.3, 60.1, 43.6, 25.8 (3C), 25.3, 18.2, 14.3, 7.19 (3C), 6.98 (3C), 6.86 (3C), 5.43 (3C), -4.10, -4.48; HRMS (CI) calcd for $[C_{30}H_{60}O_5Si_3 + Na]^+$: 607.3646, Found: 607.3643.

(2E,4S,5R,7R,8Z)-ethyl-7-tert-butyldimethylsiloxy-4-methyl-2,2,4-trimethyl-1',3'-

dioxolan-4-yl)-9-(3,3,4,4-tetramethylborolan-1-yl)nona-2,8-dienoate (23).

To a solution of [Rh(COD)Cl]₂ (8 mg, 0.017 mmol) in 1 mL of cyclohexane was added $P^{t}Pr_{3}$ (11 mL, 0.068 mmol), Et₃N (38 mg, 0.37 mmol) and catecholborane (39 mg, 0.32 mmol) at room temperature. After being stirred at room temperature for 30 minutes, alkyne 22 (132 mg, 0.034 mmol) in 1 mL of cyclohexane was added. After 6 hours, pinacol (60 mg, 0.51 mmol) in 1 mL of cyclohexane was added dropwise and the resulting mixture was stirred for another 12 hours. The reaction was guenched with saturated NH₄Cl aqueous solution and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v))hexane/EtOAc) provided compound 23 (119 mg, 70% yield) as a colorless oil. $R_f = 0.24$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2986, 1758; $[\alpha]^{25}_{D}$ -0.03° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): 6.86 (d, J = 15.6 Hz, 1H), 6.30 (dd, J = 13.6, 8.4 Hz, 1H), 6.05 (d, J = 15.6 Hz, 1H), 5.32 (dd, J = 13.6, 0.75 Hz, 1H), 5.02 (ddd, J = 8.6, 8.6, 3.9 Hz, 1H),4.18 (q, J = 7.2 Hz, 2H), 4.00 (dd, J = 8.9, 3.2 Hz, 1H), 1.52 (ddd, J = 8.4, 4.2, 4.2 Hz, 2H), 1.43 (s, 3H), 1.33 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.25 (s, 12H), 1.15 (s, 3H), 0.83 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) & 166.4, 157.2, 149.7, 120.0, 107.8, 83.1, 81.4, 77.7, 69.3, 60.4, 37.7, 28.4, 26.4, 25.8 (3C), 24.8 (2C), 24.7 (2C), 21.1, 20.0, 18.1, 14.2, -4.40, -4.95; HRMS (CI) calcd for [C₂₇H₄₉BO₇Si + Na]⁺: 547.3238, Found: 547.3234.

(2*E*,4*R*,5*R*,7*R*,8*Z*)-ethyl-4,5-bistriethylsilyl-7-*tert*-butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dienoateate (25a).

To a solution of [Rh(COD)Cl]₂ (20 mg, 0.04 mmol) in 3 mL of cyclohexane was added $P^{t}Pr_{3}$ (0.032 mL, 0.26 mmol), Et₃N (0.12 mL, 0.83 mmol) and catecholborane (86 mg, 0.71 mmol) at room temperature. After being stirred at room temperature for 30 minutes, alkyne 19 (438 mg, 0.72 mmol) in 1 mL of cyclohexane was added. After 8 hours, pinacol (133 mg, 1.13 mmol) in 1 mL of cyclohexane was added dropwise and the resulting mixture was stirred for 12 hours at room temperature. The reaction was quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided compound **25a** (407 mg, 79% yield) as a colorless oil. $R_f = 0.35$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2986, 1758; $[\alpha]_{D}^{25} + 24^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz): δ 7.03 (d, *J* = 15.8 Hz, 1H), 6.19 (dd, *J* = 13.9, 8.9 Hz, 1H), 5.91 (d, J = 15.6 Hz, 1H), 5.30 (d, J = 13.6 Hz, 1H), 4.78 (td, J = 9.4, 3.7 Hz, 1H), 4.21-4.14 (m, 2H), 3.76 (dd, J = 8.1, 1.7 Hz, 1H), 2.14-2.05 (m, 1H), 1.87-1.79 (m, 1H), 1.36 (s, 3H), 1.26 (s, 12 H), 1.28 (t, J = 7.2 Hz, 3H), 0.96 (dt, J = 8.2, 7.7 Hz, 18H), 0.86 (s, 9H), 0.73-0.56 (m, 12H), 0.06 (s, 3H), 0.00 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 166.9, 157.7, 153.0, 119.7, 83.2, 78.2, 75.4, 69.0, 60.2, 42.0, 26.9 (3C), 25.9 (2C), 24.9 (2C), 24.6, 24.2, 21.2, 17.9, 14.2, 7.20 (3C), 7.11 (3C), 6.74 (3C), 5.60 (3C), -3.00, -3.99; HRMS (CI) calcd for [C₃₆H₇₃BO₇Si₃ + Na]⁺: 735.4655, Found: 735.4648.

