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Fig. S1. Conservation-based identification of new SOP-specific CRMs Six novel CRMs were identified in the 20 kb region centered around the transcription
start site of five selected genes known to be specifically expressed in SOPs of the pupal notum. The DNA fragments to be tested as CRMs were defined based on
sequence conservation across the genome of 12 Drosophila species (bottom panels). Genome views showing exon/intron gene structure (gene model), position of
the tested fragments and the conservation conservation signal. Genomic fragments with SOP-specific CRM activity are shown in red. CRM activity was monitored
using a lacZ reporter gene. Cytoplasmic β-Galactosidase, green; nuclear Cut (red) as a SOP marker; DAPI in blue in high magnification views. Note that some SOPs
have divided (as indicated by pairs of Cut-positive nuclei). A-A”: sensEnh3 B-B”: cpoEnh6 C-C”: vvlEnh3 D-D”: CG9363Enh1 E-E””: SpdoEnh3,SpdoEnh4
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Fig. S2. Selection of optimal motif width and CRM width Similarly to Fig. 3-A, the number of predicted CRMs associated with a gene annotation related to
sensory organs (number of matches in the y axis for the 100 top-ranked fragments; see section 3.3 of the supporting text) was plotted as a function of the number of
motifs (1 to 12; x axis) for different Sth values (from 12.7 to 13.6). A. The curves are plotted for different CRM widths : 300, 600, 800, 1200 and for the same motifs
as in Fig. 3-A. B. The curves are plotted for different motif widths : 8, 9, 12, 14 and for CRMs of width 1000nt. The solid black circles in each figure denote the number
of matches obtained for the parameters chosen for the experimental validation.
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Fig. S3. In vivo analysis of motifs 1 and 3 Site directed mutagenesis of the two sites detected as motif 1 in neurCRM1 strongly reduced the activity of this CRM
in trangenic flies (A,A’). In contrast, mutagenesis of the three sites detected as motif 3 in sensCRM3 did not detectably change the activity of this CRM (B,B’). CRM
activity was monitored in 17 hours APF pupae by anti-β-galactosidase antibody staining (green). Cut (red) was used as a nuclear marker for SOPs and its progeny
cells.
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Fig. S4. Cross-correlation between motif 1 and 2 A. Genome-wide cross-correlation of conserved instances of motifs 1 and 2 in the D. melanogaster genome.
The number of motif pairs (boxes) was plotted as a function of the distance (x axis) between the two motifs (bin size = 200bp). The red curve was obtained by
smoothing the histogram with a gaussian (width= 150bp). The dashed line represented the average number of instances at very long distances. The co-occurrence
of motifs 1 and 2 was shown by the histogram peak around zero. B. To assess the significance of the cross-correlation peak in A, we computed the cross-correlations
between the original matrix 2 and 150 randomized versions of matrix 1 obtained by randomly shuffling its columns. The average cross-correlation of matrix 2 with the
randomized versions of matrix 1 was displayed on the graph. The average (over the 150 randomized cross-correlations) difference in site number between the first bin
(0− 200 bp) and the 3 last bins (1400− 2000 bp) was 0.47 with a standard deviation of 1.49. The distribution fitted well a gaussian and we did not observe values
above 6.0. This led us to very conservatively estimate that p < 0.005 and to conclude that the observed correlated appearance of binding sites for matrix 1 and 2
was highly significant. Of note, while the binding site density was found to be comparable for matrix 1 and its randomized analogs, matrix 2 was found to have much
more binding instances than its randomized versions. This potential bias prevented us from computing control correlations with randomized versions of motif 2.
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Fig. S5. In vivo analysis of predicted CRMs in the pupal notum Predicted CRMs were tested for their regulatory activity in the notum of 16-18hours APF
transgenic pupae (all positive CRMs are shown, with the exception of CRM17). β-galactosidase expression is shown in top panels. For each CRM, a low and a
high-magnification view is shown: Cytoplasmic β-galactosidase, green; nuclear Cut (red) as a SOP marker; DAPI in blue in high magnification views. The genomic
position of the CRM is indicated by a blue box in the corresponding bottom panel. Eleven out of the 29 top-ranked CRMs directed expression in SOPs: CRM4 (A-A”)
CRM7 (Fig. 2), CRM8 (B-B”), CRM9 (C-C”; expression extended to PNCs), CRM20 (Fig. 4), CRM23 (F-F”), CRM24 (G-G”; expression extended to PNCs), CRM26
(H-H”), CRM28 (I-I”; expression was not strictly restricted to SOPs) and CRM29 (J-J”; note that expression extended to PNCs). Five additional CRMs were active
in SOPs: two, CRM40 (Fig. 4) and CRM100 (K-K”) were tested because they were found close to a functionally validated CRM, CRM20 and CRM29, respectively;
three others, CRM22’/CRM22” (D-E’), CRM39 (L-L”) and CRM41 (Fig. 2) were tested because they were located close to genes expressed in PNCs and up-regulated
in SOPs, i.e. Delta, scute and scabrous, respectively. While the 1000 nt fragment tested as CRM22 was not active in our reporter assay, a larger 2.1 kb fragment
encompassing CRM22, and referred to here as CRM22”, was active in PNCs (D”, E and E’). CRM22” also encompassed another 1000 nt fragment with a high score
in our CRM prediction test. This fragment, noted here CRM22’, was also active, albeit more weakly, in SOPs and PNCs. This is consistent with the notion that CRM22
contains some cis-regulatory information that contributes to the activity of CRM22”.
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Fig. S6. In vivo analysis of predicted CRMs in the larval brain Predicted CRMs were tested for their regulatory activity in larval brain of third instar larvae.
Several CRMs from the SOP training set, including spdoCRM4 (A), vvlCRM3 (B), miraCRM1 (C) and neurCRM1 (D) were active in larval neuroblasts. Thirteen of the
29 top-ranked CRMs were also directing β-galactosidase expression in neuroblasts. These included CRM2 (E), CRM3 (F), CRM5 (G), CRM6 (H), CRM7 (I), CRM
(8), CRM14 (K), CRM15 (L), CRM18 (M), CRM19 (N), CRM20 (O), CRM24 (P) and CRM26 (Q). Additionally, three additional CRMs active in SOPs are also active in
neuroblasts: CRM40 (Q), CRM41 (R) and CRM100 (S).
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Fig. S7. In vivo analysis of predicted CRMs in chordotonal SOPs of leg imaginal discs The regulatory activity of CRMs from the SOP training set (A-F) and
of predicted CRMs (G-O) was tested in in leg imaginal discs dissected from third instar larvae: Cytoplasmic β-galactosidase, green; Sens (red) as a SOP marker.
Most CRMs active in SOPs of the pupal notum were also active in chordotonal (ch)-SOPs (arrow in A). A few CRMs, including CRM9 (J) and CRM39 (O), were active
in External (E)-SOPs, that generate external sense organs, but not in ch-SOPs. In contrast with pupal notum E-SOPs that are specified by the proneural factors
Achaete and Scute, ch-SOPs are specified by the proneural bHLH factor Atonal. Thus, CRMs active in both E-SOPs and Ch-SOPs are likely to be, directly or indirectly,
regulated by both Atonal/Da and Ac(or Sc)/Da heterodimers (1). Since motif 2 of SensEnh3 can interact with Ato/Da, Ac/Da and Sc/Da heterodimers (2), regulation
can be direct for all six CRMs expressed in both E-SOPs and Ch-SOPs that contain one to three copies of motif 2 (see Table S8).
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Fig. S8. lola supporting characterization (A-C) In situ hybridization analysis of lola transcript accumulation. lola transcripts were detected in neuroblasts of
third instar larval brain (A) as well as in all cells of wing and leg imaginal discs. lola transcripts appeared to be more abundant in both E-SOPs (arrows) and ch-SOPs
(arrowhead) of wing and leg imaginal discs. (D-E) Experimental validation of anti-Lola antibodies and RNAi-mediated inactivation of the lola gene. Immunostaining
of a wing imaginal disc expressing a UAS-dsRNA construct against lola under the control of patched (ptc)-GAL4. The signal detected by the anti-Lola antibodies
(green; DAPI in red) was very strongly reduced in ptc-GAL4 expressing cells (indicated by a bar), indicating that anti-Lola antibodies specifically recognized Lola and
that the lola dsRNA construct efficiently down-regulated lola gene expression. (F-J) lola genetically interacts with asense and Hairless. RNAi-mediated inactivation
of lola using Eq-GAL4 at 25◦C had little effect on bristle development, with only a few bristles potentially missing (arrow in F). Similarly, RNAi-mediated inactivation
of asense using Eq-GAL4 Gal80ts at 29◦C did not result in a detectable bristle phenotype (G). In contrast, concomittant inactivation of the lola and asense genes
using Eq-GAL4 Gal80ts at 29◦C resulted in a strong bristle loss (H). Additionally, while the loss of a single copy of the Hairless gene had no significant effect on
microchaete development (I), RNAi-mediated inactivation of lola using Eq-GAL4 at 25◦C in HE31 heterozygous flies had a strong effect on bristle development, with
many microchaetes showing a double-socket phenotype (J). This phenotype is indicative of a gain of Notch activity causing the transformation of shaft cells into socket
cells (3).

