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Treatment with Test Drugs and Microarray Hybridizations. Drugs
tested were chosen among well-known compounds, already pre-
sent in the Connectivity Map (cMap) dataset, and new-genera-
tion compounds. They included HSP90 inhibitors Tanespimycin
(1), NVP-AUY922 (2), NMS-E973 (3); Topoisomerase inhibitors
SN-38 (4) and Doxorubicin (5); cyclin-dependent kinases (CDKs)
inhibitors Flavopiridol (6), PHA-848125 (7), PHA-690509, and
PHA-793887 (8).

A2780 were treated with Flavopiridol (0.3 μM), PHA-848125
(1 μM), PHA-690509 (3 μM), and PHA-793887 (1 μM), whereas
MCF7 were treated with PHA-848125 (8.5 μM), PHA-793887
(6.0 μM), Tanespimycin 0.5 μM), NVP-AUY922 (0.07 μM),
NMS-E973 (2 μM), SN-38 (0.165 μM), and Doxorubicin (1.5 μM).

Additional data were collected by treating U251 and SF539
with PHA-848125 (3 μM) (to assess the impact of the merging
of data coming from different settings on the classification per-
formances—see “Impact of Rank Merging on Performance”).

Cell Lines, RNA Extraction, Treatments, and Data Preprocessing.
A2780 (human ovary adenocarcinoma) and MCF7 (human mam-
mary adenocarcinoma mammary) from European Collection of
Cell Cultures were seeded in T-75 tissue culture flasks (Corning),
25.000 cells∕cm2 in RPMI medium 1640 (Gibco), pH 7.4, 10%
FBS (EUROCLONE Australia-USDA approved), 2 mM L-Glu-
tamine (Gibco), 1× penicillin–streptomycin (Gibco), and main-
tained in 5% CO2 at 37 °C with 96% relative humidity. After
24 h, cells were treated with different compounds at a dose equal
to 5× the IC50 for 6 h and collected using Qiagen RNeasy Lysis
Buffer (Qiagen cat no. 79216). Total RNA was extracted using
Qiagen Rneasy kit (Qiagen cat. no. 74104), starting from total
cell lysates. The RNA was purified following manufacturer in-
structions. During the process, any genomic DNA contamina-
tions were removed by DNAse treatment. Quantity and purity
of the extracted RNA were assessed by spectrophotometric eva-
luation of light adsorbance at 260 and 280 nm; after extraction,
RNA was stored at −80 °C. Biotin-labeled, fragmented cRNA
probes were prepared starting from 1.5 μg of total RNA per
replicate sample, using the “One-Cycle Target Labeling and Con-
trol Reagents” (Affymetrix) according to the protocols included
in the Affymetrix GeneChip Expression Analysis Technical Man-
ual (www.affymetrix.com). Samples were hybridized onto Affy-
metrix GeneChip® Human Genome U133 Plus 2.0 Arrays and
processed as per manufacturer’s instructions using “GeneChip®
Hybridization, Wash, and Stain Kit” components (Affymetrix).
Scanned images were first inspected for quality control (QC)
using a variety of built-in QC tools from the Bioconductor pack-
age [www.bioconductor.org] of R, the open source environment
for statistical analysis. Feature intensity values from scanned
arrays were normalized and reduced to expression summaries
using MAS5 implemented in the R statistical environment. A
ranked list of genes was obtained for each compound treatment
by sorting the microarray probe-set identifiers according to the
differential expression values with respect to the untreated hybri-
dization. These ranked lists were given as an input to the drug
network (DN) tool.

Data are available at Gene Expression Omnibus (GEO)
database, www.ncbi.nlm.nih.gov/geo (accession no. GSE18552).

Western Blot of Total MCF7 Cell Lysates.MCF7 cells were treated for
6 h with PHA-793887, Doxorubicin, or SN-38 at a dose equal to
5× the IC50 for 6 h. Total protein lysates were resolved by SDS-
PAGE, transferred onto nitrocellulose membrane (Hybond ECL
GEHealthcare), and hybridized with specific antibodies: anti-p21
(BD pharmingen 556430), anti-pNPM Thr 199 (Cell signaling
3541), antitotal Rb (BD pharmingen 554136), anti-pRb Thr
821 (invitrogen 44-582G), anti-pRb Ser 807/811(Cell signaling
9308), antitotal RNA polI (millipore 05-623), anti-RNA pol II
pSer5 (Santa Cruz sc-17794), anti-RNA pol II pSer2 (Abcam
ab5131), and anti-MCL1 (Cell signaling 4572).

Evaluation of Autophagy. Synchronized wild-type human fibro-
blasts were treated with the following drugs: Fasudil dihydrochlor-
ide (Sigma) 10 μM, Trifluoperazine (Sigma) 1 μM, and 2DOG
(Sigma) 100 μM for 48 h. Following treatment, cells were lysed
in cold lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1%
Triton X-100, 1 mM EDTA, and 0.1% SDS) in the presence of
protease inhibitors (Sigma). Total proteins quantified by the
Bradford method were resolved by SDS-PAGE and transferred
onto PVDF membrane. Primary rabbit polyclonal anti-LC3 (No-
vus Biological), primary monoclonal anti-ß-actin (Sigma), and
(HRP)-conjugated secondary antibodies were diluted in Tris-Buf-
fered Saline Tween-20 1% BSA. Bands were visualized using a
chemiluminescence detection system (Pierce). For immunofluor-
escence analysis, cells were permeabilized and incubated with
primary anti-LC3 antibody and secondary fluorescent antibody
(diluted in 1% BSA in PBS), mounted in glycerol/DAPI, and
viewed on an epifluorescent microscope.