(2*E*,4*R*,5*R*,7*R*,8*Z*)-4,5-bistriethylsilyl-7-*tert*-butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dien-1-ol (26a).

26a

To a solution of ester **25** (140 mg, 0.20 mmol) in 2 mL of THF was added DIBAL-H (0.45 mL, 1.0 M in hexanes, 0.45 mmol) dropwise at -78 °C. After 20 minutes, the reaction was quenched by adding 0.5 mL of acetone and 10 mL of 20% sodium potassium tartrate solution. The mixture was warmed to room temperature, diluted with ether (10 mL) and stirred for 1 hour. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided allylic alcohol **26a** (123 mg, 92% yield) as a colorless oil. R_f = 0.33 (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3427, 2982; $[\alpha]^{25}_{D}$ +4° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 6.19 (dd, *J* = 13.9, 8.9 Hz, 1H), 5.77-5.74 (m, 2H), 5.31 (d, *J* = 13.9 Hz, 1H), 4.76 (td, *J* = 9.4, 4.2 Hz, 1H), 4.15 (bs, 2H), 3.76 (dd, *J* = 7.4, 2.0 Hz, 1H), 1.82 (ddd, *J* = 14.1, 9.4, 2.2 Hz, 1H), 1.30 (s, 3H), 1.27 (s, 6 H), 1.26 (s, 6 H), 0.96 (dt, *J* = 8.2, 7.7 Hz, 18H), 0.86 (s, 9H), 0.72-0.53 (m, 12H), 0.07 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 157.8, 137.1, 128.1, 83.3 (3C), 77.9, 75.8, 69.4, 63.8,

42.4, 26.1 (3C), 25.0 (2C), 24.7 (2C), 23.4, 18.3, 7.34 (3C), 7.24 (3C), 6.86 (3C), 5.71 (3C), -2.89, -3.94; HRMS (CI) calcd for $[C_{34}H_{71}BO_6Si_3 + Na]^+$: 693.4549, Found: 693.4544.

(2*E*,4*R*,5*R*,7*R*,8*Z*)-4,5-bistriethylsilyl-7-*tert*-butyldimethylsilyl-4-methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-2,8-dienal (27).

