SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1.

Western blot analysis showing protein levels of Rvs161 and Rvs167 harboring modifications in their BAR domain. (A) Strains carrying substitutions or truncations in the BAR domain of Rvs161 were used to assess the protein levels of Rvs161 and its partner, Rvs167. α -Swi6 was used as a loading control. (* Nonspecific band co-migrating with Rvs161. This cross-reacting band is clearly separated in *rvs161*- ΔN lane.) (B) Mutants carrying substitutions or truncations in the BAR domain of *RVS167* are compared to the wild-type to look for changes in their protein levels. (C) Double mutants harboring symmetrical changes in both *RVS161* and *RVS167* BAR domain were analyzed in the same manner.

Supplementary Figure 2.

Limited plate-mating analysis of *rvs161* BAR domain mutants. Haploid strains were mixed and allowed to mate on a YPD plate for 5hrs at 30°C, which was then replica-plated onto a diploid selection plate, YPD+G418+NAT. The top panel shows an YPD mating plate and the bottom panel shows the diploid selection plate, both 24 h post-mating.

Supplementary Figure 3.

Serial spot dilution assay showing comparitive fitness of *rvs161* single BAR domain mutants and *rvs161 rvs167* double mutants on YPD and YPD+0.5M NaCl. Additional mutation in *RVS167* BAR domain enhances growth sensitivity to salt in all strains, except *AP* and ΔN .

Supplementary Figure 4.

Actin polarization defects in the BAR domain mutants. Actin structures in log-phase cells were stained with rhodamine-phalloidin and small-budded cells were assessed for actin patch polarization defects. Cells were defined as polarized when more than 75% of the total actin patches were localized in the daughter cell (n>100).

Supplementary Figure 5.

Lifetime of the early endocytic vesicle coat marker, Sla1-GFP, at the membrane surface in each BAR domain mutant background.

Supplementary Figure 6.

(A) Western blot analysis showing protein levels of C-terminally GFP-tagged Rvs167 in BAR domain mutants. α - Hexokinase was used as a loading control. (B) Functional complementation assay for C-terminally GFP-tagged Rvs167 strains used in this study. Serial spot dilution assays show growth sensitivity of untagged BAR domain double mutants compared to C-terminally GFP-tagged double mutants on different salt conditions (YPD+0.5M NaCl, YPD+0.7M NaCl).

(A) Growth sensitivity of BAR domain mutants on medium containing Aur1 inhibitor, AureobasidinA ($0.1\mu g/ml$). Serially diluted strains were spotted onto YPD, YPD+ AureobasidinA ($0.1\mu g/ml$) plates, which were grown for 2 days (YPD) or 4 days (YPD+AureobasidinA) at 30°C. (B) Rvs167-GFP protein levels in the presence or absence of AureobasidinA ($0.2\mu g/ml$). Wild-type and *rvs161-RC rvs167-RC-GFP* strains were incubated with AureobasidinA ($0.2\mu g/ml$) for indicated times and were collected to compare GFP-tagged Rvs167 protein levels using western blot analysis.

Supplementary Movie 1.

Rvs167-GFP was visualized every second in a time course of two minutes total.

Supplementary Movie 2.

Rvs167-RC-GFP in *rvs161-RC* background was imaged every second in a time course of two minutes total.

Supplementary Table 1.

Strains used in this study

Supplementary Figure 3 YPD YPD+ 0.5M NaCl RVS161WT RVS167WT rvs161∆ rvs161∆ rvs167∆ rvs161-∆N rvs161-ΔN rvs167-ΔN rvs161-RC rvs161-RC rvs167-RC rvs161-AP rvs161-AP rvs167-AP rvs161-KE(con) rvs161-KE(con) rvs167-KE(con) rvs161-KE(loop) rvs161-KE(loop) rvs167-KE(loop) rvs161-KE(con+loop) rvs161-KE(con+loop) rvs167-KE(con+loop)

rvs161-KE(con) rvs167-KE(con)-GFP

rvs161-KE(loop) rvs167-KE(loop)-GFP

rvs161-KE(con+loop) rvs167-KE(con+loop)-GFP

rvs161-KE(con) rvs167-KE(con)

rvs161-KE(loop) rvs167-KE(loop) rvs161-KE(con+loop) rvs167-KE(con+loop)

Α	YPD+ YPD Aureobasidin A (0.1µg/ml)
RVS161WT RVS167WT	
rvs161∆ rvs167∆	
rvs161-ΔN rvs167-ΔN	🔵 🔵 🐌 · 🗼
rvs161-RC rvs167-RC	
rvs161-AP rvs167-AP	●●@ ^:: ● @ @ >>
rvs161-KE(con) rvs167-KE(con)	🔵 🔍 🏶 🤛 🔹 📄
rvs161-KE(con+loop) rvs167-KE(con+loop)	
rvs161-KE(loop) rvs167-KE(loop)	

et al. (1998)
nsortium
nsortium
nsomum
nsomum
nsortium
nsomum

Supplementary Table I. Yeast Strains Used in This Study

rvs161 rvs167 strains assayed for salt sensitivitity and Lucifer Yellow uptake ²			
BY4422	$MAT\alpha$ Nat::RVS161+ RVS167+::Hph his3 Δ 1 leu2 Δ 0 ura3 Δ 0	This study	
	lys2 $\Delta 0$ can1 $\Delta 0$ mfa1 Δ ::MFA1pr-HIS3		
BY4395	BY4422 Nat::rvs161Δ::URA3 rvs167Δ::URA3::Hph	This study	
BY4434	BY4422 Nat::rvs161-ΔN rvs167-ΔN::Hph	This study	
BY4399	BY4422 Nat::rvs161-R35C rvs167-R37C::Hph	This study	
BY4397	BY4422 Nat::rvs161-A175P rvs167-A190P::Hph	This study	
BY4400	BY4422 Nat::rvs161-K136E, K140E rvs167-K148E, K152E::Hph	This study	
BY4622	BY4422 Nat::rvs161-K157E, K160E rvs167-K170E, K175E ::Hph	This study	
BY4412	BY4422 Nat::rvs161-K136E, K140E, K157E, K160E rvs167- K148E, K152E, K170E, K175E ::Hph	This study	