Drug Network Construction. At the heart of our approach is a no-
tion of “distance” between two drugs. This is computed by com-
bining differential gene expression profiles obtained with the
same compound, but in different experimental settings, via an ori-
ginal rank-aggregation method (9), followed by a gene set enrich-
ment analysis (10) whose results are combined into a distance
value. The DN is then generated by considering each compound
as a node and adding a weighted edge between two compounds if
their similarity distance is below a given significance threshold.

Drug Distance Computation. To compute pairwise distances be-
tween drugs, we considered lists of genes ranked according to
their differential expression following drug treatment, from the
most up-regulated (at the top of the list) to the most down-regu-
lated (at the bottom of the list). Observe that these lists include
all of the genes that have been measured, even if not significantly
differentially expressed. We merged all of ranked lists of genes
obtained by treating cells with the same drug via a previously un-
described rank-aggregation algorithm (9), detailed in the next
section. Once we had a single Prototype Ranked List (PRL) of
genes for each drug in the dataset, we computed drug pairwise
distances. The distance between two drugs A and B is computed
as follows: for each of the two drugs, we composed an “optimal
signature,” i.e., a subset of the most differentially expressed genes
in the corresponding PRL. To this aim, we extracted the top
(respectively, bottom) 250 genes from the PRL of the drug. In
order to assess how similar the PRLs of the two drugs are, we
quantified the randomness in the distribution of the genes of
the optimal signature of drug A along the PRL of drug B, and
vice versa. To quantify this distribution, we used Gene Set Enrich-
ment Analysis (GSEA) (10) using the optimal signature of drug
A and the PRL of drug B, and vice versa. For example, if the
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up-regulated genes (respectively, the down-regulated) in the
optimal signature of drug A tend to be placed at the top (respec-
tively, at the bottom) of the PRL of drug B, then the GSEA “en-
richment score” will be high. Finally, the two “enrichment scores”
(one for the optimal signature of drug A, and one for the optimal
signature of drug B) are combined, ending up with the distance
value between A and B.

Aggregation algorithm for Prototype Ranked List Generation. We
built a PRL for each drug by aggregating all the ranked lists that
have been obtained by treating cells with that drug (i.e., on dif-
ferent cell lines, with different concentrations, etc.). In our aggre-
gation algorithm we made use of the following methods: a mea-
sure of the distance between two ranked lists (Spearman’s Foo-
trule), a method to merge two or more ranked lists (the Borda
Merging Method), and an algorithm to obtain a single ranked list
from a set of them in a hierarchical way (the Kruskal Algorithm)
(11–13).

In order to describe the algorithm, we introduce the following
notation:

• D: the set of all the possible permutations of microarray
probe-set identifiers (MPI);

• X : a set of ranked lists of probe-set identifiers computed
by sorting, in decreasing order, the genome-wide differential
expression profiles obtained by treating cell lines with the same
drug;

• δ: D2 → N: the Spearman’s Footrule distance associating to
each pair of ranked lists in X , a natural number quantifying
the similarity between them;

• B: D2 → D: the Borda Merging Function associating to each
pair of ranked lists in X a new ranked list obtained by merging
them with the Borda Merging Method;

A pseudocode description of the algorithm is the following:

1. n ¼ jX j
2. while n > 1
3. find i;j: δðxi;xjÞ ¼ minp;q¼1;…;n: p≠qδðxp;xqÞ
4. y ¼ Bðxi;xjÞ
5. X ¼ ðX∕fxi;xjgÞ∪fyg
6. n ¼ jX j
7. end

The input of the algorithm is X . Following the Kruskal Algo-
rithm strategy, the algorithm first searches for the two ranked lists
of MPI in X with the smallest Spearman’s Footrule distance [line
3]. Then it merges them using the Borda Merging Method [line 4],
obtaining the new ranked list of MPI y. In the next step [line 5],
the two merged lists are removed from X and the new one is
added to it. The process restarts until only one list remains in
X : the Prototype Ranked List of the drug.

Spearman’s Footrule.Let r: P ×D → ½1;…;m� be a function defined
on the set of MPI (P) and on all the possible ranked lists of MPI
D, with values in the interval ½1;…;m�, assigning to eachMPI i ∈ P
its position in the ranked list d ∈ D. For the micro-array platform
used in our reference dataset (the cMap), m ¼ 22;283.

We compute the Spearman’s Footrule, neglecting normaliza-
tion terms, as follows:

δðx;yÞ ¼ ∑
m

i¼1

jrði;xÞ − rði;yÞj;

where, in our case, x;y ∈ X ⊆ D.