27

To a solution of alcohol **26** (30 mg, 0.045 mmol) in 1 mL of CH₂Cl₂ was added MnO₂ (39 mg, 0.45 mmol) at room temperature. After 5 hours, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided compound **27** (25 mg, 78% yield) as a colorless oil. $R_f = 0.45$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3427, 2982, 1680; $[\alpha]^{25}_{D}$ +43° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 270 MHz) δ 9.56 (d, *J* = 7.9 Hz, 1H), 6.92 (d, *J* = 15.6 Hz, 1H), 6.25 (dd, *J* = 15.6, 7.9 Hz, 1H), 6.18 (dd, *J* = 13.9, 9.2 Hz, 1H), 5.31 (d, *J* = 13.9 Hz, 1H), 4.76 (td, *J* = 9.6, 3.7 Hz, 1H), 3.83 (dd, *J* = 8.4, 1.5 Hz, 1H), 1.88 (ddd, *J* = 14.3, 10.2, 2.4 Hz, 1H), 1.42 (s, 3H), 1.26 (s, 12H), 0.98 (t, *J* = 8.2 Hz, 9H), 0.95 (t, *J* = 7.4 Hz, 9H), 0.87 (s, 9H), 0.76-0.56 (m, 12H), 0.07 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 194.0, 162.7, 157.5, 130.7, 83.2, 78.3, 75.5, 68.8, 41.8, 26.1 (3C), 24.9, 24.6, 18.2, 7.21 (3C), 7.12 (3C), 6.79 (3C), 5.61 (3C), -2.91, -3.91; HRMS (CI) calcd for [C₃₄H₆₉BO₆Si₃ + Na]⁺: 691.4393, Found: 691.4387.

(1*Z*,3*R*,5*R*,6*R*,7*E*,9*R*)-4,5-bistriethylsilyl-7*-tert*-butyldimethylsilyl-6-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dodeca-1,7,11-trien-1-ol (29).

To a solution of (S,S)-28 (102 mg, 0.19 mmol) in 0.5 mL of CH₂Cl₂ was added aldehyde **173** (42 mg, 0.063 mmol) in 0.4 mL of CH₂Cl₂ dropwise at -10 °C. The reaction flask was put in a freezer (-10 °C). After 24 hours, the reaction was diluted with EtOAc and quenched by adding 1 N NaHSO₄, and the mixture was vigorously stirred at room temperature for 1 h. The mixture was filtered through a pad of Celite and the layers were separated. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided compound 29 (38 mg, 85% yield) as a light yellow oil. $R_f = 0.30$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3450, 2981, 1755; $[\alpha]_{D}^{25} + 9^{\circ}$ (c 1.0, CHCl₃); ¹H NMR $(CDCl_3, 270 \text{ MHz})$: $\delta 6.19 \text{ (dd, } J = 13.8, 9.2 \text{ Hz}, 1\text{H}), 5.87-5.73 \text{ (m, 2H)}, 5.60 \text{ (dd, } J = 13.8, 9.2 \text{ Hz}, 1\text{H})$ 15.8, 6.2 Hz, 1H), 5.30 (d, J = 13.9 Hz, 1H), 5.16-5.09 (m, 2H), 4.76 (td, J = 9.4, 3.7 Hz, 1H), 4.18 (dd, J = 6.2, 5.9 Hz, 1H), 3.71 (dd, J = 7.7, 1.5 Hz, 1H), 2.37-2.25 (M, 2H), 1.83 (ddd, J = 14.1, 9.6, 1.7 Hz, 1H), 1.10-1.21 (m, 1H), 1.30 (s, 3H), 1.26 (s, 6H), 1.25 (s, 6H), 0.97 (t, J = 8.2 Hz, 9H), 0.95 (t, J = 7.4 Hz, 9H), 0.87 (s, 9H), 0.69 (q, J = 8.2 Hz, 6H), 0.58 (q, J = 7.9 Hz, 6H), 0.08 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 157.8, 135.9, 134.3, 131.1, 118.0, 83.1, 77.8, 75.7, 71.6, 69.3, 42.3, 41.7 (3C), 26.0 (3C),

24.9 (2C), 24.6 (2C), 23.5, 18.2, 7.27 (3C), 7.16 (3C), 6.76 (3C), 5.63 (3C), -2.93, -4.05; HRMS (CI) calcd for [C₃₇H₇₅BO₆Si₃ + Na]⁺: 733.4862, Found: 733.4855.

(4*R*,5*E*,7*R*,8*R*,10*R*,11*Z*)-7,8-bistriethylsilyl-10*-tert*-butyldimethylsilyl-7-methyl-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dodeca-1,5,11-trien-4-ylacrylate (30).