8



Table S1. The SOP training set: validated CRMs.

Id. Coordinate Neighboring SOP Source
chromosome start stop specific gene

CG32150CRM 3L 15839629 15840789 CG32150 Reeves et al (4)
chnCRM 2R 11019807 11020918 charlatan (chn) "

miraCRM 3R 15756362 15757274 miranda (mira) "
PFECRM 2L 18013214 18015611 reduced ocelli (rdo) "

neurCRM1 3R 4850827 4850970 neuralized (neur) Gomes et al (5)
neurCRM2 3R 4852116 4853004 " "
phylCRM1 2R 10320543 10322141 phyllopod (phyl) Pi et al (6)
phylCRM2 2R 10322623 10324621 " "

CG9363CRM1 3R 5284935 5285565 CG9363 this study
spdoCRM3 3R 26300460 26301460 sanpodo (spdo) "
spdoCRM4 3R 26301990 26302330 " "

cpoCRM6 3R 13777879 13778379 couch potato (cpo) "
vvlCRM3 3L 6778859 6779909 ventral vein lacking (vvl) "

sensCRM3 3L 13395475 13396245 senseless (sens) "

Coordinates of the 14 validated SOP CRMs in our training set. The given coordinates correspond to the D. melanogaster genome assembly v.
5.
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Table S2. The SOP training set: conserved sequences close to some SOP genes.

Id. Coordinate Neighboring SOP
chromosome start stop specific gene

CG9363CRM2 3R 5285715 5286515 CG9363
CG32392CRM1 3L 6757396 6758246 CG32392

spdoCRM1 3R 26297910 26298960 sanpodo (spdo)
spdoCRM2 3R 26299410 26299660 "
cpoCRM1 3R 13758629 13759229 couch potato (cpo)
cpoCRM2 3R 13760779 13761429 "
cpoCRM3 3R 13761629 13762479 "
cpoCRM4 3R 13765379 13765779 "
cpoCRM5 3R 13767329 13767979 "
cpoCRM7 3R 13778729 13779579 "
vvlCRM1 3L 6776359 6777679 ventral vein lacking (vvl)
vvlCRM2 3L 6777779 6778709 "
vvlCRM4 3L 6780709 6781529 "
vvlCRM5 3L 6782639 6783179 "
vvlCRM6 3L 6786509 6787709 "
vvlCRM7 3L 6787809 6788459 "
vvlCRM8 3L 6788759 6789659 "
vvlCRM9 3L 6789839 6790659 "
svCRM1 4 1108593 1109363 shaven (sv)
svCRM2 4 1109593 1110093 "
svCRM3 4 1110993 1111443 "

insvCRM1 2L 2575086 2575406 insensitive (insv)
insvCRM2 2L 2576496 2576756 "
insvCRM3 2L 2576906 2577256 "

sensCRM1 3L 13388205 13389155 senseless (sens)
sensCRM2 3L 13394325 13395125 "
sensCRM4 3L 13397295 13398245 "
sensCRM5 3L 13398475 13399205 "
chnCRM1 2R 11000170 11001220 charlatan (chn)
chnCRM2 2R 11015320 11015670 "
chnCRM3 2R 11022520 11023420 "

Coordinates of the 31 sequences in our SOP training set that were chosen on the basis of their conservation and their proximity to known SOP
but that did not direct reporter gene expression in SOPs. The given coordinates correspond to the D. melanogaster genome assembly v. 5.
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Table S3. The PNC training set.

Id. Coordinate Neighboring PNC Source
chromosome start stop specific gene

malphaCRM 3R 21835602 21836613 E(spl) region transcript mα (mα) B. Castro et al (7)
EsplCRM 3R 21864872 21865973 Enhancer of split (E(spl)) "

HLHm5CRM 3R 21855458 21856354 E(spl) region transcript mα (HLHm5) M. Lecourtois and F. Schweisguth (8)
m4CRM 3R 21850216 21850717 E(spl) region transcript m4 (m4) A. M. Bailey and J. W. Posakony (8)
BrdCRM 3L 14964319 14965768 Bearded (Brd) A. Singson et al (9)
edlCRM 2R 14558811 14560190 ETS-domain lacking (edl) N. Reeves and J. W. Posakony (4)

traf4CRM 2L 4374718 4375544 TNF-receptor-associated factor 4 (Traf4) "
sizCRM 3L 21059048 21060958 schizo (siz) "

Coordinates of the sequences that compose our PNC training set. The given coordinates correspond to the D. melanogaster genome assembly
v. 5.
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Table S4. Predicted SOP motifs.

Starting site Score χ2 score Site density Site density Logo
on the training set on the background
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The first ten top-ranked motifs obtained with the SOP training set are displayed in the top part of the table. The five top-ranked motifs
corresponding to repeated sequences are displayed in the bottom part of the table. The score column corresponds to the score of motifs defined
in supporting text, section 2.5.3. The χ2 score is defined in supporting text, section 2.5.2. The site densities correspond to a site detection
threshold of Sth = 13.3.
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Table S5. Matrices associated to the predicted SOP motifs.
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C [ 0.971 0.971 0.01 0.008 0.971 0.19 0.008 0.971 0.671 0.779 ]
G [ 0.008 0.008 0.297 0.971 0.008 0.011 0.971 0.008 0.01 0.194 ]
T [ 0.012 0.012 0.678 0.012 0.012 0.654 0.012 0.012 0.305 0.013 ]