Borda Merging Function. The Borda Merging Function, defined as
Bðx;yÞ ¼ z, ðx;y;z ∈ DÞ, implements a majority voting system. It
computes the list of values

P ¼ ½p1;…;pm�;

as follows:

pi ¼ rði;xÞ þ rði;yÞ;

where r is the function previously defined. Finally a new ranked
list of probes z is obtained by sorting them according to their
values in P, in increasing order.

Distance Between Two Drugs. Once a PRL had been obtained for
each drug in the dataset, we extracted a signature fp;qg for each
of them.

To this end, we selected the top-ranked 250 genes of each PRL
and the bottom-ranked 250 ones (p and q, respectively). We con-
sidered this gene signature as a synthetic descriptor summarizing
the general cellular response to the drug. In other words, we iso-
lated sets of genes that seemed to consistently vary in response to
the drug across different experimental conditions (e.g., different
cell lines and different dosages).

We heuristically determined the size of p and q (i.e., 250)
guided by the following considerations. We tested optimal signa-
tures of different length k and for each value of k, we computed
distances among drugs and derived a drug network, always using
the same distance significance threshold. We observed that the
network obtained with the smallest k always contained, as a sub-
network, the networks obtained with larger k values. This means
that, as the signature length k increases, the overall structure of
the network does not change substantially. We chose k ¼ 250 as a
good compromise, which takes into account the number of con-
sidered genes, the edge density of the obtained network, and the
network prediction performances (i.e., number of literature-
verified connections).

Given the optimal signature of drug d, with

p ¼ fp1;…;png

(up-regulated genes) and

q ¼ fq1;…;qng

(down-regulated genes), we defined as the distance between drug
d and drug x the Inverse Total Enrichment Score (TES) of the drug
d signature fp;qg, with respect to the PRL of drug x, as follows:

TESd;x ¼ 1 −
ESpx − ESqx

2
:

Here, ESyx (with r ∈ fp;qg) is the Enrichment Score of the signa-
ture (the up-regulated part and the down-regulated one, respec-
tively) with respect to the PRL of x.

ESrx ranges in ½−1;1�, it is a measure based on the Kolmogorov–
Smirnov statistics, and it quantifies how much a set of genes is at
the top of a ranked list (10). The closer this measure is to 1, the
closer the genes are to the top of the list. The closer to −1, the
closer the genes are to the bottom of the list. TESd;x ranges in
½0;2�, it takes as inputs a signature fp;qg and a list x, and it quan-
tifies howmuch the genes in the p set are placed at the top of the x
PRL and how much the genes in the q set are placed at the bot-
tom. The closer these two statements are to the truth, the closer
to 0 is the value of TESd;x.

We defined two different distance measurements among drugs
as follows: Given two drugs A and B:

Average Enrichment-Score Distance: D ¼ TESA;BþTESB;A
2

,

Maximum Enrichment-Score Distance: D ¼ minðTESA;B;TESB;AÞ
2

.
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We verified that the average distance is more stringent than the
maximum distance (refer to online SI Table 2), whereas the max-
imum distance is more sensitive to weak similarities, providing a
lower precision but a larger recall (see, the NMS-doxorubicin
example in the section “Assessment of the Classification Perfor-
mance and Comparison with the cMap Online Tool,” online SI
Table 4).

Estimation of a Significance Threshold for the Drug Distance.Because
we have a large number of pairwise distance values equal to
1309

2

� �
¼ 856;086, we decided to use the empirical probability

distribution function (pdf) of these data to estimate a significance
threshold for the distance. Specifically, we chose as distance
significance threshold value the upper bound of the 5% quantile
of this empirical pdf (online SI Fig. 1).

We obtained as threshold values 0.8065 and 0.8339 (respec-
tively, for maximum and average distances, see online
SI Fig. 1 and online SI Fig. 2).

Given a pairwise distance d, the corresponding empirical p va-
lues can now be computed by dividing the number of distances
less than d in the whole set of all the possible ones by the cardin-
ality of this set (i.e., 856,086). Obviously, the empirical p values of
the computed threshold levels were equal to 0.05. Because a
weighted edge was assigned to each pairwise distance below
the threshold, all of the edges correspond to significant distances:
The smaller the distance, the higher it is in significance.

We observed that the network structure, in terms of drug com-
munities, does not change if we chose a different significance
threshold value. This happens because the community-finding
algorithm uses the weighted edges (i.e., distances) to generate
communities and, therefore, is not very sensitive to the addition
or removal of edges, due to different choices of the distance
significance threshold.

Chemical Similarity and Drug Distance. In order to test whether
drugs that are found to be similar according to our method could
have also been identified simply by looking at their chemical si-
milarities, we first collected the canonical SMILES (Simplified
Molecular Input Line Entry Specification) (14) describing the
chemical structure of the cMap drugs, and we then computed
chemical similarities among them. We then checked if any corre-
lation between chemical similarity and our definition of distance
was present.

A SMILES is a specification for unambiguously describing the
structure of chemical molecules using short text strings. SMILES
were available on the DrugBank database (15, 16) for 579 cMap
drugs (out of 1,309).

