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Cell Dissociation and DNA Extraction. Before cell dissociation and
DNAextraction,a subsampleofeachdigesta samplewaspooledand
hereafter is referred to as T1 (November 2006) and T2 (May 2007).
To desorb and recover those microbes adherent to plant biomass,
5 to 10 g of the pooled samples was centrifuged at 12,000 × g for
2 min, and the pellet was resuspended in 15 mL dissociation buffer
[0.1% Tween 80, 1% methanol and 1% tertiary butanol (vol/vol),
pH 2] (1). This mixture was vortexed for 30 s and centrifuged at
low speed for 20 s to sediment the large plant particles; this process
was repeated two to three more times, with the supernatants col-
lected and pooled. Microbial biomass was collected by centrifuga-
tion at 12,000 × g for 5 min and the cell pellets were resuspended
in 1 mL of sterile 10 mM Tris-HC1 (pH 8.0) 1 M NaCl, then sub-
jected to one final low speed centrifugation for 20 s to remove any
residual particulate matter. The cells were finally harvested by
centrifugation at 12,000 × g for 5 min.
The cell pellets (∼200 mg wet-weight) were resuspended in

700 μL TE buffer and incubated at 75 °C for 10 min to inactivate
nucleases. Cell lysis was performed by adding lysozyme (1 mg/
mL)/mutanolysin (20 U) and achromopeptidase (1 mg/mL) to
these cell suspensions and incubation at 37 °C for 90 min. Next,
SDS was added to give a final concentration of 1% (wt/vol), 0.20
mg proteinase K was also added, and the mixture was incubated
at 55 °C for 90 min. Next, NaCl and CTAB were added to give
final concentrations of 0.7 M and 2% (wt/vol) respectively, and
the mixture was incubated at 70 °C for 10 min. Following phenol:
chloroform:isoamylalcohol and chloroform extractions, the DNA
was precipitated with two volumes of 95% ethanol, washed with
70% ethanol, and the pellet air-dried and resuspended in TE
buffer (pH 8.0) at a final concentration ∼0.5 μg/μL.

16S rRNA Gene PCR Clone Libraries. Two rrs clone libraries were
prepared from the pooled metagenomic DNA samples by using
two different primer pairs broadly targeting the bacterial domain:
27F (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 1492R (5′-
GGT TAC CTT GTT ACG ACT T-3′); and GM3 (5′-AGA GTT
TGA TCM TGG C-3′) and GM4 (5′-TAC CTT GTT ACG ACT
T-3′) (2). The PCR amplicons were cloned into the vector pCR4-
TOPO(InvitrogenCorp.) and plated ontoCarbenicillin-containing
(150 μg/mL) LB agar plates, and two 384-well microtitre plates
were picked. The propagated clones were end-sequenced using
vector-based primers, and the sequence reads were trimmed, as-
sembled, and quality-checked using the genelib software package
(E. Kirton; Joint Genome Institute, Walnut Creek, CA). Thirty-
one putative chimeras were identified using Bellerophon (3) and
Chimera Check (4) and excluded from the dataset. A total of 663
near-complete bacterial rrs gene sequences passed the quality and
chimera filters and were used in the subsequent analyses.

Metagenome Processing: Shotgun Library Preparation, Sequencing,
and Assembly. Shotgun libraries from the Tammar genomic
DNA were prepared from each of the pooled samples T1 and T2:
a 2- to 4-kb insert library cloned into pUC18 and a roughly 36-kb
insert fosmid library cloned in pCC1Fos (Epicentre Corp.). Li-
braries were sequenced with BigDye Terminators v3.1 and re-
solved with ABI PRISM 3730 (ABI) sequencers. A total of
121,728 reads (60,672 from T1 and 61,056 from T2) comprising
87.12 megabases (Mb) of phred Q20 sequence were generated
from the small insert library. Sequence reads fromT1 and T2 were
trimmed with LUCY v. 1.19p (5), resulting in a total of 106,913
reads comprising 82.7 Mb, then pooled together and assembled

with the Paracel Genome Assembler (PGA version 2.62, www.
paracel.com). The resulting pooled assembly consisted of 12,664
contigs, of which the longest was 27.9 kbp long and contained
237 reads (average read depth 7.9×). Approximately 38% of the
reads remained as singlets.