30

To a solution of alcohol **29** (30 mg, 0.043 mmol) in 1.5 mL of CH₂Cl₂ was added acrylic acid (15 mg, 0.21 mmol), DCC (43 mg, 0.21 mmol) and DMAP (2 mg, 0.4 mmol %). After 3 hours, the reaction mixture was diluted with Et₂O and filtered through a pad of Celite and washed with Et₂O. The organic layer was washed with saturated aqueous NaHSO₄ solution, brine and dried over anhydrous Na₂SO₄, concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided ester **30** (25 mg, 76% yield) as a colorless oil. $R_f = 0.50$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2987, 1736; [α]²⁵_D +10° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.37 (dd, *J* = 17.4, 1.2 Hz, 1H), 6.18 (dd, *J* = 13.8, 9.0 Hz, 1H), 6.09 (dd, *J* = 17.4, 10.2 Hz, 1H), 5.80 (dd, *J* = 15.6, 10.8 Hz, 2H), 5.76-5.70 (m, 1H), 5.59 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.41 (dd, *J* = 6.6, 6.0 Hz, 1H), 5.29 (d, *J* = 13.8 Hz, 1H), 5.08-5.03 (m, 2H), 3.96 (dt, *J* = 9.6, 3.6 Hz, 1H), 3.70 (dd, *J* = 7.8, 1.2 Hz, 1H), 3.21-3.17 (m, 1H), 2.42 (dd, *J* = 6.6, 6.6 Hz, 1H), 1.92-1.90 (m, 1H), 1.75-1.73 (m, 1H), 1.29 (s, 3H), 1.26 (s, 6H), 1.25 (s, 6H), 0.96 (t, *J* = 7.8 Hz, 9H), 0.92 (t, *J* = 8.4 Hz, 9H), 0.87 (s, 9H), 0.67 (qd, *J* = 7.8, 2.4 Hz, 6H), 0.56 (q, *J* = 7.8 Hz, 6H), 0.07 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 165.2, 157.9, 137.8, 133.2, 130.2, 128.8, 126.6, 117.9, 83.1, 77.8, 75.7, 73.4, 69.1, 55.7, 42.2, 39.1, 34.9 (3C), 26.1, 25.5 (3C), 24.9 (2C), 24.7 (2C), 24.6, 18.2, 7.23 (3C), 7.12 (3C), 6.79 (3C), 5.65 (3C), -2.92, -4.07; HRMS (CI) calcd for [C₄₀H₇₇BO₇Si₃ + Na]⁺: 787.4968, Found: 787.4961.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*)-3,4-bistriethylsilyl-6-*tert*-butyldimethylsilyl-3methyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-dienyl)pyran-2-one (32).

32

To a solution of triene **30** (25 mg, 0.032 mmol) in 3.5 mL of CH₂Cl₂ was added Grubbs catalyst **31** (6 mg, 20 %mmol). The reaction was heated at reflux for 3 hours. Solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) to provide lactone **32** (20 mg, 82% yield) as a colorless oil. $R_f = 0.35$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2930, 1731; $[\alpha]^{25}_{D} + 32^{\circ}$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.86 (ddd, J = 8.4, 3.6, 1.2 Hz, 1 H), 6.20 (dd, J = 13.8, 9.6 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 15.6, 1.2 Hz, 1H), 5.72 (dd, J = 15.6, 6.0 Hz, 1H), 5.30 (dd, J = 13.8, 1.2 Hz, 1H), 4.92 (ddd, J = 6.6, 6.0, 1.2 Hz, 1H), 4.79 (dd, J = 9.6, 3.6 Hz, 1H), 3.72 (dd, J = 9.6, 1.8 Hz, 1H), 1.33 (s, 3H), 1.27 (s, 6H), 1.26 (s, 6H), 1.05 (m, 1H), 0.97 (dd, J = 8.4, 7.8 Hz, 9H), 0.92 (dd, J = 8.4, 7.8 H