We focused on this subset of drugs by computing
579

2

� �
¼ 167;331 pairwise chemical similarities with two differ-

ent methods (both working on SMILES): The first one is based
on a definition of distance between molecular electrotopological
states (17, 18), whereas the second one is based on comparisons
between extended-connectivity fingerprints and, making use of a
software tool from SciTegic©, computes a Property Distance
inversely proportional to chemical similarity (applications can
be found in refs. 19–22).

In the online SI Fig. 3, each point represents a pair of drugs for
which both the SMILES were available. The first coordinate of
each point is equal to the distance between the two drugs (accord-
ing to our definition). The second coordinate is equal to 1 minus
the electrotopological states (ESF) similarity between the
SMILES of the two drugs.

As apparent, there is no significant correlation between our
distance and the ESF similarity (Pearson Correlation Coefficient
between these two measurements is equal to 0.04).

In the same way, there is no significant correlation between our
definition of distance and the extended-connectivity fingerprints
Property Distance. In online SI Fig. 4, each point represents a pair
of drugs for which both the SMILES were available. The first
coordinate of each point is equal to the distance between the
two drugs (according to our definition). The second coordinate
is equal to the Property Distance between the SMILES of the
two drugs.

Also in this case, both the correlation plot and the Pearson
Correlation Coefficient (0.05) show that there is no significant cor-
relation between these two distances.

This is a first evidence that chemical commonalities between
two drugs have no significant influences on their distance. As a
matter of fact, in very few cases (i.e., points on the figure) with
DN distance less that 0.5 (which is a value lower than the selected
significance threshold of 0.8065), there is a tendency for chemical
distance and DN distance to both be small, but for the majority of
the cases (i.e., those with a DN below the 0.8065 threshold) the
chemical similarity does not correlate at all with the DN distance.

In addition, also the opposite effect happens; that is, drugs with
very small chemical distance have very high DN distance. There-
fore, the two measures are not correlated, although there are a
few cases where very small chemical distance corresponds with
small DN distance.

Moreover, we measured the tendency of our community-iden-
tification algorithm to group together drugs that are similar by the
chemical point of view. To this end we considered the empirical
pdf of the pairwise ESF similarity, computed on the whole set of
drugs with a SMILES. Then we considered the pairwise ESF si-
milarity computed only between drugs in the same community.
Finally, we tested the null hypotesis that this set (similarities
in the same community) was sampled from the first distri-
bution. The obtained p value was equal to 1, meaning that the
composition of our communities is not significantly influenced
by chemical similarities.

In the online SI Fig. 5, we can observe that the empirical pdf of
the pairwise ESF similarity computed between drugs in the same
community (red line) almost perfectly overlaps the pdf of the
pairwise ESF computed on the whole set of drugs with a SMILES
(blue line). Very similar results were obtained by considering the
Property Distance measures, reported in the online SI Fig. 6.

Finally, we computed the average ESF similarity for all the
communities that are enriched for a given mode of action
(MoA) (those contained in Table S3) and containing at least
two drugs with an available chemical descriptor. Results are
contained in the online SI Table 7 and show that just for few com-
munities the average ESF is significantly greater than the average
value (1.7).

In this table the first column contains the community identi-
fiers, the second one contains the community enrichment (Litera-
ture evidence/ATC-code/Direct Target Gene), the third one
contains the fraction of drugs in the community for which chemi-
cal descriptors were available, and the last column contains the
average ESF similarity for the community.

Assessment of the Classification Performance and Comparison with
the cMap Online Tool. In order to compare our classification results
with those provided by the cMap online tool (23, 24), we com-
puted a traditional signature of differentially expressed genes
[i.e., list of significant genes according to t test corrected with
false discovery rate (FDR)] for each microarray experiment, as
described in section “Canonical Construction of the Signatures.”
The experiments were relative to four groups of related drugs
(online SI Table 1).

We used these signatures to query the cMap online tool. We
then compared the results obtained with our approach with those
provided by the cMap online tool by means of Receiver Operat-
ing Characteristic (ROC) analysis. The cMap tool provided in
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output a list of drugs connected to each of the input signatures. In
these lists, we filtered out the drugs that were predicted to be
negatively connected to the input signature, and we considered
each of the remaining drugs as true positives if they belonged
to at least one of four different reference “golden standard” sets.
The reference sets included both the counterpart of the tested
drugs (already present in the cMap) and also well-known related
drugs (if available); the drugs included in these sets were all those
known to have the same MoA as the tested drugs (respectively,
HSP90 inhibitors, TopoI inhibitors, TopoII inhibitors, and CDK2
inhibitors) according to either Drugbank (15, 16) or ChemBank
(25, 26). All of the signatures obtained with the traditional ap-
proach, which have been used to query the cMap online tool,
are available at http://mantra.tigem.it (in a unique compressed
folder, containing each signature in a .grp file) together with
the corresponding results (in xls format).