Full Fosmid Sequencing and Assembly. Based on a number of
functional and hybridization-based screens, 98 fosmids were
chosen for sequencing. The individual fosmids were induced to
increase their copy number following Epicentre protocols, and
the fosmid DNA purified using Qiagen MiniPrep columns.
Equimol amounts of the fosmids were pooled together (∼20 μg
total DNA) and both a 3-kb paired-end library and a 454 stan-
dard shotgun library were constructed. Both libraries were di-
rectly sequenced with the 454 Life Sciences Genome Sequencer
GS FLX and the libraries produced ∼700 Mbp of data with an
average read length of 375 bp. Duplicate removal and splitting of
paired reads reduced the dataset to 560 Mbp in 2,077,631 reads.
The Newbler assembly tool was applied to these data and 33 of
the fosmid inserts were completely assembled, another 39 fosmid
inserts were reconstructed from two or more contigs linked via
paired-end reads, and 26 inserts were partially sequenced. In
total, 2.5 Mb of metagenomic DNA sequence was assembled and
manually edited from the 98 fosmids selected for sequencing.

Binning. MEGAN was used to determine the phylogenetic distri-
bution of the first batch of 30,000 Sanger reads generated by the
CSP program. BLASTX was used to compare all reads against the
NCBI-NR (“non-redundant”) protein database. Results of the
BLASTX search were subsequently uploaded into MEGAN (6)
for hierarchical tree constructions, which uses the BLAST bit-
score to assign taxonomy, as opposed to using percentage identity.
Assembled metagenomic contigs were binned (classified) using

PhyloPythia (7). Generic models for the ranks of domain, phy-
lum, and class were combined with sample-specific models for
the clades “uncultured γ-Proteobacteriacea bacterium” (WG-1),
“uncultured Lachnospiraceae bacterium” (WG-2), and “un-
cultured Erysipelotrichaceae bacterium” (WG-3). The generic mod-
els represent all clades covered by two or more species at the cor-
responding ranks among the sequenced microbial isolates. The
sample-specific models include classes for the dominant sample
populations of WG-1, WG-2, and WG-3, as well as a class “Other.”
The sample-specific models for WG-1, WG-2, and WG-3 were
each trained on sequence data obtained from contigs assembled
from the metagenome, and fully sequenced fosmids identified us-
ing phylogenetic marker genes. Five sample-specific support vector
machines were created by using fragments of lengths of 3, 5, 10, 15,
and 50 kb. All input sequences were extended by their reverse
complement before computation of the compositional feature
vectors. The parameters w and l were both set to 5 for the sample-
specific models. Thirty-three assembled contigs and one sequenced
fosmid, assigned unambiguously through analysis of phylogenetic
marker genes, were used for the training of WG-1 sample-specific
model (a total of 388,452 bp). Sixteen assembled contigs and four
sequenced fosmids assigned unambiguously through analysis of
phylogenetic marker genes were used for the training of WG-2
sample-specific models (a total of 208,429 bp). Thirty assembled
contigs assigned unambiguously through analysis of phylogenetic
marker genes were used for the training of WG-3 sample-specific
model (a total of 118,249 bp). Input fragments of a particular
length were generated from the fosmids by using a sliding window
with a step size of one-tenth of the generated fragment size (for
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example, 5 kb for 50-kb fragments). For the class “Other,” frag-
ments from340 sequenced isolateswasused.The classifier consisting
of the sample-specific and generic clademodels were then applied to
assign all fragments more than 1 kb of the sample. In case of con-
flicting assignments, preference was given to assignments of the