9H), 0.87 (s, 9H), 0.67 (qd, *J* = 8.4, 4.2 Hz, 6H), 0.59 (q, *J* = 7.8 Hz, 6H), 0.08 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.0, 157.8, 144.4, 138.9, 125.5, 121.7, 83.2, 77.9, 77.7, 75.6, 69.1, 42.1, 29.8 (3C), 26.1 (3C), 24.9 (2C), 24.6 (2C), 24.4, 18.2, 7.25 (3C), 7.18 (3C), 6.87 (3C), 5.67 (3C), -2.94, -3.98; HRMS (CI) calcd for [C₃₈H₇₃BO₇Si₃ + Na]⁺: 759.4655, Found: 759.4648.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3,4-bistriethylsilyl-6-*tert*-butyldimethyl silyl-13-*tert*-butyldiphenylsilyl-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (33).

33

To a solution of Pd₂(dba)₃ CHCl₃ (2 mg, 0.0019 mmol) in 0.5 mL of THF was added PPh₃ (4mg, 0.015 mmol). The color changed from dark red to light yellow, then the solution was canulated to a flask charged with iodide **8** (13 mg, 0.029 mmol). After two minutes, the mixture was cannulaed to a mixture of Z-vinylboronate **32** (7 mg, 0.0092 mmol) and Ag₂O (7 mg, 0.029 mmol) in 0.5 mL THF at room temperature. The reaction mixture was heated at 65 °C for 1 hour, and then cooled it down to room temperature, diluted with ether, filtered through a pad of Celite. The solvent was removed to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided triene **33** (8 mg, 80% yield) as a colorless oil. $R_f = 0.15$ (9:1 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 2981, 1703; [α]²⁵_D +22 (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 7.69-7.60 (m, 4H), 7.44-7.36 (m, 6H), 6.85 (ddd, *J* = 9.6, 4.8, 3.6 Hz, 1H),

6.75 (dd, J = 15.6, 11.4 Hz, 1H), 6.30 (dd, J = 11.4, 11.4 Hz, 1H), 6.20 (dd, J = 11.4, 11.4 Hz, 1H), 6.06 (d, J = 11.4 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.87 (dd, J = 15.6, 1.2 Hz, 1H), 5.83 (ddd, J = 15.0, 5.4, 5.4 Hz, 1H), 5.75 (dd, J = 15.6, 6.6 Hz, 1H), 5.42 (dd, J = 11.4, 9.0 Hz, 1H), 4.93 (ddd, J = 15.6, 6.6, 1.2 Hz, 1H), 4.69 (td, J = 9.0, 9.0, 3.0 Hz, 1H), 4.29 (d, J = 3.6 Hz, 1H), 3.70 (dd, J = 8.4, 1.8 Hz, 1H), 2.43-2.41 (m, 3H), 1.90 (ddd, J = 14.4, 9.6, 1.8 Hz, 2H), 1.33 (s, 3H), 1.08 (s, 9H), 1.00 (t, J = 8.4 Hz, 9H), 0.96 (t, J = 8.4 Hz, 9H), 0.88 (s, 9H), 0.68 (qd, J = 7.8, 2.4 Hz, 6H), 0.68 (qd, J = 7.8, 1.2 Hz, 6H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.1, 144.5, 138.5, 136.6, 135.5 (4C), 134.8, 134.1, 133.6, 129.7, 129.6, 128.4, 127.7 (4C), 125.9, 124.6, 123.6, 122.4, 121.7, 78.0, 77.6, 76.2, 66.0, 64.2, 42.5, 29.8, 26.8 (3C), 26.0 (3C), 24.7, 19.3, 18.1, 7.20 (3C), 7.17 (3C), 6.91 (3C), 5.78 (3C), -3.07, -4.13; HRMS (CI) calcd for [C₅₃H₈₆O₆Si₄+ Na]⁺: 953.5399, Found: 953.5395.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3-triethylsilyl-6-*tert*-butyldimethyl silyl-4,13-dihydroxy-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (34).