rvs161 rvs167 assayed for Sla1-GFP retraction				
BY4527	MAT α his3- Δ 200 ura3-52 leu2-3,112 SLA1-GFP::kan ABP1-	DCT214 (Drubin Laboratory)		
	RFP::His3			
BY4572	BY4527 MATa Nat::RVS161+ RVS167+::Hph	This study		
BY4571	BY4527 MATα Nat::rvs161Δ::URA3 rvs167Δ::URA3::Hph	This study		
BY4573	BY4527 MATα Nat::rvs161-ΔN rvs167-ΔN::Hph	This study		
BY4577	BY4527 MATα Nat::rvs161-R35C rvs167-R37C::Hph	This study		
BY4574	BY4527 MATa Nat::rvs161-A175P rvs167-A190P::Hph	This study		
BY4579	BY4527 MAT a Nat::rvs161-K136E, K140E rvs167-K148E, K152E::Hph	This study		
BY4578	BY4527 MATa Nat::rvs161-K157E, K160E rvs167-K170E, K175E ::Hph	This study		
BY4575	BY4527 MAT a Nat::rvs161-K136E, K140E, K157E, K160E rvs167-K148E, K152E, K170E, K175E ::Hph	This study		

rvs161 rvs167 strains assayed for Rvs167 localization

BY4580	BY4422 Nat::RVS161+ RVS167+-GFP::kan::Hph	This study
BY4599	BY4422 Nat::rvs161\Delta::URA3 RVS167+-GFP::kan	This study
BY4581	BY4434 Nat::rvs161-ΔN rvs167-ΔN-GFP::kan::Hph	This study
BY4585	BY4399 Nat::rvs161-R35C rvs167-R37C-GFP::kan::Hph	This study
BY4582	BY4397 Nat::rvs161-A175P rvs167-A190P-GFP::kan::Hph	This study
BY4588	BY4400 Nat::rvs161-K136E, K140E rvs167-K148E, K152E- GFP::kan::Hph	This study
BY4627	BY4622 Nat::rvs161-K157E, K160E rvs167-K170E, K175E- GFP::kan::Hph	This study
BY4587	BY4412 Nat::rvs161-K136E, K140E, K157E, K160E rvs167- K148E, K152E, K170E, K175E-GFP::kan::Hph	This study
BY4600	BY4580 Nat::RVS161+ RVS167+-GFP::kan::Hph ABP1- mCherry::URA3	This study
BY4605	BY4585 Nat::rvs161-R35C rvs167-R37C-GFP::kan::Hph ABP1- mCherry::URA3	This study
BY4603	BY4582 Nat::rvs161-A175P rvs167-A190P-GFP::kan::Hph ABP1- mCherry::URA3	This study

rvs161 rvs167 strains used for genetic interaction with INP52		
BY4702	MATa Nat:: $RVS161+ RVS167+::Hph ho\Delta::kan his3\Delta1 leu2\Delta0$ ura3 $\Delta0$ lvp1 Δ STE3pr-LEU2 can1 Δ ::STE2pr-his5	This study
BY4703	BY4702 rvs161A::Nat rvs167A::Hph hoA::kan	This study
BY4704	BY4702 Nat::rvs161-ΔN rvs167-ΔN::Hph hoΔ::kan	This study
BY4705	BY4702 Nat::rvs161-R35C rvs167-R37C::Hph hoΔ::kan	This study
BY4706	BY4702 Nat::rvs161-A175P rvs167-A190P::Hph ho∆::kan	This study
BY4707	BY4702 Nat::rvs161-K137E, K141E rvs167-K148E, K152E::Hph ho∆::kan	This study
BY4708	BY4702 Nat::rvs161-K157E, K160E rvs167-K170E, K175E ::Hph ho∆::kan	This study
BY4709	BY4702 Nat∷rvs161-K137E, K141E, K157E, K160E rvs167- K148E, K152E, K170E, K175E ::Hph ho∆::kan	This study
BY4710	MATa Nat:: $RVS161+ RVS167+::Hph$ inp52 Δ :: kan his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ lyp1 Δ STE3pr-LEU2 can1 Δ ::STE2pr-his5	This study
BY4711	BY4702 rvs161A::Nat rvs167A::Hph inp52A::kan	This study
BY4712	BY4702 Nat::rvs161-ΔN rvs167-ΔN::Hph inp52Δ::kan	This study
BY4713	BY4702 Nat::rvs161-R35C rvs167-R37C::Hph inp52∆::kan	This study
BY4714	BY4702 Nat::rvs161-A175P rvs167-A190P::Hph inp52∆::kan	This study
BY4715	BY4702 Nat::rvs161-K137E, K141E rvs167-K148E, K152E::Hph inp52∆::kan	This study
BY4716	BY4702 Nat::rvs161-K157E, K160E rvs167-K170E, K175E ::Hph inp52Δ::kan	This study
BY4717	BY4702 Nat∷rvs161-K137E, K141E, K157E, K160E rvs167- K148E, K152E, K170E, K175E ∷Hph inp52∆∷kan	This study

¹ This strain may be can1 Δ 0 and/ or *mfa1\Delta::MFA1pr-HIS3*

 2 Some of the strains in this group are *met15* $\Delta 0$ and/or *lys2* $\Delta 0$

³ Some of these strains may be *met15* $\Delta 0$