The result assessment shows that the DN approach performed
comparably and, in many cases, better than the cMap classic on-
line tool. The percentage of cases in which the first neighbor of a
tested compound in the DN is a true positive is equal to 89% for
the average distance and 77% for the maximum distance (see the
section “Distance Between Two Drugs”). This value raises to
100% if we consider the case in which there is at least a true
positive among the first two neighbors of each tested compound,
for both the distances (as depicted in the online SI Table 2).

All the results of the ROC analysis and the comparison with
the performances of the cMap classic online tool are provided in
the online SI Table 3.

The particular case of the tested compound Nerviano Medical
Sciences (NMS)-Doxorubicin shows that our DN approach is able
to correctly classify drugs with high precision and sensitivity where
the cMap classic online tool clearly fails (online SI Table 4).

Moreover, the usefulness of our DN approach and its output
format is demonstrated in the following example: When the
NMS-Tanespimycin signature, including the 142 maximally up-
regulated and the 61 maximally down-regulated probe sets (avail-
able at the previously provided URL), was used to interrogate the
cMap in the classic way, Geldanamycin, Tanespimycin, Alvespimy-
cin, and Monorden ranked among the top six hits, that also in-
cluded the protein synthesis inhibitor Emetine. However, the
next top hits up to position 29 were a miscellaneous of chemicals
most of which cannot clearly be related to the HSP90 and/or
ubiquitin protein degradation inhibition. Known proteasome in-
hibitors ranked position 29 and 30. Similar results were obtained
by querying the cMap classic online tool with the gene signatures
of the other two HSP90 tested inhibitors. On the contrary, the
subnetwork containing the tested compounds (Fig. 3A of the
main text) and all their significant neighbors provides a modular
and meaningful view of the DN approach output. This allows
users to easily interpret the obtained output and to make a
hypothesis on the MoA of a new drug in a clearer way.

Canonical Construction of the Signatures. Scanned microarray
images were first inspected for QC using a variety of built-in
QC tools from the Bioconductor (27) package of R, the open
source environment for statistical analysis.

Feature intensity values from scanned arrays were normalized
and reduced to expression summaries using the Robust Multiar-
ray Algorithm and normalized by the quantiles method (28, 29).

To assess differential expression, we used a moderated t test
together with a FDR correction of the p value (30, 31).

Thus, the list of differentially expressed genes was generated
using a FDR ≤ 0.05 together with an absolute fold-change
threshold of 2 (i.e., j log2ðfold changeÞj ≥ 1).

Impact of Rank Merging on Performance. Some recent approaches
attempted to use cMap data to build a drug similarity network by
selectively comparing pairs of individual genome-wide expression

profiles (GEPs) (32) rather than pairs of drug PRLs, as done in
our approach, which are obtained by merging individual GEPs for
the same drug, prior to the comparison

The use of individual GEPs will tend to group together profiles
coming from the same cMap batch experiment, or the same cell
line, rather then grouping drugs with similar MoA. To avoid this
problem, it is necessary to merge together all of the differential
expression profiles obtained with the same drug, on different cell
lines and at different dosages, prior to computing distances.

To show the effect of using individual GEPs, for each GEP we
considered the K closest GEPs in the cMap dataset, according to
the distance. We then computed the percentage (PPV in the
online SI Fig. 7) of these closest GEPs that were obtained by
treating cells with the same drug (green line in the online SI
Fig. 7) as the GEP under consideration, or in the same cell lines,
regardless of the drug (blue line in the online SI Fig. 7), or in the
same batch experiment, regardless of the drug (red line in the
online SI Fig. 7).

We therefore conclude from online SI Fig. 7 that using indi-
vidual GEPs to compute the similarity distance between drugs
is not able to catch similarities in MoAs because of its inability
to discriminate treatments obtained with different drugs in the
same experimental setting.

In order to additionally assess the impact of the PRL merging
procedure on the classification performance of our tool, we spe-
cifically produced additional microarray data by treating U251
human glioblastoma cell line (NCI) with PHA-848125 at 3 μM,
a dose equal to 5× the IC50 for 6 h.

We then merged the set of gene expression profiles by using
different combinations of them, and we evaluated the ability
of our tool to classify the resulting different PRLs.

Results of this assessment are summarized in the online SI
Table 5; the list of neighbors is available online at http://
mantra.tigem.it.

Performances are measured by means of ROC analysis, assum-
ing the neighborhoods as sets of predictions and drugs in the
online SI Table 1 are considered as correct predictions.

As expected the best performance is obtained when the PHA-
848125 PRL derives from treatments of all three cell lines.

Specifically, by using the profiles individually the best classified
was the one obtained by treating the MCF7 cell line. This is quite
obvious, first of all because MCF7 is the most recurrent cell line
among those treated in the cMap dataset. Moreover for A2780
and U251 there are no treatments at all in the cMap. However,
once combining the profiles from MCF7 with that from A2780 or
U251, classification performances are still good, although the
combination with U251 gives a less efficient classification.
U251 cell line is the more diverse cell line among the three, since
glioblastoma is a very heterogeneous disease where different
pathways are known to be disrupted, which might explain the
observed signal dilution.

Despite this, when combining the profile coming from all three
cell lines together (MCF7, A2780, and U251), we obtain the best
performances in classification, supporting the hypothesis that a
sufficiently large combination of treated cell lines provides a
sufficiently general summary of the drug activity, which is well
classified in the majority of the cases.