∗

0.0

1.0

2.0

b
it
s

T

G
A
A
G
T

A

C
G
C
A

5

GCAGA

C
10

C
T

A [ 0.824 0.251 0.042 0.919 0.005 0.005 0.986 0.005 0.087 0.007 ]
C [ 0.004 0.004 0.302 0.075 0.004 0.991 0.004 0.004 0.905 0.172 ]
G [ 0.13 0.741 0.613 0.004 0.981 0.004 0.004 0.981 0.004 0.004 ]
T [ 0.045 0.006 0.041 0.006 0.005 0.005 0.005 0.005 0.006 0.815 ]

∗

0.0

1.0

2.0

b
it
s

A
G
C
G
AAA

5

AACAAGA
10

G

T

C
A

A [ 0.144 0.567 0.986 0.986 0.986 0.986 0.901 0.986 0.84 0.832 ]
C [ 0.671 0.005 0.005 0.005 0.005 0.005 0.087 0.005 0.005 0.081 ]
G [ 0.177 0.422 0.005 0.005 0.005 0.005 0.005 0.005 0.144 0.042 ]
T [ 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.044 ]

∗

0.0

1.0

2.0

b
it
s CCGCG

5

CC
G
AAGCA

10

T
C
G
A

A [ 0.008 0.01 0.008 0.007 0.008 0.008 0.901 0.986 0.866 0.37 ]
C [ 0.981 0.181 0.981 0.005 0.981 0.981 0.005 0.005 0.062 0.202 ]
G [ 0.005 0.803 0.005 0.981 0.005 0.005 0.089 0.005 0.06 0.303 ]
T [ 0.007 0.01 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.124 ]

∗

0.0

1.0

2.0

b
it
s

A

T

G
C
C

A

T
G
T
A
A

C
T

5

C

A

T

G
C

A

T

G
G

T

A

C
T

A
C

A

T

G
10

G

T

A

C
A [ 0.016 0.016 0.587 0.015 0.014 0.014 0.014 0.967 0.014 0.014 ]
C [ 0.819 0.011 0.011 0.129 0.009 0.009 0.961 0.009 0.009 0.961 ]
G [ 0.147 0.819 0.011 0.01 0.961 0.961 0.009 0.009 0.961 0.009 ]
T [ 0.016 0.154 0.391 0.849 0.014 0.014 0.014 0.014 0.014 0.014 ]

∗

0.0

1.0

2.0

b
it
s

T

A

G
A

T

CAA
5

T
ATCGT

T

A

G
A

T

C
10

T
C
A

A [ 0.009 0.009 0.976 0.976 0.754 0.009 0.012 0.009 0.009 0.538 ]
C [ 0.006 0.981 0.006 0.006 0.008 0.006 0.211 0.006 0.981 0.268 ]
G [ 0.981 0.006 0.006 0.006 0.008 0.006 0.326 0.981 0.006 0.008 ]
T [ 0.009 0.009 0.009 0.009 0.231 0.976 0.451 0.009 0.009 0.185 ]

∗

Position frequency matrices associated to the first ten top-ranked motifs obtained with the SOP training set.
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Table S6. Predicted PNC motifs.

Starting site Score χ2 score Site density Site density Logo
on the training set on the background

TGGGAGAAAC 63.3 4.86 1.1× 10−3 2.4× 10−5

0.0

1.0

2.0

b
it
s

A

C
TGTG

5

A
GGAACA

10

G
C

AAACAGCTGC 46.9 3.33 9.91× 10−4 3.86× 10−5

0.0

1.0

2.0

b
it
s

G
A
G
A
T

AC
5

ATCGA

CTG
10

A

C
ACCCAAAAAC 31.7 10.9 8.81× 10−4 1.02× 10−4

0.0

1.0

2.0

b
it
s

T

A
C

T

A

G
G

T

A

C
G

T

A

C
5

T

A
T

G
A
C
T

A
T

A
T

G
C
A

10

G

T

A
C

ATGCGTGGGA 27.7 8.12 5.51× 10−4 3× 10−5

0.0

1.0

2.0

b
it
s

C
G
AT

T

A

GTC
5

T

A

GTTCGTAGTAG
10

C
T
A

CCTTTTACGC 25.5 0.787 4.41× 10−4 1.47× 10−5

0.0

1.0

2.0

b
it
s

T

A

G
C
A

T

CTT
5

TTATA
10

T

A

G
C

GATGTGTTTT 25.4 3.61 5.51× 10−4 4.28× 10−5

0.0

1.0

2.0

b
it
s

T

A

G
C
A

T

GT
A

G
T

5

T
A

T

GTTT
10

C
T

CAACATGTGC 23.2 18.8 5.51× 10−4 3.83× 10−5

0.0

1.0

2.0
b

it
s

G

T

A

C
T

A
T

G
A
G

T

A

C
5

T

AAGT
C

T

A

G
A

T
C

T

A

G
10

A

C
T

CTTGGCTAGC 19 10.3 4.41× 10−4 5.3× 10−5

0.0

1.0

2.0

b
it
s

G

T

A

C
A

T
A

T
C

T

A

G
5

C

T

A

G
A

T

C
A

T
C
T

A
T

A

C
G

10

T

C
A

GCGACAGCTG 18.7 12 4.41× 10−4 5.16× 10−5

0.0

1.0

2.0

b
it
s

G
A
T

A

C
T

A

G
T

A
G

5

T

A

CA
A

T

G
T

A
G
CT

10

A

T

G
The first nine top-ranked motifs obtained with the PNC training set are displayed. The site densities correspond to a site detection threshold of
Sth = 13.3.
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0.0

1.0

2.0

b
it
s

A

C
TGTG

5

A
GGAACA

10

G
C

Table S7. Matrices associated to the predicted PNC motifs.

A [ 0.043 0.005 0.005 0.005 0.244 0.005 0.986 0.986 0.731 0.006 ]
C [ 0.427 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.259 0.638 ]
G [ 0.004 0.991 0.003 0.991 0.749 0.991 0.003 0.003 0.004 0.348 ]
T [ 0.526 0.005 0.986 0.005 0.006 0.005 0.005 0.005 0.006 0.006 ]

∗

0.0

1.0

2.0

b
it
s

G
A
G
A
T

AC
5

ATCGA

CTG
10

A

C
A [ 0.832 0.901 0.947 0.006 0.986 0.008 0.047 0.006 0.006 0.054 ]
C [ 0.005 0.004 0.004 0.981 0.004 0.159 0.942 0.004 0.004 0.933 ]
G [ 0.152 0.091 0.004 0.004 0.004 0.771 0.004 0.004 0.981 0.004 ]
T [ 0.008 0.006 0.048 0.006 0.006 0.062 0.006 0.986 0.006 0.007 ]

∗

0.0

1.0

2.0

b
it
s

T

A
C

T

A

G
G

T

A

C
G

T

A

C
5

T

A
T

G
A
C
T

A
T

A
T

G
C
A

10

G

T

A
C

A [ 0.957 0.017 0.017 0.017 0.957 0.308 0.957 0.957 0.611 0.294 ]
C [ 0.011 0.011 0.952 0.952 0.011 0.522 0.011 0.011 0.263 0.677 ]
G [ 0.011 0.952 0.011 0.011 0.011 0.151 0.011 0.011 0.109 0.012 ]
T [ 0.017 0.017 0.017 0.017 0.017 0.019 0.017 0.017 0.017 0.018 ]

∗

0.0

1.0

2.0

b
it
s

C
G
AT

T

A

GTC
5

T

A

GTTCGTAGTAG
10

C
T
A

A [ 0.482 0.009 0.009 0.008 0.009 0.009 0.01 0.009 0.009 0.815 ]
C [ 0.158 0.006 0.006 0.819 0.006 0.006 0.111 0.006 0.006 0.081 ]
G [ 0.35 0.006 0.981 0.006 0.981 0.006 0.779 0.981 0.981 0.007 ]
T [ 0.01 0.976 0.009 0.164 0.009 0.976 0.099 0.009 0.009 0.092 ]

