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Supplementary information - 2: This file contains the tables of detailed macromolecular 
composition of a gram of Dehalococcoides cell, experimental values of various pan-model 
parameters and the detailed procedure to calculate those parameters, as well as supplemental text 
regarding energy conservation process of Dehalococcoides. In addition, all the supplemental 
figures are included at the end of this document.       
 
 

Table of Contents 
 
Table 18. Overall Macromolecular Composition of a Dehalococcoides Cell································2 
Table 19. Protein Composition of 1 Gram of Dehalococcoides Cell·············································2 
Table 20. DNA Composition of 1 Gram of Dehalococcoides Cell················································3 
Table 21. RNA Composition of 1 Gram of Dehalococcoides Cell················································3 
Table 22. Lipid Composition of 1 Gram of Dehalococcoides Cell················································3 
Table 23. Composition of Cofactors and Other Soluble Pools of 1 Gram of Dehalococcoides Cell
······················································································································································4 
Table 24. Experimental Growth Yields of Various Dehalococcoides Cultures ·····························4 
Table 25. Experimental Growth Rates of Various Dehalococcoides Cultures·······························7 
Table 26. Experimental Decay Rates of Different Anaerobes ·······················································7 
Table 27. Energy Cost for Processing and Polymerization of Macromolecules (GAM) of a 
Typical Bacterial Cell ···················································································································8 
Table 28. Standard Gibbs Free Energies for Different Dechlorination Reactions ·························8 
Table 29. Theoretical ATP/e- and H+/e- Ratios of Reductive Dechlorination by Dehalococcoides9 
Table 30. Experimental Values of Corrinoid Content of Various Anaerobes ······························10 
Table 31. Growth Rate Simulations with and without the Citrate Synthase (CS) Reaction in the 
TCA-cycle···································································································································10 
Supplementary Text ····················································································································11 

Dehalococcoides Biomass Synthesis Reaction········································································11 
Calculation of Dehalococcoides Cell Composition ·································································11 
Calculation of NGAM and GAM Parameters of iAI549 ·························································13 
Energy Conservation Process of Dehalococcoides··································································13 
Calculation of Theoretical Maximum Energy Transfer Efficiency (ATP/e-) and Proton 
Translocation Stoichiometry (H+/e- ratio) of Dehalococcoides Electron Transport Chain (ETC)
················································································································································14 

Supplementary Figures················································································································16 
Figure 1. Steps involved to identify Dehalococcoides pan-genome ········································16 
Figure 2. Steps involved to identify Dehalococcoides core-genome ·······································17 
Figure 3. Steps involved to identify Dehalococcoides unique-genome ···································18 
Figure 4. Steps involved to identify Dehalococcoides dispensable-genome····························19 
Figure 5. Reconstructed Wood-Ljungdahl pathway for Dehalococcoides.······························20 
Figure 6. Tentative scheme for the electron transport chain of Dehalococcoides····················21 
Figure 7. Distribution of metabolic genes in different subsystems of iAI549··························22 
Figure 8. Distribution of gene-associated model reactions in different subsystems of iAI549 23 

References···································································································································24 
 



Islam et al., Constraint-based Modeling of Dehalococcoides 
 

 2

 

Table 18. Overall Macromolecular Composition of a Dehalococcoides Cella 

Protein 63% 

RNA 16% 

DNA 12% 

Lipid 5% 

Carbohydrate 1% 

Soluble pools and ions 3% 

Total 100% 
   aAssumption based on iAF692 (Methanosarcina barkeri model) [1]. The DNA content is higher 

than M. barkeri because Dehalococcoides are disc shaped and smaller in size than M. barkeri 

[2].   