We further explored the robustness of our method in classify-
ing drugs by pooling together profiles coming from treatments on
cell lines with a very different genetic background, potentially
causing a significant signal dilution. To this aim we collected ad-
ditional gene expression data by treating SF539 human glioma
cell line with PHA-848125 for 6 h.

The SF539 cell line is genotipically characterized by a mutation
in the Rb gene (encoding for the retinoblastoma tumor suppres-
sor protein), whereas the other three treated cell lines (A2780,
MCF7, and U251) are Rb wild type.
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DNA replication and the regulation of the G1∕S transition is
under the control of the Rb/E2F pathway. In wild-type cells Rb
binds the E2F-1 transcription factor, thus inhibiting its regulatory
activity. When Rb is phosphorylated by CDK2, it releases E2F-1
that mediates the cell cycle progression (33).

In the SF539 cell line, Rb is no longer able to block E2F-1,
which is constitutively active in this cell line as a result. As a con-
sequence, inhibiting CDK2 with PHA-848125 on SF539 will not
have the same effect on the E2F mediated transcription that is
elicited in the Rb wild-type cell lines.

Following the strategy previously described, we merged the set
of gene expression profiles obtained by treating A2780, MCF7,
U251, and SF539 with PHA-848125, and we evaluated the ability
of our tool to classify the resulting different PRLs.

Results of this assessment are summarized in the online SI
Table 5; the complete list of neighboring drugs is available online
at http://mantra.tigem.it.

Performances were measured by means of ROC analysis, as-
suming the drug neighborhood as predictions, and the set of
drugs in the online SI Table 1 as the golden standard.

Results, in the online SI Table 5, show that by using expression
profiles individually from a single cell line, the best classification
is obtained with the MCF7 cell line. This is to be expected, be-
causeMCF7 is the most recurrent cell line among those treated in
the cMap dataset. The worst classification was instead obtained
with the SF539 cell line, which is coherent with the Rb inactiva-
tion that mediates the MoA of the PHA-848125 compound.

Nevertheless, once we combined the profile coming from all
four cell lines together (MCF7, A2780, U251, and SF539), or
even of two cell lines (MCF7 and SF539) only, we improved
the classification performance considerably compared to using
just the SF539 cell line.

These results support the hypothesis that a sufficiently large
combination of treated cell lines provides a sufficiently general
summary of the drug activity, which is well classified by the DN.

Community Identification. We used the affinity propagation algo-
rithm (34) for identifying communities in our DN. This algorithm
takes in the drug distance matrix and outputs a set of clusters. The
algorithm also indicates, for each cluster, an element called the
cluster exemplar: the element whose features best interpolate the
features of all the other points in the cluster. The algorithm
requirement consists in a pairwise distance matrix and a set of
probabilities, one for each node to be elected as exemplar. We
assumed this probability uniform.

In the first step of our procedure, by applying the affinity pro-
pagation algorithm, the whole set of drugs was partitioned in a
finite number of clusters. In each of these clusters, a drug was
indicated as the cluster exemplar.

By adding significant edges to nodes corresponding to drugs in
a cluster, we obtained communities. With “significant edges” we
meant edges whose weight was below the significance distance
threshold we selected to generate the drug network.

We then, recursively, clustered again the exemplars, in order to
obtain second-level communities (“rich clubs”). The procedure
was recursively applied over cluster exemplars until convergence
(no exemplars were clustered together).

Impact of Community Identification on the Performances. With our
community-identification algorithm we basically perform a prun-
ing of the edges of the network in order to make it “modular.”
Most of the identified communities are enriched for a given mode
of action, as shown in the main text. This means that, once we
integrate a previously undescribed compound into the network,
we can make a hypothesis on its MoA by looking at communities
to which the previously undescribed compound is connected. This
represents a strong improvement compared to existing methods
(9, 23, 24).

Here, we additionally show that our community-identification-
based pruning is able to keep the “right” connections and to eli-
minate the “wrong” ones. In other words, we measure how the
tendency of drugs with a similar MoA of being linked together
changes after removing edges following the application of the
community-identification algorithm.

We first labeled the compounds in the cMap according to their
Anatomical Therapeutic Chemical (ATC) classification code
(35), which classifies drugs according to their therapeutic and
chemical characteristics. Because only 768 out of the 1,309 com-
pounds have an ATC code, we reduced our analysis to this subset
of compounds.

We then ranked the edges of both the pruned network, follow-
ing the community-identification algorithm, and the original
network, in ascending order (according to the associated distance
value), and we computed the percentage of edges that connect
drugs sharing the same ATC-code prefix of length 3, as shown
in the online SI Fig. 8.

As we can see in online SI Fig. 8, the pruned network shows a
better performance of the unpruned network.