34

HF·pyridine complex (15 μ L) was added to a solution of silvl ether **33** (10 mg, 0.011 mmol) in 0.5 mL a mixture of CH₃CN/H₂O/Pyridine: 9/1/2 at room temperature. After stirring for 2 days, the reaction was quenched with saturated aqueous NaHCO₃ and diluted with Et₂O. The aqueous layer was extracted with Et₂O. The combined organic

layers were washed with brine and dried over anhydrous Na_2SO_4 , and concentrated to afford the crude product. Flash chromatography on silica gel (7:3 (v/v) hexane/EtOAc) provided alcohol **35** (3 mg, 40% yield) and diol **34** (3 mg, 45% yield).

R_f = 0.24 (5:5 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3420, 2980, 1715; $[α]^{25}_{D}$ -11° (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.88 (ddd, *J* = 9.0, 5.4, 3.6 Hz, 1H), 6.73 (ddd, *J* = 15.0, 11.4, 1.2 Hz, 1H), 6.38 (dd, *J* = 11.4, 11.4 Hz, 1H), 6.20 (dd, *J* = 11.4, 11.4 Hz, 1H), 6.06 (d, *J* = 10.8 Hz, 1H), 6.04 (ddd, *J* = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, *J* = 15.0, 6.0, 5.4 Hz, 1H), 5.88 (dd, *J* = 16.2, 1.2 Hz, 1H), 5.79 (dd, *J* = 15.6, 6.0 Hz, 1H), 5.55 (dd, *J* = 10.2, 9.6 Hz, 1H), 4.96 (ddd, *J* = 10.2, 6.0, 1.2 Hz, 1H), 4.91 (td, *J* = 7.8, 7.8, 2.4 Hz, 1H), 4.24 (dd, *J* = 4.8, 4.8 Hz, 1H), 3.67 (dd, *J* = 11.4, 2.4 Hz, 1H), 2.95 (d, *J* = 2.4 Hz, 1H), 2.46-2.42 (m, 2H), 1.64 (dd, *J* = 13.8, 7.8 Hz, 2H), 1.31 (s, 3H), 0.92 (t, *J* = 8.4 Hz, 9H), 0.87 (s, 9H), 0.77 (q, *J* = 7.8 Hz, 6H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.1, 144.6, 138.1, 136.3, 134.1, 129.8, 127.1, 126.2, 124.3, 122.3, 122.0, 77.8, 77.1, 75.1, 67.1, 63.6, 39.2, 29.8, 26.0 (3C), 22.3, 18.3, 7.26 (3C), 6.92 (3C), -4.14, -4.87; HRMS (CI) calcd for [C₃₁H₅₄O₆Si₂+ Na]⁺: 601.3357, Found: 601.3350.

(Preparation from compound **35**)

HF·pyridine complex (12 μ L) was added to a solution of silyl ether **35** (6 mg, 0.008 mmol) in 0.5 mL a mixture of CH₃CN/H₂O/Pyridine: 9/1/2 at room temperature. After stirring for 1 day, the reaction was quenched with saturated aqueous NaHCO₃ and diluted with Et₂O. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, and concentrated to afford the crude product. Flash chromatography on silica gel (7:3 (v/v) hexane/EtOAc) provided diol **34** as a colorless oil (4 mg, 82% yield).

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3,4-bistriethylsilyl-6-*tert*-butyldimethyl silyl-13-hydroxy-3-methyltrideca-1,7,9-11-tetraenyl)pyran-2-one (35).