∗

0.0

1.0

2.0

b
it
s

T

A

G
C
A

T

CTT
5

TTATA
10

T

A

G
C

A [ 0.011 0.01 0.01 0.01 0.01 0.01 0.976 0.01 0.976 0.012 ]
C [ 0.583 0.971 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.541 ]
G [ 0.393 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.435 ]
T [ 0.011 0.01 0.976 0.976 0.976 0.976 0.01 0.976 0.01 0.012 ]

∗

0.0

1.0

2.0

b
it
s

T

A

G
C
A

T

GT
A

G
T

5

T
A

T

GTTT
10

C
T

A [ 0.012 0.01 0.01 0.013 0.01 0.01 0.01 0.01 0.01 0.012 ]
C [ 0.492 0.006 0.006 0.009 0.006 0.006 0.006 0.006 0.006 0.437 ]
G [ 0.483 0.971 0.006 0.418 0.006 0.971 0.006 0.006 0.006 0.008 ]
T [ 0.012 0.01 0.976 0.56 0.976 0.01 0.976 0.976 0.976 0.542 ]

∗

0.0

1.0

2.0

b
it
s

G

T

A

C
T

A
T

G
A
G

T

A

C
5

T

AAGT
C

T

A

G
A

T
C

T

A

G
10

A

C
T

A [ 0.015 0.967 0.665 0.015 0.967 0.206 0.015 0.015 0.015 0.02 ]
C [ 0.961 0.01 0.011 0.961 0.01 0.014 0.01 0.01 0.01 0.472 ]
G [ 0.01 0.01 0.308 0.01 0.01 0.214 0.961 0.01 0.961 0.013 ]
T [ 0.015 0.015 0.016 0.015 0.015 0.566 0.015 0.967 0.015 0.495 ]

∗

0.0

1.0

2.0

b
it
s

G

T

A

C
A

T
A

T
C

T

A

G
5

C

T

A

G
A

T

C
A

T
C
T

A
T

A

C
G

10

T

C
A

A [ 0.096 0.015 0.015 0.015 0.015 0.014 0.016 0.967 0.018 0.666 ]
C [ 0.879 0.01 0.01 0.01 0.01 0.853 0.644 0.01 0.143 0.307 ]
G [ 0.01 0.01 0.01 0.961 0.961 0.009 0.011 0.01 0.819 0.011 ]
T [ 0.014 0.967 0.967 0.015 0.015 0.12 0.329 0.015 0.018 0.016 ]

∗

0.0

1.0

2.0

b
it
s

G
A
T

A

C
T

A

G
T

A
G

5

T

A

CA
A

T

G
T

A
G
CT

10

A

T

G
A [ 0.715 0.011 0.07 0.463 0.011 0.976 0.01 0.166 0.01 0.01 ]
C [ 0.008 0.971 0.007 0.01 0.971 0.007 0.007 0.638 0.007 0.007 ]
G [ 0.266 0.007 0.914 0.512 0.007 0.007 0.971 0.178 0.007 0.971 ]
T [ 0.011 0.01 0.01 0.015 0.01 0.01 0.011 0.016 0.976 0.011 ]

∗
Position frequency matrices associated to the first nine top-ranked motifs obtained with the PNC training set.
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Supporting text
Genome-wide identification of cis-regulatory

motifs and modules underlying gene
co-regulation, using statistics and phylogeny

1 Modelization of transcription factor affin-

ity for DNA

1.1 Transcription factor frequency matrix

The DNA-binding specificity of a transcription factor (TF) T is represented
by a frequency matrix w [1]. The matrix w specifies the frequency wb,i at
which a base b (b =A, T, C or G) is found at position i, 1 ≤ i ≤ W , in a set
of properly aligned DNA binding sites s = (s1, s2, · · · , sW ) for the factor T .

This representation [1] implicitly assumes that the affinity of a base for
a transcription factor (TF) is independent of the other bases present in the
binding site [2]. Although this may not be strictly true [3, 4], the number
of sites found on the training set (see main text) corresponding to the best
ranked matrices does not exceed a few dozens and does not allow the inference
of further correlations.

1.2 Sites associated to a frequency matrix

Each frequency matrix corresponds to a position weight matrix (PWM; see
[1]) :

εb,i = log2

wb,i
πb

(1)

where πb is the mean frequency of the base b within intergenic regions,
(πA,T = 0.30 and πC,G = 0.20 as measured on the “background sequences”,
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see subsection 3.1). PWMs serve to infer the relative affinity of TFs for DNA
sequences [2]. DNA sequences are assumed to be binding sites for a TF if
they have a sufficiently high affinity. To this end, a score threshold Sth is
introduced and a sequence of width W is assumed to be a site corresponding
to the considered PWM if :

W∑
i=1

εb(i),i > Sth (2)

where b(i) is the base present at position i on the site sequence. As detailed
in the main text, we typically used Sth values between 12 and 14 .

Reverse complement A sequence corresponding to a given PWM can a
priori recognize sites located on both DNA strands. We shall assume in
the following that the recognized sites are not biased toward a particular
stand. Therefore, we shall assume that a sequence of the sequenced strand
also corresponds to a site i of the considered PWM if :

W∑
i=1

εb̄(W−i+1),i > Sth (3)

where b̄(i) is the complementary base of b(i). Hence, the set of sites corre-
sponding to a PWM is the set of sequences verifying either (2) or (3).

2 Algorithm for PWM inference

The goal of the algorithm described here is to infer PWMs and their corre-
sponding binding sites, from a collection of intergenic sequences, the training
set, with no a priori knowledge of the TFs involved. The training set con-
sists of sequences for a given species (D. melanogaster in the present work).
Conservation with other species (the 11 other sequenced Drosophilae species
here) is used both to enrich the training set with orthologous sequences and
to focus on PWMs that have conserved binding sites in different species.

2.1 Overview of the algorithm

The algorithm designed to build the matrices from the training set proceeds
in several steps:
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i) First, at each base position p in the training set, a sequence s of width
W starting at p is extracted, and an initial approximative matrix is built
using this unique sequence.

ii) The training set (consisting of D. melanogaster CRM sequences only)
is exhaustively scanned for sites corresponding to the previously deter-
mined approximative matrix, i.e. for sites that have a score higher than
Sth. For each found site, orthologous sites are searched in the 11 other
sequenced Drosophilae species. These orthologous sites are combined to
obtain a refined frequency matrix using phylogenetic information and a
model of transcription factor binding site evolution. The procedure is
iterated to converge on a final frequency matrix.

iii) The set of obtained PWMs is pruned by eliminating redundant PWMs
and PWMs that correspond to repeated sequences by analyzing the
statistics of their binding sites on a set of “background” intergenic se-
quences. The remaining set of PWMs is ranked according to the devia-
tion of their bindings statistics on the validated enhancers of the training
set, from what would be expected from their binding statistics on the
background set.

The implementation of these steps as well as some technical assumptions
are detailed below.