 

Table 19. Protein Composition of 1 Gram of Dehalococcoides Cella 

Amino acids Content (mol%) Content (mmol/g DCW) 

L – Alanine  9.58 0.5588 
L – Arginine 5.52 0.3220 
L – Asparagine 4.5 0.2625 
L – Aspartate 4.5 0.2625 
L – Cysteine 1.72 0.1003 
L – Glutamine 4.91 0.2864 
L – Glutamate 4.91 0.2864 
Glycine 11.45 0.6679 
L – Histidine 1.78 0.1038 
L – Isoleucine 5.45 0.3179 
L – Leucine 8.45 0.4929 
L – Lysine 6.4 0.3733 
L – Methionine 2.88 0.1680 
L – Phenylalanine 3.47 0.2024 
L – Proline 4.15 0.2421 
L – Serine 4.05 0.2363 
L – Threonine 4.73 0.2759 
L – Tryptophan 1.07 0.0624 
L – Tyrosine 2.59 0.1511 
L – Valine 7.89 0.4603 

           a [21], [24] 
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Table 20. DNA Composition of 1 Gram of Dehalococcoides Cella 

dNTPs Content (mol%) Content (mmol/g DCW) 

dATP 95.5 0.0955 

dGTP 84.7 0.0847 

dCTP 84.7 0.0847 

dTTP 95.5 0.0955 

           ahttp://img.jgi.doe.gov/cgi-bin/pub/main.cgi 

 

Table 21. RNA Composition of 1 Gram of Dehalococcoides Cella 

rNTPs Content (mol%) Content (mmol/g DCW) 

ATP 26.19 0.1289 

GTP 32.22 0.1586 

CTP 20.00 0.1063 

UTP 21.59 0.0985 

           aElizabeth A. Edwards (personal communication)  

 

Table 22. Lipid Composition of 1 Gram of Dehalococcoides Cella 

Lipids Content (mol%) Content (mmol/g DCW)

Dodecanoic acid (C12:0) 0.91 0.0019 

Tetradecanoic acid (C14:0) 7.44 0.0154 

Hexadecanoic acid (C16:0) 41.85 0.0865 

Octadecanoic acid (C18:0) 18.19 0.0376 

Eicosanoic acid (C20:0) 0.49 0.0010 

Oleic acid (18:1w9c) 0.35 0.0007 
10-R-Methylhexadecanoic acid 
(10Me16:0) 

22.8 0.0471 

Dodecanoic acid (C12:0) 0.91 0.0019 
           a[25] 
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Table 23. Composition of Cofactors and Other Soluble Pools of 1 Gram of Dehalococcoides 
Cella 

Components Content (mmol/g DCW) 

Putrescine 0.0262 

Homospermidine 0.0047 

Acetyl-CoA 0.0001 

CoA 0.000006 

NAD 0.0022 

NADH 0.0001 

NADP 0.0001 

NADPH 0.0004 

Succinyl-CoA 0.000003 

AMP 0.0010 

ADP 0.002 

ATP 0.004 

5,6,7,8-tetrahydrofolate 0.0001 

Adenosylcobalamin 0.0047 
Glycogen  0.0154 

           a[1] 

 

Table 24. Experimental Growth Yields of Various Dehalococcoides Cultures 

Dehalococcoides 
culture 

Electron 
acceptora 

Yield 
 (g 

protein/mol 
Cl)b 

Yield 
(copy/µmol 

ethene) 

Yield 
(copy/µmol 

Cl) 

Yield 
(gDCW/mol 

Cl)c 

Yield 
(gDCW/eeq)

Reference

Pure cultures 

Strain CBDB1 HCB 2.1 - 9.13 x 107 1.11 0.55 [3] 

Strain CBDB1 PeCB 2.9 - 1.26 x 108 1.53 0.77 [3] 

Strain CBDB1 2,3-DCP 1.73 - 7.52 x 107 0.91 0.46 [4] 

Strain 195 PCE 4.8 - 2.9 x 108 2.53 1.27 [5] 
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Dehalococcoides 
culture 

Electron 
acceptora 

Yield 
 (g 

protein/mol 
Cl)b 

Yield 
(copy/µmol 

ethene) 

Yield 
(copy/µmol 

Cl) 

Yield 
(gDCW/mol 

Cl)c 

Yield 
(gDCW/eeq)

Reference

Strain 195 2,3-DCP - - 8.30 x 107 1.01 0.50 [4] 

Strain BAV1 VC - - 6.30 x 107 0.76 0.38 [6] 