Drug-to-Community Distance.We defined the Drug-to-Community
distance as follows: Let x be the testing drug and C a network
community containing a subset Cx of, at least, two drugs that
are connected to x through significant edges (i.e., through edges
whose weights are below the significance threshold). Then we
define the distance between x and C as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
d∈Cx

Dðd;xÞ∕jCxjjCx j

s
;

where Dðd;xÞ is the distance between drug d and drug x (max dis-
tance), as defined in the section “Distance Between Two Drugs.”
So, the distance between the testing drug x and the network com-
munity C is given by the ratio between the geometric mean of the
significant distances between drugs in C and x and the cardinality
of this set of distances. If jCxj < 2, then we assume the distance
between C and x is equal to ∞.

Observations on Data Quality. We observed that 78% of the com-
pounds contained in the cMap dataset have been tested on, at
least, three different cell lines (out of five) and just 6% have been
tested on a single cell line. Therefore, for the majority of the com-
pounds in the cMap dataset, we have multiple treatments suitable
for the extraction of a general cellular response (the PRL). Only
for a minority of drugs (6%) that have been tested on a single cell
line at a single concentration, we had a single ranked list of genes,
and therefore we used this single list as the PRL of the drug.

Community Gene Ontology (GO) Fuzzy-Enrichment Analysis. Let us
consider the community

C ¼ fd1;…;dng;

composed by n drugs. For each drug di in this community, we se-
lect the top-ranked 2,000 genes from its PRL (the set Upi) and
the bottom-ranked 2,000 ones (the set Downi). We then compute
the following unions: UUP ¼ ⋃n

i¼1 Upi, and UDOWN ¼
⋃n

i¼1 Downi.
Then, for each gene j in UUP (respectively, UDOWN) we define

a membership score, as follows: mUP
j ¼ jfijj∈Upigj

n (respectively,

mDOWN
j ¼ jfijj∈Downigj

n ).
Clearly the following relations are verified: 1

n ≤ mUP
j ,

mDOWN
j ≤ 1. Without loss of generality, in what follows, we limit

our discussion to the case of the up-regulated genes. When
mUP

j ¼ 1, gene j is in Upi for each i (i.e., the gene is up-regulated
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when treating with each drug in the community). On the other
hand, mUP

j ¼ 1
n when gene j is in Upi for only one (i.e., the gene

is up-regulated when treating with only one drug in the commu-
nity). Now, fixing a chosen membership threshold level k, such
that 1

n ≤ k ≤ 1, we define the fuzzy intersection of the up-regu-
lated genes, in the drug community C, with membership k, as fol-
lows: FUPðC;kÞ ¼ fjjmUP

j ≥ kg. Note that FUPðC;1Þ ¼∩n
i¼1 Upi In

the same way, the fuzzy intersection of the down-regulated genes,
in the drug community C, with membership k, is computed as
FDOWNðC;kÞ ¼ fjjmDOWN

j ≥ kg. Once we have these two fuzzy in-
tersections, we perform a classical GO term enrichment analysis
(36, 37) on them. We do this by assessing how much the occur-
rence of each GO term, among those associated to the genes in
FUPðC;kÞ (respectively, FDOWNðC;kÞ), is surprising and far from
the expected values when genes are randomly grouped. We indi-
cate with GOUPðkÞ the set of GO terms overrepresented in
FUPðC;kÞ and with GODOWNðkÞ the set of GO terms overrepre-
sented in FDOWNðC;kÞ. The following pseudocode describes the
heuristic approach we used to fix an appropriate value of k, in
order to maximize both k and the number of fuzzy-enriched
GO terms. The input to the algorithm is the drug community
C. The output consists of the fuzzy-enriched GO terms and the
determined k.

1. k ¼ 1
2. nUp ¼ nDown ¼ 0
3. totalGO ¼ fg
4. while nUp < 2;000 and nDown < 2;000
5. compute FUPðC;kÞ and FDOWNðC;kÞ
6. compute GOUPðkÞ and GODOWNðkÞ
7. ifjGOUPðkÞj þ jGODOWNðkÞj < jtotalGOj
8. then return ftotalGO;kþ 1∕ng
9. else
10. totalGO ¼ GOUPðkÞ∪GODOWNðkÞ
11. nUp ¼ jGOUPðkÞj, nDown ¼ jGODOWNðkÞj
12. k ¼ k − 1∕n
13. endif
14. endwhile
15. return ftotalGO;kþ 1∕ng
16. end

When the computation begins, k is set to 1 [line 1]. The car-
dinality of the two fuzzy intersections is set to zero [line 2] and the
set of fuzzy-enriched GO terms is set to empty [line 3].

Then a cycle iterates until one of the two fuzzy-sets contains
more than 2,000 genes [line 4]. In each of the iterations, the fuzzy
intersections and the sets of fuzzy-enriched GO terms are recom-
puted [lines 5 and 6], according to the actual value of k.

Then if the total number of fuzzy-enriched GO terms does de-
crease [line 7], then the total set of fuzzy-enriched GO terms and
the value of k, which have been computed in the previous itera-
tion, are given in output and the procedure ends [line 8]. If the
total number of fuzzy-enriched GO terms does not decrease [line
9], then the variables are updated [lines 10–11] and the member-
ship threshold value is decreased [line 12]. The remaining code
[lines 13–15] is executed if the total number of fuzzy-enriched GO
terms never decreases and the total number of genes in the two
fuzzy intersections is greater than 2,000.