sample-specific models. Results of this binning process were loaded
into IMG/M-ER to allow independent analysis of the component
populations. The resulting metabolic reconstruction for WG-2 is
summarized in Fig. S4, with IMG gene object identifiers (oids) for
tracking in IMG/M provided in Table S5.
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Rumen_FA_8 0.990 265 521.094
Rumen_FA_64 0.990 258 523.863
Rumen_FA_71 0.967 182 430.953
Rumen_PL 0.940 258 567.479
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Termite_PL3 0.785 71 104.394
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Fig. S1. Rarefaction analyses using phylogenetic diversity (PD) (A) and operational taxonomic unit (OTU) frequency (B) of rrs gene datasets obtained from the
Tammar wallaby foregut, bovine rumen, and termite lumen microbiomes. In both panels, a 97% sequence identity threshold has been employed for the OTU
constructions used in these analyses. (A) A “PD_whole tree” has been employed using QIIME and the PD value on the y axis represents the summation of the
branch lengths from the phylogenetic trees constructed from the rrs gene sequences (Rumen_FA_8, dark blue; Rumen_PL, light blue; Rumen_FA_64, green;
Tammar, purple; Rumen_FA_71, red and Termite_PL3, yellow). The α diversity measures (Simpson, observed species, and chao1 richness estimates) are also
shown for each sample. (B) The same data as in A using the number of OTUs observed with each dataset as the y axis.
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Fig. S2. Composition of the bacterial community analyzed. (A) Phylogenetic diversity of the Tammar wallaby foregut rrs sequences. From a PCR-based col-
lection and the metagenomic libraries (small-insert and fosmid), 663 almost full-length and 51 partial to full 16S rRNA gene sequences representing six dif-
ferent phyla were analyzed using the maximum-likelihood algorithm. The total number of sequences contained within each grouping is noted in brackets. Red
dots indicate where at least one group was represented in both the PCR collection and metagenomic libraries. Blue dots indicate where at least one group was
represented by a sequenced fosmid clone. The phylogram was constructed from 1,289 unambiguously aligned nucleotide positions. (Scale bar, a sequence
divergence of 10%.) Branching pattern confidence values greater than 50% are shown at nodes. See Figs. S1 and S3 and Table S2 for accession numbers and
detailed phylogenetic analysis. (B) Phylogenetic diversity of metagenome sequences (∼30 000) computed by MEGAN based on a BLASTX comparison. The size
of the circles is scaled logarithmically to represent the number of reads assigned directly to the taxon.
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Fig. S3. Phylogenetic diversity of the Tammar wallaby foregut microbiota within the phylum Firmicutes. From a PCR-based collection and the metagenomic
libraries (small-insert and fosmid), 663 almost full-length and 51 partial to full 16S rRNA gene sequences were analyzed using the maximum-likelihood al-
gorithm (RAxML). The number of Tammar foregut community sequences within each grouping is given in brackets; dark blue shading denotes dinstict Tammar
foregut community phylotypes; red text denotes sequences from the metagenome libraries. Light blue dots indicate where at least one OTU was represented
by a sequenced fosmid clone. White shading denotes reference groups having no representation in this collection. The phylogram was constructed from 1,289
unambiguously aligned nucleotide positions. The scale bar represents a sequence divergence of 10%. Branching pattern confidence values greater than 50%
are shown at nodes.
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Fig. S4. Schematic representation of selected metabolic features of the WG-2 population as inferred from genomic comparisons (Table S5). Major
metabolic pathways and energy-generating systems are shown. Similar shapes indicate similar functions. Broken lines indicate sections of pathways
missing; partially broken lines indicate partial sections of pathway identified. Abbreviations: AcCoA, acetyl-CoA; acetyl-P, acetyl phosphate; AK, acetate
kinase; APS, adenylylsulfate; atob, acetyl-CoA C-acetyltransferase; αD-G1P, α-D-Glucose 1-phosphate; BDH, butyryl-CoA dehydrogenase; BU.K., butyrate
kinase; butanoyl-P, butanoyl phosphate; CL, citrate lyase; D-X5P, D-Xylulose 5-phosphate; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; G3P,
glyceraldehyde-3-phosphate; G6P, glucose-6-phosphate; galK, galactokinase; GH, glycoside hydrolase family (CAZy); PTB, phosphate butyryltransferase;
PTS, Phosphotransferase system; R5P, pentose-phosphates; S7P, sedoheptulose-7-phosphate; XK, xylulokinase; xylA, xylose isomerize. Gene identification
numbers (IMG gene object identifiers) can be found in Table S5.
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Fig. S5. Phylogenetic analysis of the glycoside hydrolase family 5 (GH5) diversity encoded by the Tammar wallaby foregut microbiome. GH5 sequences from
the Tammar foregut metagenome are colored in red, GH5 sequences from the sequenced fosmid clones are colored in yellow, the termite gut metagenome is
green, and various other sources in black. Purple dots denote GH5 sequence recovered from putative polysaccharide utilization loci gene clusters (Table S4).
Metagenomic sequences and additional public sequences are identified by their Joint Genome Institute gene object identifier and GenBank GI number, re-
spectively. The Pfam PF00150 (Cellulase – glycosyl hydrolase family 5) has a length of 378 residues, comprising domain sequences with an average length of 227
amino acids and 17% sequence identity.
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