Strain FL2 TCE - - 7.80 x 107 0.95 0.47 [7] 

Strain FL2 cis-DCE - - 8.40 x 107 1.02 0.51 [7] 

Strain FL2 trans-DCE - - 8.10 x 107 0.98 0.49 [7] 

Strain GT VC - - 2.50 x 108 3.03 1.52 [8] 

Strain GT TCE - 9.30 x 108 3.10 x 108 3.76 1.88 [8] 

Average (± standard deviation) 1.38 (± 1.03) 0.69 (± 0.51)  

Mixed cultures 

VS enrichment VC - - 5.20 x 108 6.31 3.16 [9] 

KB1/VC enrichment VC - - 5.60 x 108 6.80 3.40 [10] 

KB1/VC enrichment TCE - - 3.60 x 108 4.37 2.19 [10] 

ANAS enrichment VC - - 1.30 x 107 0.16 0.08 [11] 

ANAS enrichment cis-DCE - - 1.2 x 107 0.15 0.07 [11] 
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Dehalococcoides 
culture 

Electron 
acceptora 

Yield 
 (g 

protein/mol 
Cl)b 

Yield 
(copy/µmol 

ethene) 

Yield 
(copy/µmol 

Cl) 

Yield 
(gDCW/mol 

Cl)c 

Yield 
(gDCW/eeq)

Reference

ANAS enrichment TCE - - 1.4 x 107 0.17 0.08 [11] 

JN culture PCB - - 9.25 x 108 11.23 5.61 [12] 

KB1/TCE enrichment 1,2-DCA - 3.20 x 108 1.60 x 108 1.94 1.94 [2] 

KB1/TCE enrichment VC - 2.90 x 108 2.90 x 108 3.52 1.76 [2] 

KB1/TCE enrichment cis-DCE - 3.50 x 108 1.75 x 108 2.12 1.06 [2] 

Average (± standard deviation)e 4.18 (± 2.05) 2.25 (± 0.88)  

 

   aShort forms for electron acceptors are: HCB, Hexachlorobenzene; PeCB, Pentachlorobenzene; 
PCB, Polychlorinated biphenyls; 2,3-DCP,  2,3-Dichlorophenol; PCE, Tetrachloroethene; VC, 
Vinyl chloride; TCE, Trichloroethene; cis-DCE, cis-Dichloroethene; trans-DCE, trans-
Dichloroethene; 1,2-DCA, 1,2-Dichloroethane. 
 
   bA conversion factor of 2.3 x 10-14 g protein cell-1 is used to convert the numbers in g protein to 
copy [4]. 
 
   cCopy numbers are converted to gram dry cell weight (gDCW) by assuming cylindrical shape, 
0.5 µm diameter, 0.2 µm thickness and 70% water content of a Dehalococcoides cell as well as 1 
copy of the 16S rRNA gene per genome or per cell.  
 
   dBold numbers are yield values cited in the literature.  
 

    eAverage and standard deviation of mixed cultures are calculated without including ANAS and 
JN cultures’ yield since those are outliers. ANAS yields are based on long term experiments 
where dechlorination and growth may be uncoupled [11]. JN yield is likely to be inaccurate due 
to difficulties in measuring PCB concentration.  
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Table 25. Experimental Growth Rates of Various Dehalococcoides Cultures 

Dehalococcoides culture Electron acceptora Growth rate 
(d-1) 

Growth rate 
(h-1) 

Reference

Pure cultures 

Strain CBDB1 2,3-DCP 0.41 0.017 [4] 

Strain 195 PCE 1.26 0.053b [13] 

Strain BAV1 VC 0.32 0.013 [6] 

Strain GT VC 0.35 0.014 [8] 

Strain FL2 VC 0.29 0.012 [7] 

Average (± standard deviation) 0.014 (± 0.002)  

Mixed cultures 

VS enrichment TCE 0.35 0.015 [14] 

VS enrichment cis-DCE 0.46 0.019 [14] 

VS enrichment VC 0.49 0.020 [14] 

KB1/VC enrichment TCE 0.33 0.014 [14] 

KB1/VC enrichment cis-DCE 0.44 0.018 [14] 

KB1/VC enrichment VC 0.42 0.018 [14] 

Average (± standard deviation) 0.017 (± 0.003)  

   aShort forms for electron acceptors are: 2,3-DCP,  2,3-Dichlorophenol; VC, Vinyl chloride; 
PCE, Tetrachloroethene; TCE, Trichloroethene; cis-DCE, cis-Dichloroethene. 