2.2 Bayesian inference of PWMs and choice of a prior

2.2.1 Bayesian inference

In the core part of the algorithm, the detection of sites corresponding to a
PWM is used to refine this PWM. This is done in a “Bayesian” way [5]: the
probability that a frequency matrix has a particular form is modified by the
successive detection of binding sites. Namely, for a given frequency matrix
w, one can compute the probability P(s|w) that one of its binding sites has
the sequence s = (s1, · · · , sW ),

P(s|w) =
∏
i

wsi,i (4)

If the probability of the different matrix forms is P(w), finding that s is
a binding site of the searched matrix changes the probability of the differ-
ent matrix forms to P(w|s). The posterior probability P(w|s) follows from
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Bayes’ rule for conditional probability,

P(w|s) ∝ P(s|w)P(w) (5)

where the proportionality sign simply means that P(w|s) should be normal-
ized.

2.2.2 Prior

In order to start the process, one needs to decide what the probability is a
priori that the frequency matrix has a particular form w. For convenience,
the a priori probability distribution, “the prior”, that the matrix w has the
column ({wb,i} ≡ {wA,i, wT,i, wC,i, wG,i}) at position i, is chosen, as often, to
be a Dirichlet distribution [6],

P({wb,i}) =
wα−1
A,i w

α−1
T,i w

β−1
C,i w

β−1
G,i

B(α, α, β, β)
δ

(
1−

∑
b

wb,i

)
(6)

where the normalizing term B(α, α, β, β) is the quadrinomial Beta function,
the index b runs over the four bases types and the δ-function ensures that
the sum of their probabilities is equal to 1 in each column of the matrix
w. The exponents associated with complementary bases are chosen equal in
agreement with our assumption on reverse complement sites (see paragraph
1.2).

Two further assumptions fully determine the exponents α and β of the
prior (Eq. (6) .

First, it is assumed that the a priori base frequencies at each position,
in the set of frequency matrices, are equal to the base frequency in the back-
ground (i.e. that TF binding sites have no systematic bias in base composi-
tion),

〈wb〉Prior distribution = πb (7)

This imposes that :
α

β
=
πA,T

πC,G

(8)

A second condition on α and β arises from requiring that a frequency
matrix contains on average a prescribed amount of information (i.e. deviate
from the background frequencies). We require, consistent with our site de-
tection method (see subsection 1.2), that the average information content of
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a frequency matrix over the prior , is equal to the score threshold Sth defined
above.

The information content IC of a matrix w is defined as :

IC(w) =
∑
i,b

wb,i log2(wb,i/πb) (9)

where the sum runs over i, the index of the W possible column positions, and
over b, which denotes the four possible base types. With the chosen prior ,
all columns contribute equally to the mean information content which can
thus be written as :

〈IC〉Prior distribution = W

∫ (∏
b

dwb

) ∑
b

wb log2(wb/πb)P({wb}) (10)

The aforementioned condition translates into 〈IC〉 = Sth. It leads upon
performing the integrals and using Eq. (8) to :

2πA,T

[
ψ(α + 1)− ψ

(
α

πA,T
+ 1

)
− ln(πA,T )

]
+ 2πC,G

[
ψ

(
πC,Gα

πA,T
+ 1

)
− ψ

(
α

πA,T
+ 1

)
− ln(πC,G)

]
= Sth log(2)/W

(11)

where ψ is the digamma function [7]. Eq. (11) determines the exponent α
(and β) as a function of the information content a priori required for PWMs.

2.3 Initial matrices

The first step of the algorithm is, for each position p on the training set, to
extract the sequence s of width W starting at p, and to build an approxi-
mative form for a matrix that would bind this particular sequence. Using
Bayesian inference (Eq. (5)) and the Dirichlet prior (Eq. (6)), one obtains
for the probability distribution of the matrices w that bind the sequence
s = (s1, ..., sW )

P(w|s) ∝
∏
i

wsi,iw
α−1
A,i w

α−1
T,i w

β−1
C,i w

β−1
G,i (12)
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The initial matrix w(in) is chosen as the mean of the distribution (12) :

w
(in)
b,i =

δs(i),b + α(δA,b + δT,b) + β(δC,b + δG,b)

1 + 2α + 2β
(13)

where δA,b = 1 if b = A and 0 when b 6= A. In other words, an initial matrix
w(in) is build for each sequence of the training set using pseudo-counts α for
(A,T) and β for (C,G).

2.4 Matrix refinement

The second step of the algorithm consists in refining the initial matrix (13)
using the training set sequences and conservation with orthologous species.
This proceeds as follows.

2.4.1 Scan of the training set.

For a given initial matrix, the training set is exhaustively scanned to find all
the N1 corresponding sites sD.mel;j = (sD.mel;j1 , · · · , sD.mel;jW ), j = 1, · · · , N1,
i.e. sites that have a score higher than the threshold Sth for the initial
matrix w(in). Then, for each found binding site, orthologous sites are sought
in the eleven other sequenced Drosophilae species. Only orthologous sites
with a score above a milder threshold S ′th < Sth are retained (the value S ′th =
Sth−1.5 was used). This allows some flexibility in the refinement process and
it facilitates the retention of information coming from orthologous sequences.
At the same time, it eliminates cases where no orthologous sequence is present
for the considered CRM, either because the sequencing procedure left a hole,
or because the regulatory sequence has disappeared through evolution, and
cases where an orthologous sequence is present but in which the particular
site under consideration has no orthologous counterpart.

Orthologous sites are sought on orthologous sequences of width W+40nt
centered on the base aligned with the center of the site present in D. melanogaster.
The possibility of shifts within the alignments is introduced to ensure robust-
ness against errors coming from the alignements themselves, like spurious
insertion-deletion introduction in the sites or shifts in the alignment. If sev-
eral orthologous sites with a score higher than S ′th are found in one species
(within the W+40nt window), only the site with the highest score is taken
into account. If no orthologous site is found (because the orthologous site or
CRM is absent), we simply ignore the species for that particular site.
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2.4.2 Conservation requirements.

In order to reduce the noise coming from sequences that are poorly conserved
and present in multiple copies by chance in the reference species (that may
correspond to non-functional sites), we chose to keep only conserved sites, as
defined below, in the refinement process. We defined a site as conserved if
orthologous instances are found in at least three distant species, including D.
melanogaster. We defined 5 groups of closely related species : {melanogaster,
simulans, sechellia, yakuba, erecta}, {ananassae}, {pseudoobscura, persimil-
lis}, {willistoni}, {mojavensis, virilis, grimshawi}. A site instance must
be found in at least three of these five groups for the site to be consid-
ered as conserved. This conservation requirement reduces the N1 sites in D.
melanogaster to N conserved sites.