 $R_f = 0.52$ (5:5 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3425, 2987, 1720; $[\alpha]^{25}_D + 45^\circ$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.86 (ddd, J = 9.0, 4.8, 3.6 Hz, 1H), 6.73 (ddd, J = 15.0, 11.4, 1.2 Hz, 1H), 6.37 (dd, J = 11.4, 11.4 Hz, 1H), 6.24 (dd, J = 11.4, 11.4 Hz, 1H), 6.06 (d, J = 11.4 Hz, 1H), 6.04 (ddd, J = 9.6, 1.8, 1.8 Hz, 1H), 5.91 (dd, J = 15.6, 6.0, 5.4 Hz, 1H), 5.86 (dd, J = 15.6, 1.2 Hz, 1H), 5.74 (dd, J = 15.6, 6.6 Hz, 1H), 5.45 (dd, J = 10.2, 9.6 Hz, 1H), 4.93 (ddd, J = 15.6, 6.0, 1.2 Hz, 1H), 4.68 (td, J = 9.6, 9.6, 2.4 Hz, 1H), 1H),

4.25 (d, J = 4.8 Hz, 1H), 3.70 (dd, J = 8.4, 1.8 Hz, 1H), 2.43-2.41 (m, 2H), 1.89 (ddd, J = 14.4, 10.2, 1.8 Hz, 2H), 1.33 (s, 3H), 1.08 (ddd, J = 11.4, 8.4,3.0 Hz, 2H), 0.98 (t, J = 8.4 Hz, 9H), 0.95 (t, J = 8.4 Hz, 9H), 0.87 (s, 9H), 0.67 (qd, J = 7.8, 2.4 Hz, 6H), 0.61 (qd, J = 7.8, 1.2 Hz, 6H), 0.04 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ 164.0, 144.5, 138.4, 137.1, 133.8, 129.4, 126.0, 125.9, 124.5, 122.2, 121.7, 77.9, 77.6, 76.2, 66.0, 63.4, 42.5, 29.7 (3C), 26.0 (3C), 24.7, 18.1, 13.3, 7.16 (3C), 7.17 (3C), 6.91 (3C), 5.78 (3C), -3.05, -4.10; HRMS (CI) calcd for [C₃₇H₆₈O₆Si₃+ Na]⁺: 715.4221, Found: 715.4215.

(*R*)-5,6-dihydro-6-((1*E*,3*R*,4*R*,6*R*,7*Z*,9*Z*,11*E*)-3-bistriethylsilyl-4-hydroxy-6-*tert*butyldimethylsilyl-13-*tert*-butyldiphenylsilyl-3-methyltrideca-1,7,9-11tetraenyl)pyran-2-one (5).

To a solution of alcohol 34 (5 mg, 0.0083 mmol) in 0.2 mL of CH₂Cl₂ was added imidazole (2 mg, 0.027 mmol) and TBDPSCI (3 mg, 0.012 mmol) at 0 °C. After 5 minutes, the reaction mixture was purified by using flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) without workup provided compound 5 (5 mg, 78% yield) as a yellow oil. $R_f = 0.46$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm⁻¹) 3412, 2981, 1728; $[\alpha]^{25}$ -18 °(c 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 7.69-7.67 (m, 4H), 7.44-7.33 (m, 6H), 6.88 (ddd, J = 8.4, 5.4, 3.6 Hz, 1H), 6.75 (dd, J = 15.6, 11.4 Hz, 1H), 6.33 (dd, J = 11.4, 11.4 Hz, 1H), 6.15 (dd, J = 11.4, 11.4 Hz, 1H), 6.07-6.03 (m, 2H), 5.89 (dd, J = 15.6, 1.2 Hz, 1H), 5.83 (ddd, J = 15.6, 5.4, 5.4 Hz, 1H), 5.80 (dd, J = 15.6, 6.0 Hz, 1H), 5.53 (dd, J= 10.2, 9.6 Hz, 1H), 4.98-4.91 (m, 2H), 4.29 (d, J = 4.2 Hz, 2H), 3.68 (d, J = 10.8 Hz, 1H), 2.99 (d, J = 2.4 Hz, 1H), 2.46-2.43 (m, 2H), 1.64 (dd, J = 13.8, 7.8 Hz, 1H), 1.33-1.37 (m, 1H), 1.32 (s, 3H), 1.08 (s, 9H), 0.93 (t, J = 7.8 Hz, 9H), 0.88 (s, 9H), 0.57 (q, J =7.8 Hz, 6H), 0.07 (s, 3H), 0.04 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) & 163.9, 144.3, 137.9, 135.5 (4C), 134.3, 133.6, 133.6, 130.1, 129.7 (2C), 127.7 (4C), 126.8, 124.5, 123.2, 122.3, 121.8, 77.6, 75.0, 67.0, 64.2, 39.0, 29.6 (3C), 26.8 (3C), 25.8 (3C), 22.2, 19.3, 18.1, 7.10 (3C), 6.73 (3C), -4.33, -5.07; HRMS (CI) calcd for [C₄₇H₇₂O₆Si₃+ Na]⁺: 839.4534,