 

bGrowth rate calculation was not substantiated; hence, not used in calculating average.  

Table 26. Experimental Decay Rates of Different Anaerobes 

Organism 
Decay rate 

(d-1) 
Reference 

Dehalococcoides sp. strain VS 
(during growth) 

0.05 [9] 

Dehalococcoides sp. strain VS (no 
growth) 

0.09 [9] 
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Organism 
Decay rate 

(d-1) 
Reference 

Methanobacterium bryantii 0.088 [13] 

Typical for anaerobes 0.02 [15] 

 

Table 27. Energy Cost for Processing and Polymerization of Macromolecules (GAM) of a 
Typical Bacterial Cella 

Process mmol/g DCW µmol ATP/µmol mmol ATP/g DCW 

Protein  

Activation 4.0000 23.3332 

mRNA synthesis 0.2000 1.1667 

Proofreading 0.1000 0.5833 

Assembly/modification 

5.8333 

0.0060 0.1399 

RNA  

Discarding segments 0.3800 0.1871 

Modification 
0.4923 

0.0200 0.0098 

DNA  

Unwinding helix 1.0000 0.3604 

Proofreading 0.3600 0.1297 

Discontinuous synthesis 0.0060 0.0022 

Negative supercoiling 

0.3604 

0.0050 0.0018 

Methylation  0.0010 0.0004 

Total cost 25.9145 
      a[21] 
 

Table 28. Standard Gibbs Free Energies for Different Dechlorination Reactions 
Electron 

donor 
Electron acceptor Product 

Reaction ΔG0
’ 

(kJ/mol) 
Reference 

Hydrogen Tetrachloroethene Trichloroethene -175.31 [15,16] 
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Electron 

donor 
Electron acceptor Product 

Reaction ΔG0
’ 

(kJ/mol) 
Reference 

Hydrogen Trichloroethene Dichloroethene -166.31 [15,16] 

Hydrogen Dichloroethene Chloroethene -145.71 [15,16] 

Hydrogen Chloroethene Ethene -151.35 [15,16] 

Hydrogen Hexachlorobenzene Pentachlorobenzene -171.40 [17] 

Hydrogen Pentachlorobenzene Tetrachlorobenzene -164.07 [17] 

Hydrogen Tetrachlorobenzene Trichlorobenzene -164.3 [17] 

Hydrogen Trichlorobenzene Dichlorobenzene -152.77 [17] 

Average ΔG0
’ -161.40  

Table 29. Theoretical ATP/e- and H+/e- Ratios of Reductive Dechlorination by 
Dehalococcoides 

H+/e- ratio 
Average 

ΔG0
’ 

(kJ/mol) 

ATP/e- 

ratio 

(maximum) 

Proton 

translocation/mole 

ATP 
Maximum Assumed 

(Assumed/Maximum) 

X 100 

(Energy transfer 

efficiency) 

ATP/e- 

(Assumed) 

5 100 1.64 

4 80 1.30 

3 60 1.00 

2 40 0.66 

161.40 1.64 3 4.92 

1 20 0.33 
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Table 30. Experimental Values of Corrinoid Content of Various Anaerobes 

Organism 

Corrinoid 

content 

(literature 

values) 

Corrinoid 

content 

(mmol/gDCW) 

Dehalococcoides 

yield prediction 

by iAI549 during 

corrinoid salvage 

from the medium 

(gDCW/eeq) 

Dehalococcoides 

yield prediction 

by iAI549 during 

de novo corrinoid 

synthesis 

(gDCW/eeq) 

Reference 

Clostridium 

cochlearium 

30 nmol/g 

wet mass 
0.00015 0.713 0.713 [18] 