2.4.3 Matrix estimation using conserved binding sites.

The previous steps provide N conserved binding sites corresponding to a fre-
quency matrix in the D. melanogaster training set aligned with their ortholo-
gous counterparts in the eleven other sequenced species, sσ;j = (sσ;j

1 , · · · , sσ;j
W )

where j is the index of the site (j = 1, · · · , N), and (σ = D.mel, · · · , D.grim)
is the species index. The obtention of a refined frequency matrix requires
computing the probability that each one of these N sites in the reference
species and its orthologous sites in the other species are sites for a given fre-
quency matrix w. To this aim, we adopt here a simple evolutionary model for
TF binding sites previously used in ref. [8, 9]. It assumes that the frequency
matrices of orthologous transcription factors in different species and their
common ancestor are identical. Then, when a point mutation occurs during
the course of evolution in a TF binding site, it is assumed that the binding
site is drawn at random among the possible binding sites (with all the others
bases unchanged). In other words, the mutated base is chosen at random
among the 4 different bases with probabilities equal to those of the column
of the TF frequency matrix corresponding to the mutating base. This model
translates into a simple mathematical form for the transition probabilities
between a base b and a base b′ at the i-th position in a binding site, for an
ancestor and a daughter species at a phylogenetic distance of d,

pb→b′ = qδb,b′ + (1− q)wb′,i (14)

where the proximity q = exp(−d) is the probability that no mutation has
occurred between the two considered species.
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Given a frequency matrix w and a species phylogenetic tree, this model
gives the probability P({sσ;α

i }|w) of observing the collection of bases {sσ;α
i }

at position i of the α-th binding site in all species in which the site is detected.
This is done recursively [10] by computing backward in time, the probability
Pm(sαi = b|w) of a phylogenetic tree leading to the observed bases, in which
a mother species m has base b at the i-th position of the site α, knowing the
corresponding tree probabilities, Pd1(sαi = b|w) and Pd2(sαi = b|w), for its
two daughter species d1, d2

Pm(sαi = b|w) =

[
qm,d1Pd1(sαi = b|w) + (1− qm,d1)

∑
b′

wb′,iPd1(sαi = b′|w)

]

×

[
qm,d2Pd2(sαi = b|w) + (1− qm,d2)

∑
b′

wb′,iPd2(sαi = b′|w)

]

where qm,d1 and qm,d2 are the proximities between the mother and two daugh-
ters species. After climbing the whole species phylogenetic tree, this provides
the probability of the tree starting from different bases at the i-th position of
the site α in the species common ancestor Pca(sαi = b|w). Finally the prob-
ability P({sσ;α

i }|w) of the observed collection of bases at the i-th position of
the α-th site given the weight matrix w, is obtained as,

P({sσ;α
i }|w) =

∑
b

wbPca(sαi = b|w) (15)

The likelihood of a frequency matrix w for the whole collection of binding
sites is computed from the individual probabilities P({sσ;α

i }|w) by assuming
that the evolution of the different bases in a binding site occurred indepen-
dently as well as the evolution of different binding sites,

P(w|{sσ;α}) =
∏

1≤α≤N

∏
1≤i≤W

P({sσ;α
i }|w) P(w) (16)

where the product on the right-hand side runs over the W positions of the
N aligned conserved binding sites.

To estimate the best matrix that accounts for the observed sites and
alignments, we use maximum likelihood, that is we take the matrix w that
maximises the left-hand side of Eq.(16). This keeps the complexity of the
algorithm within a numerically accessible range. The previously determined
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Dirichlet exponents of the prior are changed accordingly so that the maxi-
mum likelihood estimate matches the mean estimate in the case of indepen-
dent sites (sites without alignments) :

P(w|{sσ;α}) =
∏

1≤α≤N

∏
1≤i≤W

P({sσ;α
i }|w)

∏
1≤j≤W

wαA,jw
α
T,jw

β
C,jw

β
G,j (17)

The numerical maximization is performed by using the Nelder and Mead
simplex algorithm implemented in the GNU Scientific Library [11].

2.4.4 Iterative refinement

Once the refined matrix is obtained from the maximum likelihood estimation,
it is again iteratively used to scan for sites in the training set until this process
converges to a frequency matrix wb,i. This type of algorithm sometimes leads
to trapping of the solution into unwanted local optima. To avoid that, each
frequency matrix wb,i is transformed to another matrix w′b,i :

w′b,i =
wb,i + α(δA,b + δT,b) + β(δC,b + δG,b)

1 + 2α + 2β
(18)

The algorithm is run a second time starting from w′ until convergence.

2.5 Pruning and ordering the set of obtained PWMs.

The previous algorithm produces a large number of PWMs. Some of them
are shifted duplicate of each other, some others appear to correspond to
repeated sequences. The set of obtained PWMs thus needs to be pruned and
the significance of the remaining ones assessed. These steps are described
below.

2.5.1 Proximity between matrices

We start by defining a notion of proximity between frequency matrices that
we call “strict proximity”. It assumes that the matrices are well aligned and
well oriented. We relax this constraint later.

The “strict proximity” between the two matrices w(1) and w(2) is defined
by comparing the set of binding sites common to the two matrices, to the
sets of binding sites for each one of them,
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Prox(w(1),w(2)) = 2
P
{

[S
(
s,w(1)) > Sth

]
and [S

(
s,w(2)) > Sth

]}
P{S(s,w(1)) > Sth}+ P{S(s,w(2)) > Sth}

(19)

where P{S(s,w) > Sth} is the probability that a sequence s drawn at random
with the background frequencies (πb, b = A,C,G, T ), has a score S(s,w)
above the threshold Sth for the frequency matrix w. Similarly, the numerator
of the expression (19), P{[S(s,w(1)) > Sth] and [S(s,w(2)) > Sth]}, is the
probability that a sequence is a binding site for both w(1) and w(2).

Given two matrices w(1) and w(2), Prox(w(1),w(2)) could, in principle, be
numerically computed by drawing a large ensemble of sequences. We find it
more convenient and numerically much faster to use an analytic approxima-
tion Proxas(w

(1),w(2)) that is asymptotically exact as the width W of the
PWMs grows (in the limit where the mean information per matrix column
is finite).

Before giving the expression of Proxas(w
(1),w(2)), we first introduce some

useful functions. For a matrix w, we define the real functions f(w) and g(w)
by

f(w) = −βSth +
∑

j=1,··· ,W

ln

[∑
b

πb exp(βεb,j)

]
(20)

g(w) =

[
β2

∑
j=1,··· ,W

∑
b,c πbπc(εb,j − εc,j)2 exp[β(εb,j + εc,j)]

[
∑

b πb exp(βεb,j)]
2

]−1/2

(21)

in which the sum over b and c corresponds to sums over the four bases, εb,j is
the PWM associated to w (Eq. (1)) and β is a function of w (or equivalently
of εb,j) implicitly defined by

Sth =
∑

j=1,··· ,W

∑
b πbεb,j exp(βεb,j)∑
b πb exp(βεb,j)

(22)

Similarly, for two matrices (w(1),w(2)), we define the real functions h(w(1),w(2))
and k(w(1),w(2))
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h(w(1),w(2)) = −(γ1 + γ2)Sth +
∑
j

ln

[∑
b

πb exp(γ1ε
(1)
b,j + γ2ε

(2)
b,j )

]
(23)

k(w(1),w(2)) =

[
γ2

1γ
2
2

∑
j,j′,a,b,c,d

πaπbπcπd

[
(ε

(1)
a,j − ε

(1)
b,j )(ε

(2)
c,j′ − ε

(2)
d,j′)− (ε

(1)
c,j′ − ε

(1)
d,j′)(ε

(2)
a,j − ε

(2)
b,j )
]2

[∑
b πb exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )
]2 [∑

b πb exp(γ1ε
(1)
b,j′ + γ2ε

(2)
b,j′)
]2

× exp
[
γ1(ε

(1)
a,j + ε

(1)
b,j + ε

(1)
c,j′ + ε

(1)
d,j′) + γ1(ε

(2)
a,j + ε

(2)
b,j + ε

(2)
c,j′ + ε

(2)
d,j′)
]]−1/2

(24)

where the indices a, b, c and d run over the four bases and γ1 and γ2 are
implicitly defined as a function of w(1) and w(2) by the following equations,

Sth =
∑

j=1,··· ,W

∑
b πbε

(1)
b,j exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )∑

b πb exp(γ1ε
(1)
b,j + γ2ε

(2)
b,j )

(25)

Sth =
∑

j=1,··· ,W

∑
b πbε

(2)
b,j exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )∑

b πb exp(γ1ε
(1)
b,j + γ2ε

(2)
b,j )

(26)

Given two matrices w(1) and w(2), these functions allow us to compute the
analytic approximation Proxas(w

(1),w(2)) of the strict proximity as,

Proxas(w
(1),w(2)) =

2
√

2

π

k(w(1),w(2)) exp
[
h(w(1),w(2))

]
g(w(1)) exp [f(w(1))] + g(w(2)) exp [f(w(2))]

(27)

A derivation of Eq. (27) is provided at the end of this subsection, for the
convenience of the reader.

