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SI Methods
Comparative Methods. Comparison of expression profiles among
species included expression data from D. melanogaster and C. el-
egans. The D. melanogaster data set consisted of competitive hy-
bridizations of pools of reproductive females to nonreproductive,
diapause females comparable to our experimental design, whereas
theC. elegans data set consisted of four two-channel hybridizations
comparing dauer pools to a control mRNA sample and four
comparing nondauer (12 h after dauer exit) to the same control.
For subsequent clustering we used only log(2) fold changes of
genes that are orthologous across all species. Orthology was es-
tablished by (i) selecting FlyBase BLAST hits at e < 10−5 for
S. crassipalpis ESTs to D. melanogaster and (ii) identifying
D.melanogaster–C. elegans orthologues in the InParanoid database
(http://inparanoid.sbc.su.se/), retaining only orthologues in which
a single D. melanogaster gene produced an Inparalog score of 1.0
only when paired with a single C. elegans gene (N = 1,925). For
C. elegans we calculated log(2) fold change as the difference of
log fold changes between the dauer versus control and nondauer
versus control arrays. Because which array values are compared is
arbitrary (no competitive hybridizations, all compared with
a common control), we calculated fold change differences using all
possible (n = 24) pair-wise comparisons of dauer arrays to non-
dauer arrays. Hierarchical clustering analysis yielded quantita-
tively similar results with identical topologies across permutations.

For simplicity, we present clustering data for only one permutation
(see Results and Discussion in the main text).
Based on a list of orthologous genes, we also tested whether the

genes most differentially regulated between the dormant and
nondormant phenotype within each species were also genes whose
expression patterns were most similar among the species. We first
performed discriminate function analysis on the expression data
(using pdmClass in R) and produced a ranked list of genes from
those best able to discriminate among the species to the least
discriminatory. Next, we calculatedKolmogorov-Smirnov statistics
to test whether ranked lists containing only the twofold differen-
tially regulated genes (three lists, one for each species) exhibited
significantly different distributions than the ranked list of all genes.
For all three species, twofold differentially regulated genes were
significantly overrepresented at the top end (i.e., the most dis-
criminating) of the rank list (Fig. S6).
Of genes that were at least twofold differentially regulated be-

tween dormant and nondormant phenotypes in each species, only
10were twofold differentially regulated in all species (Table S2).Of
these, two were differentially regulated in different directions
across species. Only two genes were twofold up-regulated across
species: phosphoenolpyruvate carboxykinase and pyruvate car-
boxylase, the irreversible members of the gluconeogenesis path-
ways discussed in the main text.
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Fig. S1. Lists of ESTs up-regulated in DAVID analysis. ESTs not enriched in any category are marked with an X, the relative log twofold change of ESTs up-
regulated in any category are shown in red.
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Fig. S2. Lists of ESTs enriched in GSA analyses across KEGG pathways and a priori lists from the literature. ESTs not enriched in any list are marked with an X,
the relative log2 fold change of ESTs enriched in any list are shown in color.
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Fig. S3. Glycolysis/gluconeogenesis pathway diagram modified from the KEGG database for D. melanogaster. The name for each enzyme is listed above the
box, and the S. crassipalpis EST database number and log2 fold change value comparing early diapausing pupae to nondiapausing pupae is listed within the
box. Red boxes designate ESTs that had significantly greater abundance in early diapause pupae than nondiapause pupae after FDR correction q < 0.01. Blue
boxes denote ESTs that had significantly lower abundance in early diapausing pupae compared with nondiapausing pupae after FDR correction. Black boxes
denote no difference between early diapausing and nondiapausing pupae. Metabolites in red text were determined to accumulate in greater abundance in
early-diapausing pupae relative to nondiapause pupae by metabolomics (1).

1. Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies
(Sarcophaga crassipalpis): A metabolomic comparison. J Comp Physiol B 177:753–763.
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Fig. S4. TCA cycle diagram modified from the KEGG database for D. melanogaster. The name for each enzyme is listed above the box, and the S. crassipalpis
EST database number and log2 fold change value comparing early diapausing pupae to nondiapausing pupae is listed within the box. Red boxes designate ESTs
that had significantly greater abundance in early diapause pupae than nondiapause pupae after FDR correction q < 0.01. Blue boxes denote ESTs that had
significantly lower abundance in early diapausing pupae compared with nondiapausing pupae after FDR correction. Black boxes denote no difference between
early diapausing and nondiapausing pupae. Metabolites in red text were determined to accumulate in greater abundance in early-diapausing pupae relative
to nondiapause pupae by metabolomics (1), whereas metabolites in blue text were less abundant in early diapause pupae compared with nondiapause pupae.

1. Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies
(Sarcophaga crassipalpis): A metabolomic comparison. J Comp Physiol B 177:753–763.
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Fig. S5. Insulin-signaling pathway modified from Wu and Brown (1) shows that insulin signaling pathway members mostly have higher relative transcript
abundance during diapause than in nondiapause pupae or pupae terminating diapause. (A) Log2FC change in early diapause pupae versus nondiapause pupae.
Red boxes denote significantly greater abundance in early diapause compared with nondiapause. Blue boxes denote significantly lower abundance. Black
boxes indicate no change. (B) Log2FC change in hexane treated pupae versus late diapause pupae. Red boxes denote significantly greater abundance in hexane
treated late diapause pupae relative to late diapause pupae, blue boxes denote significantly lower abundance, and black boxes indicate no change.

1. Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51:1–24.
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Fig. S6. Empirical cumulative distribution functions of ranked gene lists. The dormancy versus nondormancy expression pattern of a high-ranking gene is
better able to discriminate among S. crassipalpis, D. melanogaster, and C. elegans than that of a low-ranking gene. The plot includes distribution functions for
all orthologous genes (black line) and lists of genes twofold differentially regulated between dormant and nondormant phenotypes of S. crassipalpis (green
line), D. melanogaster (red line), and C. elegans (blue line).
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Table S1. A priori gene lists constructed from studies of gene
expression responses in Drosophila used in GSA analysis of
diapause responses

List description Reference
ED vs.
ND

ED vs.
LD

LD vs.
HEX

Response to dFOXO 1 – – –

Response to TOR 2 – – –

Response to ecdysone 3 * – –

Response to hypoxia 4 * – –

Response to hyperoxia 5 * – –

Response to oxidative stress 6 * – –

Response to cold stress 7 * – –

Response to cold stress 8 – – –

Reproductive diapause 9 – * –

*Significant enrichment (differential regulation) of the set within a pheno-
typic comparison in S. crassipalpis.

1. Gershman B, et al. (2007) High-resolution dynamics of the transcriptional response to nutrition in Drosophila: A key role for dFOXO. Physiol Genomics 29:24–34.
2. Guertin DA, Guntur KVP, Bell GW, Thoreen CC, Sabatini DM (2006) Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 16:958–970.
3. Beckstead RB, Lam G, Thummel CS (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol 6:R99.
4. Liu GW, Roy J, Johnson EA (2006) Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiol Genomics 25:134–141.
5. Landis GN, et al. (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668.
6. Girardot F, Monnier FV, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genomics 5:16.
7. Qin W, Neal SJ, Robertson RM, Westwood JT, Walker VK (2005) Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol Biol 14:607–613.
8. Telonis-Scott M, Hallas R, McKechnie SW, Wee CW, Hoffmann AA (2009) Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. J Insect Physiol 55:

549–555.
9. Baker DA, Russell S (2009) Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 10:242.

Table S2. List of genes twofold or more differentially regulated between dormant and nondormant phenotypes in S. crassipalpis, D.
melanogaster, and C. elegans

SarcEST ID(s) Flybase ID CG no.

Direction of regulation

Name SymbolD. melanogaster S. crassipalpis C. elegans

EUA37Q301EIXA6 FBgn0001078 CG4059 Down Up Down ftz transcription factor 1 ftz-f1
FLY.5376.C1 FBgn0001197 CG5499 Down Down Down Histone H2A variant His2Av
FLY.9464.C1 FBgn0003067 CG17725 Up Up Up Phosphoenolpyruvate carboxykinase Pepck
FLY.10670.C1 FBgn0005655 CG9193 Down Down Down mutagen-sensitive 209 mus209
FLY.9953.C1 FBgn0011327 CG3431 Down Down Down Ubiquitin C-terminal hydrolase Uch-L3
FLY.5928.C1 FBgn0011704 CG8975 Down Down Down Ribonucleoside diphosphate

reductase small subunit
RnrS

FLY.10602.C1,
EUA37Q301DL8MD

FBgn0026170 CG4494 Down Down Down smt3 smt3

FLY.37.C22 FBgn0027560 CG4104 Up Down Down Trehalose-6-phosphate synthase 1 Tps1
FLY.3741.C1 FBgn0027580 CG1516 Up Up Up Pyruvate carboxylase (predicted) CG1516
FLY.10882.C1 FBgn0034405 CG15102 Up Down Up Juvenile hormone epoxide hydrolase 2 Jheh2

Dataset S1. Results of a discriminant analysis listing each EST that was changed at least twofold (up or down) in any comparison along with the F-ratio and P
values relative to that EST’s ability to separate each of the four phenotypic classes (nondiapause pupa, early diapause pupa, late diapause pupa, and late
diapause pupa treated with hexane to terminate diapause) from each other.

Dataset S1 (XLSX)

Other Supporting Information Files
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