Acetobacterium 

woodii 

650 nmol/g 

dry mass 
0.00065 0.713 0.713 [19] 

Clostridium 

formicoaceticum 

950 nmol/g 

dry mass 
0.00095 0.713 0.713 [19] 

Sporomusa ovata 

3100 

nmol/g dry 

mass 

0.0031 0.713 0.710 [19] 

Methanosarcina 

barkeri (used in 

iAI549) 

- 0.0047 0.713 0.709 [20] 

10X 

Methanosarcina 

barkeri 

- 0.047 0.707 0.676 Assumption

Table 31. Growth Rate Simulations with and without the Citrate Synthase (CS) Reaction in 
the TCA-cycle    

Exchange reactions  
Flux values without 

the CS reaction 
(mmol/gDCW.h) 

Flux values with the 
CS reaction 

(mmol/gDCW.h) 
Acetate exchange, 
EX_ac(e) 

0.1820 0.1943 

Cobalamin exchange, 
EX_cbl1(e) 

0.0001 0.0001 

Carbon dioxide 
exchange, EX_co2(e) 

0.1741 0.1383 

Hydrogen exchange, 
EX_h2(e) 

10.0000 10.0000 

Chloride exchange, 9.6067 9.6793 
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Exchange reactions  
Flux values without 

the CS reaction 
(mmol/gDCW.h) 

Flux values with the 
CS reaction 

(mmol/gDCW.h) 
EX_Cl(e) 

Parameters  
Without the CS 

reaction 
With the CS reaction

Growth rate 0.014 h-1 0.0137 h-1 

Growth yield 0.72 gDCW/eeq 0.71 gDCW/eeq 

 

Supplementary Text 

Dehalococcoides Biomass Synthesis Reaction  

The detail macromolecular composition of one (1) gram of Dehalococcoides cell, presented in 
Tables S18-S23, as well as the GAM (61 mmol ATP. gDCW-1) has been included in iAI549 as a 
biomass synthesis reaction: BIO_DHC_DM_61.   
 
Considering a basis of 1 gram dry cell weight, the biomass synthesis equation is defined as: 
  
0.0001 mmol Acetyl-CoA + 0.0047 mmol Adenosylcobalamin + 0.5588 mmol L-alanine + 0.001 
mmol AMP + 0.3320 mmol L-arginine + 0.2625 mmol L-asparagine + 0.2625 mmol L-aspartate 
+ 61 mmol ATP + 0.000006 mmol CoenzymeA + 0.1063 mmol CTP + 0.1003 mmol L-cysteine 
+ 0.0955 mmol dATP + 0.0847 mmol dCTP + 0.0019 mmol Dodecanoic acid + 0.0847 mmol 
dGTP + 0.0955 mmol dTTP + 0.0471 mmol 10-R-Methylhexadecanoic acid + 0.2684 mmol L-
glutamine + 0.2684 mmol L-glutamate + 0.6679 mmol Glycine + 0.0154 mmol Glycogen + 
0.1586 mmol GTP + 61 mmol H2O + 0.0865 mmol Hexadecanoic acid + 0.1038 mmol L-
histidine + 0.0047 mmol Homospermidine + 0.001 mmol Eicosanoic acid + 0.3179 mmol L-
isoleucine + 0.4929 mmol L-leucine + 0.3733 mmol L-lysine + 0.1680 mmol L-methionine + 
0.0022 mmol NAD + 0.0001 mmol NADH + 0.0001 mmol NADP + 0.0004 mmol NADPH + 
0.0376 mmol Octadecanoic acid + 0.0007 mmol Oleic acid + 0.0347 mmol L-phenylalanine + 
0.0415 mmol L-proline + 0.0262 mmol Putrescine + 0.0405 mmol L-serine + 0.000003 mmol 
Succinyl-CoA + 0.0001 mmol 5,6,7,8-tetrahydrofolate + 0.2759 mmol L-threonine + 0.0624 
mmol L-tryptophan + 0.0154 mmol Tetradecanoic acid + 0.1511 mmol L-tyrosine + 0.0985 
mmol UTP + 0.4603 mmol L-valine ---->  61 mmol ADP + 61 mmol H+ + 61 mmol Inorganic 
Phosphate 