To take into account potential differences in the alignments of the fre-
quency matrices, or in their orientation, Proxas(w

(1),w(2))is computed for all
the possible alignments of the two matrices (with a maximum shift of 3 nt) in
the two possible orientations. When shifted matrices are compared, they are
completed by additional columns with the background frequencies (i. e. with
no specifity). The proximity between the two matrices is obtained simply by
taking the maximum over the obtained strict proximities. Two PWMs are
considered duplicates of each other (i. e. correspond to two overlapping set
of sites) if, and only if, their proximity is higher than a chosen threshold.
For the results presented here, this proximity threshold was chosen to be
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1/10 and among duplicates the best-scoring matrix was kept. The β, γ1 and
γ2 parameters have been computed by optimizing the equations Eq. (20,23).
This has been implemented using the Brent algorithm for equation Eq. (20)
and the Fletscher-Reeves conjugate gradient algorithm for equation Eq. (23)
[11].

We conclude this subsection by a derivation of Eq. (27) using standard
statistical mechanics techniques (similar calculations in a related context can
be found, for instance, in OG Berg’s appendix to [2] or in [12]).

The probability P{S(w, s} > Sth) can be written

P{S(w, s) > Sth} =
∑

s

p(s)Θ(S(w, s)− Sth) (28)

where p(s) is the probability of drawing the sequence s and Θ(x) is the
Heaviside function , Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise. The sum
of sequences can be explicitly performed in a usual way by introducing an
integral representation for the Heaviside function

Θ(x− Sth) =

∫ +∞

Sth

du

∫ +∞

−∞

dλ

2π
exp[iλ(x− u)] (29)

Substitution in Eq. (28) and averaging over sequences leads to

P{S(w, s) > Sth} =

∫ +∞

Sth

du

∫ +∞

−∞

dλ

2π
exp

{
−iλu+

∑
j

ln

[∑
b

πb exp(iλεb,j)

]}
(30)

The integral on λ, the r. h. s. of Eq. (30), can be estimated by the method
of steepest-descent in the limit where W , the width of the PWM, is large.
We denote by F (u, λ) the argument of the exponential in Eq. (30)

F (u, λ) = −iλu+
∑
j

ln

[∑
b

πb exp(iλεb,j)

]
(31)

The saddle-point is given by ∂λF (u, λ) = 0. We ultimately find that the
u-integral is dominated by values close to the threshold Sth and we are con-
sidering restrictive and attainable values of Sth (i.e. below the value obtained
by taking the base with the maximum εb,j at each column j). In this case,
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a solution of the saddle-point equation is obtained for a purely imaginary
λ = −iβ with β > 0 implicitly defined as a function of u by 1 ,

u =
∑

j=1,··· ,W

∑
b πbεb,j exp(βεb,j)∑
b πb exp(βεb,j)

(32)

The integral around the saddle point is performed by expanding F (u, λ)
around λ = −iβ as

F (u, λ) = F (u,−iβ) +
1

2
(λ+ iβ)2 ∂2

λF (u, λ = −iβ) (33)

with

∂2
λF (u,−iβ) = −

∑
j

{∑
b πbε

2
b,j exp(βεb,j)∑

b πb exp(βεb,j)
−
[∑

b πbεb,j exp(βεb,j)∑
b πb exp(βεb,j)

]2
}

= −1

2

∑
j=1,··· ,W

∑
b,c πbπc(εb,j − εc,j)2 exp[β(εb,j + εc,j)]

[
∑

b πb exp(βεb,j)]
2 (34)

Performing the gaussian integral on λ readily gives

P{S(w, s) > Sth} =

∫ +∞

Sth

du√
2π

1√
|∂2
λF (u,−iβ)|

exp[F (u,−iβ)] (35)

The remaining integral over u can also be performed by the method of steep-
est descent. It is intuitively clear that it is dominated by the neighbourhood
of Sth, its lowest bound. It can also be directly checked that F (u,−iβ) is a
decreasing function of u by computing its derivative,

d

du
F (u,−iβ) =

∂

∂u
F (u,−iβ) = −β (36)

Although β is a function of u, the total derivative over u in Eq. (36) reduces
to a partial derivative, since β is an extremum of the partial derivative over
λ (Eq. (26)). Finally, one obtains

P{S(w, s) > Sth} =
1√
2π

1

β
√
|∂2
λF (Sth,−iβ)|

exp[F (Sth,−iβ)] (37)

1We assume, here, that this solution is the dominant saddle-point for the evaluation of
the integral.
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or with the notations of Eq. (20) and (21)

P{S(w, s) > Sth} =
1√
π
g(w) exp[f(w)] (38)

The two-matrix binding probability P{S(s,w(1)) > Sth) and S(s,w(2)) >
Sth)} can be computed in a fully analogous way. We denote it by the shorter
notation P{w(1),w(2)} and sketch here the main steps of its computation.
First, it can be written

P{w(1),w(2)} =
∑

s

p(s) Θ(S(w(1), s)− Sth) Θ(S(w(2), s)− Sth) (39)

After the introduction of integral representations for the two Θ-functions
(Eq. (29)), the average over sequences can be explicitly performed to obtain

P{w(1),w(2)} =

∫ +∞

Sth

du1

∫ +∞

Sth

du2

∫ +∞

−∞

dλ1

2π

∫ +∞

−∞

dλ2

2π
exp[H(u1, u2, λ1, λ2)]

(40)
with

H(u1, u2, λ1, λ2) = −iλ1u1 − iλ2u2 +
∑
j

ln

[∑
b

πb exp(iλ1ε
(1)
b,j + iλ2ε

(2)
b,j )

]
(41)

The double integral on λ1, λ2 can, as before, be performed by steepest de-
scent. The saddle point (λ1, λ2) = (−iγ1,−iγ2) is determined by the following
two equations

u1 =
∑

j=1,··· ,W

∑
b πb ε

(1)
b,j exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )∑

b πb exp(γ1ε
(1)
b,j + γ2ε

(2)
b,j )

(42)

u2 =
∑

j=1,··· ,W

∑
b πbε

(2)
b,j exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )∑

b πb exp(γ1ε
(1)
b,j + γ2ε

(2)
b,j )

(43)

The argument of the exponential is expanded around the saddle-point as

H(u1, u2, λ1, λ2) = H(u1, u2,−iγ1,−iγ2) +
1

2
(λ1 + iγ1)2 ∂2

λ1
H

+ (λ1 + iγ1)(λ2 + iγ2) ∂λ1λ2H +
1

2
(λ2 + iγ2)2 ∂2

λ2
H + · · ·
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Gaussian integration over λ1, λ2 leads to

P{w(1),w(1)} =

∫ +∞

Sth

du1

∫ +∞

Sth

du2

2π

1√
dH2

exp[H(u1, u2,−iγ1,−iγ2)] (44)

where

dH2 = [∂2
λ1
H∂2

λ2
H − (∂λ1λ2H)2](λ1=−iγ1,λ1=−iγ1)