Fostriecin (1).

To a solution of alcohol 5 (5 mg, 0.006 mmol) in 0.4 mL of pyridine was added PCl₃ (2.5 mL, 0.03 mmol) at 0 °C and stirred for 15 minutes. 4-Methoxybenyl alcohol (19 µL, 0.15 mmol) was added, and then the reaction was gradually warmed to room temperature for 1 hour and dilute with 1.2 mL of CH₂Cl₂. tert-Butyl hydroperoxide (5.5 M in decane, 55 μ L, 0.35 mmol) was added and stirred at room temperature for 1.5 hour. To the reaction mixture, saturated NaHO₃ solution was added: the mixture was stirred for several minutes. and then extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was treated with 48% HF-acetonitrile (1: 19, 0.3 mL) at room temperature for 15 minutes. After ice cooling, pyridine (95 μ L) was added to the reaction mixture, and the mixture was stirred at room temperature for 23 hours. The reaction mixture was basified with saturated NaHO₃ solution and washed with ether. The aqueous layer was concentrated under reduced pressure, and the residue was purified by 18-reversed phase silica gel column chromatography (H₂O to H₂O/aetinitrile = 9/1) to give fostriecin 1 (0.5 mg, 31% yield) as a white solid. $[\alpha]_{D}^{25}$ -325 °(*c* 0.1 w/v %, D₂O)^{*}; ¹H NMR (D₂O, 600 MHz) δ 7.03 (ddd, *J* = 10, 6, 3 Hz, 1H), 6.70 (dd, J = 15, 12 Hz, 1H), 6.49 (t, J = 11 Hz, 1H), 6.29 (t, J = 12 Hz, 1H), 6.09 (t, J = 1

11 Hz, 1H), 5.96 (dd, J = 10, 2 Hz, 1H), 5.92-5.84 (m, 3H), 5.50 (t, J = 10 Hz, 1H), 5.06 (m, 1H), 4.88 (t, J = 9 Hz, 1H), 4.12 (d, J = 6 Hz, 2H), 4.10-4.06 (m, 1H), 2.56 (td, J = 19, 6 Hz, 1H), 2.44-2.50 (m, 1H), 1.58 (t, J = 12 Hz, 1H), 1.46 (m, 1H), 1.24 (s, 3H), ¹³C NMR: Data was not available due to lack of sample; HRMS (CI) calcd for [C₁₉H₂₆O₉P+Na]⁺: 475.1104, Found: 475.1114

[[‡]] Structure was not shown in the text.

[*] The optical rotation data for our synthetic fostriecin did not match that of the natural material. This could be a result of both the different concentration and solvent. It should be noted that our optical rotation data for **5** did match that reported by Imanishi.

i

4

in Ann a' an t

ļ

^{. .}

п =

:

dg464.3

Pulse Sequence: s2pul Solvent: CDC13 Temp. 26.0 C / 301.1 K User: 1-14-057 INOVA-600 "inova600"

Relax. delay D.500 sec Pulse 29.9 degrees Acq. time 1.400 sec Vidth 35003.6 Hz 416 repritions OBSERVE C13, 150.7863845 HHz OBSERVE C13, 150.7863845 HHz OBSERVE H1, 599.6700024 HHz DECOUPLE H1, 599.6700024 HHz Continuously on VALT2-16 molulated DATA PROCESSING F1 size 131072 F1 size 131072 F1 size 131072

J.