Calculation of Dehalococcoides Cell Composition 
The shape of Dehalococcoides cell is reported to be cylindrical [2]. 
Diameter of one Dehalococcoides cell = 0.5 µm [2] 
Thickness of one Dehalococcoides cell = 0.2 µm 

Hence, the volume of one Dehalococcoides cell = 2.0
2

5.0

2

22
2 













  h

D
hr  
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                       = 0.0393 µm3 
 
Assume, cell density is equal to the density of water = 1.03 g/ml.  
Therefore, mass of one Dehalococcoides cell = 1.03 g/ml x 3.93 x 10-2 µm3 x 10-12 ml/µm3 
                     = 4.05 x 10-14 g 
 
Typically, a bacterial cell has 70% water [21] 
Hence, dry mass of one Dehalococcoides cell  = 4.05 x 10-14 x 0.3 g 
                    = 1.21 x 10-14 g  
 
Length of Dehalococcoides DNA (roughly) = 1.4 x 106 base pairs (bp) [22] 
 
Assume, the average molecular mass of a nucleotide or 1 bp = 666 g/mol 
Hence, the molar mass of a Dehalococcoides genome = 1.4 x106 x 666 g/mol 
Since, 1 mole of nucleotide = 6.023 x 1023 molecules of nucleotide 
 
Therefore,  
The mass of 1 molecule of Dehalococcoides nucleotide (or genome) 
 = (1.4 x106 x 666)/(6.023 x 1023) g 
 = 1.55 x 10-15 g 
 

So, the percentage of DNA in 1 gram dry cell mass 0
0

0
0

14

15

75.12100
1021.1

1055.1












 



 

 
We know, the amount of RNA in a 50 ml culture = 50 µg (Elizabeth A. Edwards, personal 
communication) 
So, 1 ml of culture contains 1 µg of RNA. 
 
Also, 1 ml of similar culture contains 1 x 107 ~ 5 x 108 copies of Dehalococcoides cells 
(Elizabeth A. Edwards, personal communication) 
 
Assuming that 1 ml of culture has 5 x 108 copies of Dehalococcoides cells. 
Hence, the dry mass of 5 x 108 cells = 5 x 108 x 1.21 x 10-14 g = 6.05 x 10-6 g 
So, 6.05 x 10-6 g of cells has 1 x 10-6 g of RNA 
 
Therefore,  

The percentage of RNA in 1 gram dry cell mass 53.16100
1005.6

101
6

6












 



% 

Since, the experimental data for estimating the percentage contents of other components of a 
Dehalococcoides cell were not available, the corresponding estimates from the published 
Methanosarcina barkeri model [1] that included protein, lipid, carbohydrate, and soluble pools 
and ions were used in this model. 
 
In order to determine the amount of individual component of the macromolecules of a 
Dehalococcoides cell, physiological data from various published models of different 
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microorganisms [1,21,23,24] have been used. The contents of different fatty acids were 
calculated from White et al. [25]. 
 

Calculation of NGAM and GAM Parameters of iAI549 
Non-growth associated (NGAM) and growth associated maintenance (GAM) parameters for 
Dehalococcoides were estimated using the published data from [3,4,6,7,8,9,14,21,26] and the 
equation from [27,28,29], as well as simulations in SimPhenyTM. 
 
The non-growth associated ATP maintenance is given by 

GY

b
m  

where, b = specific maintenance rate or decay rate (d-1) 
YG = True growth yield or yield without maintenance (g DCW/eeq) 
 

Assuming YG = Y= Observed growth yield for Dehalococcoides bacteria, 

Y

b
m   

Using pure culture growth yield, Y = 0.69 gDCW/eeq (Table 24) and b = 0.09 d-1
 (Table 26), the 

calculated NGAM for Dehalococcoides bacteria is 
 

32469.0

1000109.0




m = 1.8 mmol ATP/g DCW.h 

 