=
1

8

∑
j,j′

∑
a,b,c,d

πaπbπcπd

[
(ε

(1)
a,j − ε

(1)
b,j )(ε

(2)
c,j′ − ε

(2)
d,j′)− (ε

(1)
c,j′ − ε

(1)
d,j′)(ε

(2)
a,j − ε

(2)
b,j )
]2

[∑
b πb exp(γ1ε

(1)
b,j + γ2ε

(2)
b,j )
]2 [∑

b πb exp(γ1ε
(1)
b,j′ + γ2ε

(2)
b,j′)
]2

× exp[γ1(ε
(1)
a,j + ε

(1)
b,j + ε

(1)
c,j′ + ε

(1)
d,j′) + γ2(ε

(2)
a,j + ε

(2)
b,j + ε

(2)
c,j′ + ε

(2)
d,j′)] (45)

Finally, the integration over u1 and u2 in Eq. (44) can also be performed using
the method of steepest descent. As in the single matrix case, it is dominated
by the neighbourhood of u1 = u2 = Sth. With (∂u1H = −γ1, ∂u2H = −γ2),
for u1 = u2 = Sth, one obtains

P{w(1),w(2)} =
1

2πγ1γ2

1√
dH2

exp[H(Sth, Sth,−iγ1,−iγ2)] (46)

or with the notations of Eq. (23,24)

P{w(1),w(2)} =

√
2

π
k(w(1),w(2)) exp

[
h(w(1),w(2))

]
(47)

The sought expression of Eq. (27) for Proxas(w
(1),w(2)) directly follows from

the obtained asymptotic expression of Eq. (47) for P{w(1),w(2)} combined to
the asymptotics of Eq. (38) for P{S(s,w(1)) > Sth} and for P{S(s,w(2)) >
Sth}.

2.5.2 Elimination of Motifs sampled from simple repeats

The training set, before being scanned, had been masked against simple
repeats (annotation from Flybase obtained with Repeat Masker [13]) . How-
ever, we observed in our first attempts that still many of the obtained PWMs
had binding sites that matched simple repeats. This introduced a large
amount of noise in the CRM inference (subsection 2.6) and led us to de-
velop a method to remove these PWMs using their binding site statistics on
background sequences.
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A characteristic of simple repeats is that they lead to non-Poisson distri-
butions of binding sites : when a site is detected, there is a high probability
that another site is detected after a multiple of the repeat period. Based
on this feature, we have designed a quantitative way to remove the corre-
sponding PWMs. First, the binding sites of each PWM (that is nucleotide
sequences verifying Eq. (2) or (3)) are determined on a large background set
of Nbg = 104 intergenic sequences, each of length Lig = 2000 nt (subsec-
tion 3.1). Second, this data is used to compute for each frequency matrix

w, the mean concentration λ
(bg)
w of its binding sites on the background set.

Last, for each PWM, the observed distribution of motifs on the background
set is compared to what would be expected for a Poisson distribution with
the same concentration of binding sites. For a frequency matrix w with a
mean concentration λ

(bg)
w of binding sites, one would expect from a Poisson

distribution, N
(p)
w (j) intergenic sequences in the background set containing j

binding sites of w, with

N (p)
w (j) = Nbg

(λ
(bg)
w Lig)

j

j!
exp(−λ(bg)

w Lig) (48)

For each frequency matrix w, the proximity of the distribution of the ob-
served number Nw(j) of background sequences with j binding sites to the
ideal Poisson distribution (48) can be quantitatively assessed by computing
the χ2-like value,

χ2(w) =
∑
j

[Nw(j)−N (p)
w (j)]2

N
(p)
w (j)

Θ(Nw(j)) (49)

where again Θ is the Heaviside function. That is, in the computation of
χ2(w) the sum is restricted to non-zero values of Nw(j). Retaining frequency
matrices with a χ2(w) below a threshold value of 103 produced satisfactory
results (see table S4).

2.5.3 Matrix scoring

After the elimination of redundant PWMs and of the PWMs corresponding
to simple repeats, the significance of the large number of remaining ones need
to be assessed.

After the simple repeat elimination step, the remaining PWM have bind-
ing sites which are approximately Poisson-distributed in the set of back-
ground intergenic sequences (see subsection 3.1). It is thus possible to assess
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the PWM significance, and rank them, by quantifying how much the distri-
bution of their binding sites on the validated enhancers of the training set
(v.e.t.s.) deviates from the expected Poisson distribution. This is done by
computing, for each frequency matrix w, the Poisson log-likelihood on the
v.e.t.s :

Pl(w) = −
∑

t∈{v.e.t.s.}

log

(
(Lλ

(bg)
w )kt exp(−Lλ(bg)

w )

kt!

)
(50)

where kt is the number of instances of m on the sequence t of the v.e.t.s. .
The computed Pl(m) serves to rank the motifs.

2.6 CRM scoring at the genome scale

The set of obtained PWMs was used to detect SOP-specific CRMs on a
genome wide scale.

First, for the 15 first ranked PWMs, conserved binding sites instances
were sought and determined in the whole D. melanogaster genome as de-
scribed previously for the training set. In order to do that, the Mavid Mer-
cator alignment (see subsection 3.2) was used without further refinement,
but after masking D. melanogaster genomic sequences for coding sequences.

Then, to predict CRMs, the masked D. melanogaster genomic sequence
was chopped into 1kbp fragments (one every 50bp). Each fragment E was
scored according to its content in binding sites with the score of a fragment
defined by the log odds score :

S(E) =
∑

PWM w

nw(E) ln

[
λ

(tr)
w

λ
(bg)
w

]
(51)

where nw(E) is the number of conserved binding sites of the frequency matrix
w in the fragment E. Although, it would have been possible to use other algo-
rithms for ranking putative enhancers given a set of PWM (e. g. [14, 15, 16]),
the formula (51) was chosen both for its simplicity and for consistency be-
tween the conservation requirements imposed on the binding sites for PWM
determination and fragment ranking.

2.7 Implementation of the algorithm

The developed programs have been written in C++ and are available upon
request. They have been executed on an octoprocessor Intel Xeon machine
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with 32 Go RAM.

3 Data

3.1 Intergenic regions

Intergenic sequences used to evaluate site statistics in non-specific regions are
extracted from 10000 non-overlapping sequences of 2000bp drawn randomly
from the D. melanogaster genome. Repeated sequences were not masked to
better discriminate PWM arising from simple repeats.

3.2 Alignments

The alignments used in the analysis have been generated by Mercator (an
orthology mapping program) and MAVID (a multiple alignment program) on
the 12 drosophila genomes (CAF1). They have been downloaded from the
AAAWiki web site (http://rana.lbl.gov/drosophila/). The orthologous
sequences for the characterized CRMs have been extracted from this datasets
and realigned using MUSCLE [17] for more refinement.

3.3 Assigning putative CRMs to GO terms

CRM ranking at the genome scale was described in section 2.6. In order to
bio-informatically annotate these ranked putative CRMs (Fig. 3 of the main
text), we associated to each one, the gene with the transcriptional start site
closest to the center of the considered fragment. The fragment was then
annotated as ”SOP” when it was associated to a named gene with GO terms
related to SOP developpement (“Sensory mother cell” and “Sensory organ”).
These annotations by phenotype data have been obtained from Flybase [18].
Genes appearing as mere CG were not considered in the annotation part.
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