Energy Conservation Process of Dehalococcoides 

Dehalococcoides strains respire through a membrane-bound electron transport chain (ETC) 
[30,31,32], which is incompletely defined. In addition to RDase and hydrogenase (H2ase) 
enzymes, the ETC of Dehalococcoides requires an in vivo electron carrier to mediate electron 
transport between H2ase and RDase. The reductive dechlorination reaction requires an in vivo 
electron donor of redox potential (E0

’) ≤-360 mV [30,32] similar to other dechlorinating bacteria 
[33,34,35]. The cob(II)alamin of corrinoid cofactor in the RDase enzyme is reduced to 
cob(I)alamin during the reductive dechlorination reaction; hence, necessitating a low-potential 
donor because the redox potential (E0’) of Co(II)/Co(I) couple is between -500 and -600 mV 
[33,34,36]. While quinones, such as menaquinone or ubiquinone could act as electron carriers in 
anaerobes [37,38,39], experimental evidence suggests this is not the case in Dehalococcoides 
[3,32]. Moreover, the half reaction potentials for quinones (Menaquinone ox/red E0

’= -70 mV, 
Ubiquinone ox/red E0

’= +113 mV; [40]) are not compatible with RDases that require a donor of 
E0’ ≤-360 mV.  
 
Therefore, we hypothesize that ferredoxin could be a low-potential electron donor for the RDase 
of Dehalococcoides because it is the most electronegative electron carrier yet found in the 
bacterial ETCs [41,42]. Various redox potentials had been reported for bacterial ferredoxins, 
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which included -417 mV at pH 7.55 for Clostridium pasteurianum [43], -398 and -367 mV in the 
range of pH 6.13 to 7.41 for C. pasteurianum [40,44], -445 mV at pH 7 for Dehalospirillum 
multivorans [35], -453 mV at pH 8 for Thermotoga maritima [45]. While these experimental data 
illustrate the differences in ferredoxin potential across microbes, it also supports their putative 
role as a low-potential electron carrier in the Dehalococcoides ETC. Furthermore, there was 
strong genomic evidence that the sequences of rdh genes contained two iron-sulfur cluster 
binding motifs, which are the characteristic motifs for bacterial ferredoxins [46]. So far, the 
genomes of Dehalococcoides have 6 putative ferredoxin-encoding genes (Tables 3-7 in Text S1), 
but no gene was identified for a b-type cytochrome. Miller and colleagues [35] described a 
mechanism for the ETC of D. multivorans involving both H2ase and RDase enzymes where they 
propose the “reverse electron transport”, and the requirement of both a low-potential and a high-
potential electron carrier for the ETC. Recently, Thauer et al. [47] suggested that the energy 
conservation process of methanogens without cytochromes (a system similar to 
Dehalococcoides) used a flavin-based “electron bifurcation” system where an endergonic 
reaction was driven by the energy from an exergonic reaction that took place simultaneously. A 
similar bifurcation mechanism was also proposed for the trimeric [Fe]-only H2ase of T. maritima 
[48]. Based on the literature and considering the lack of information on the Dehalococcoides 
ETC, we propose the following simplified mechanism of energy conservation for its ETC 
(Figure 6). 
 
We assumed that the H2ase of Dehalococcoides reduced ferredoxin in a similar process as 
described for M. barkeri [47,49,50,51]. Subsequently, the reduced ferredoxin was assumed to 
transfer electrons to terminal electron acceptors, such as chloroethenes or chlorobenzenes (RX) 
via cob(II)alamin where cob(II)alamin was reduced to cob(I)alamin [33,34], and RX was 
reduced to lower chlorinated compounds or ethenes (RH). Alternatively, the endergonic 
reduction of ferredoxin with H2 could be coupled to the exergonic reduction of RX with reduced 
ferredoxin where the later reaction was catalyzed by RDase in a similar manner as the electron 
bifurcation scheme. This might be possible because a corrinoid protein, like a flavo-protein, 
could also be a site for electron bifurcation (R. K. Thauer, personal communication). In either 
case, we assume that the uptake of two protons (2H+) from the cytoplasm occurs during the 
transfer of 2e- from the donor H2 to the acceptor RX; thus, resulting in a net proton translocation 
stoichiometry of 1 H+ per e- (Figure 6) . 

Calculation of Theoretical Maximum Energy Transfer Efficiency (ATP/e-) 
and Proton Translocation Stoichiometry (H+/e- ratio) of Dehalococcoides 
Electron Transport Chain (ETC) 
 
The theoretical maximum ATP/e- ratio, (ηATP/ηe)max can be determined from the following 
equation [37]: 
 

'

'
0

max Pe

ATP

G
FE










          (1) 

where, F is the Faraday constant (96,500 J/mol .V), ΔE0
’ is the difference in standard redox 

potential between the electron donor and acceptor, and ΔGP
’ is the free energy of 

phosphorylation reaction at pH 7 and physiological condition. 
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Since, '
0

'
0 EnFG   

Therefore, '

'
0

max Pe

ATP

Gn
G











        (2) 

Where n is the number of electrons transferred in the reaction     
 
ΔGP

’ at physiological conditions can be calculated from the free energy of the phosphorylation 
reaction at standard conditions and pH 7 (ΔG0,p

’) using the following equation: 
 

 
  








i
pp PADP

ATP
RTGG ln'

,0
'

  (3) 

 
where, ΔG0,p

’ = 32 kJ/mol [40], R is the universal gas constant having a value of 8.314 J/mol.K 
and T is the absolute temperature, 298.15 K at 25 ºC. 
 
Assuming that the concentrations of ATP and ADP are equal and that the concentration of Pi is 1 
mM, then the calculated value of ΔGP

’ using equation (3) is 49.12 kJ/mol.  
 
The average standard free energy for dechlorination was found to be ΔG0

’ of -161.40 kJ/mol 
(Table 28). 
 
Therefore, theoretical maximum ATP/e- using equation (2) is: 
 

64.1
12.492

40.161

max











e

ATP


  

 
Assuming the number of H+ translocated across the cell membrane during the phosphorylation of 
ADP is 3 [52], we obtain the theoretical maximum H+/e- of dechlorination process is 4.92 (Table 
29) which means, the H+/e- should be either 5 or 4. 
 
Since the ATP/e- value (0.33) corresponding to 1 H+/e- (Table 29) was found to be in agreement 
with the experimental ATP/e- value of 0.6 mol ATP/mol Cl- [35,53,54], the proton translocation 
stoichiometry of Dehalococcoides ETC was chosen as 1 H+/e-.  
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Supplementary Figures 
 

 

Figure 1. Steps involved to identify Dehalococcoides pan-genome 
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Figure 2. Steps involved to identify Dehalococcoides core-genome 
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Figure 3. Steps involved to identify Dehalococcoides unique-genome 
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Figure 4. Steps involved to identify Dehalococcoides dispensable-genome 
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Figure 5. Reconstructed Wood-Ljungdahl pathway for Dehalococcoides. Grey lines indicate 
missing pathways and red lines indicate existing pathways, the genes of which are identified in 
the genomes of Dehalococcoides during the reconstruction of iAI549. The arrows are denoting 
the directionality of the reactions. Due to the missing enzymes, Dehalococcoides seem not to be 
able to fix carbon or CO2 by the Wood-Ljungdahl pathway which is also supported by the result 
from Tang et al [55]. 
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Figure 6. Tentative scheme for the electron transport chain of Dehalococcoides 

 

 

 

 

 

 

 

 



Islam et al., Constraint-based Modeling of Dehalococcoides 
 

 22

 

 

123

62

32

53

31

76

46

5

8

3

1

7

51

8

1

54

6

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Amino acid metabolism

Cofactor and prosthetic group
biosynthesis

Lipid metabolism

Nucleotide metabolism

Central carbon metabolism

Energy metabolism

Transport

Number of Genes

Core genes
Dispensable genes
Unique genes

 

Figure 7. Distribution of metabolic genes in different subsystems of iAI549 
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Figure 8. Distribution of gene-associated model reactions in different subsystems of iAI549 
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