Examples of Other GO Fuzzy-Enriched Communities. The whole list of
GO fuzzy-enriched communities is available at http://mantra.
tigem.it (in a unique xls file).

Among the 57 GO fuzzy-enriched communities, most of the
enriched GO terms are strictly linked to the mode of action of
the drugs in the community. One of the most representative
GO fuzzy-enriched communities is n. 28, which is enriched for
a well-defined mode of action (HSP90 inhibition). For this com-
munity, our algorithm gave in output an optimal threshold level

for the membership functions equal to 80% (meaning that the
computed fuzzy intersections were composed by genes that were
significantly differentially expressed when treating with four
among five drugs in this cluster). The fuzzy intersection of up-
regulated genes contained 209 genes, whereas the down-regu-
lated one contained 236 (see online SI Data at http://mantra.
tigem.it).

HSP90 is a chaperone protein responsible for the correct fold-
ing, stabilization, and function of multiple proteins (38). Inhibi-
tion of HSP90 increases the amount of unfolded client proteins in
the cellular environment. This leads to a stress condition for the
cell, resulting in the activation of a proper response via the acti-
vation of several pathways, as those involved in the ubiquitin-pro-
teasome degradation system. Looking at the GO terms enriched
in the up-regulated fuzzy intersection for this community, we can
infer the response induced in the cell by these compounds [i.e.,
unfolded protein response (see online SI Data)].

The genes contained in the fuzzy intersections of this commu-
nity were differentially expressed across drugs in this community
according to the following proportions: 98% were differentially
expressed following Alvespimycin treatment, 95% following Gel-
danamycin, 89% following Monorden, 84% following Tanespimy-
cin, and 45% following Fulvestrant.

Interestingly this percentage of differential expression is ap-
proximately proportional to the relation occurring between these
drugs and theMoA characterizing this community (i.e., HSP90 in-
hibition). This is because Alvespimycin andGeldanamycin directly
bind theHSP90protein inhibiting its cytosolic chaperone function,
and they are very similar by the chemical point of view;Monorden
is a less specific HSP90 inhibitor with effects also on Topoisome-
rases I and II; Fulvestrant binds the estrogen receptor, dissociates
HSP90, and triggers its intracellular degradation; therefore it
indirectly inhibits this chaperone functionality in the cell.

Another interesting GO fuzzy-enriched community is number
63, which is enriched for the sodium/potassium membrane pump
blocking activity (100% of the drug in the community). The fuzzy
intersection of up-regulated genes contained 40 genes (and the
fuzzy-enriched GO terms reported in Table 3), whereas the
down-regulated one contained 39 genes and no enriched GO
terms. The GO terms that are fuzzy enriched in the up-regulated
genes of this community are reported in the online SI Data. These
GO terms could be linked to a specific effect of cardiac glycosides
(the majority of the drugs in this comunity), i.e., the enhancement
of heart phosphatides (i.e., ethanolamine and phopshatidylethano-
lamine) activity (39). The majority of the genes contained in the
computed fuzzy intersections were differentially expressed inmost
of the PRLs of the cardiac glycosides in this community (>90%).

Community 43 provides another interesting example. This
community contains estrogens and estrogen inhibitors. The fuz-
zy-intersection of up-regulated genes contained 425 genes,
whereas the down-regulated one contained 335 genes. The fuz-
zy-enriched GO terms (see the online SI Data) are related to in-
teractions between estrogens and the Golgi apparatus (40, 41)
and in metabolic processes of organic compounds interacting
with estrogens (cobalamin, porphyrin, and others).

Statistical Tests.We validated each community by checking if ATC
codes or target genes were surprisingly overrepresented among
those associated to its composing drugs (or vice versa checking
if drugs with similar MoA, i.e., same ATC codes or target gene,
were found in the same communities). In a similar way, we
searched for enriched GO terms when we analyzed sets of genes
that were differentially expressed after treatments with all drugs
in a community.

In both cases we had to analyze frequencies of terms (ATC
codes/target genes and GO terms, respectively) within given sets
(drug communities and set of genes, respectively). Therefore, we
performed the same statistical test in both analyses.
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In order to test the enrichment significance of each ATC code/
target gene in a drug community, and to quantify it through a
p-value assignment, we had to compute the probability of count-
ing, by chance, at least k occurrences of a given ATC code/target
gene among those associated to the n drugs within community. If
we know that, in the total drug set of N drugs, m of them are
associated to the given ATC code/target gene, then the probabil-
ity follows the hypergeometric distribution and is given by

PrfX ≥ kg ¼ ∑
∞

x¼k

m
x

� �
N −m
n − x

� �
∕ N

n

� �
:

In the same way, p values were computed for assessing the sig-
nificance of a given GO-term enrichment in those associated
to genes in a given set. Finally, correction for multiple hypothesis
testing was applied to the obtained p values.

The odds ratio (number of observed terms divided by the
expected value) was computed as follows:

k
EðXÞ ¼ k

N
nm

:

Biochemical Assay to Test Inhibition of CDKs by SN-38 and Doxorubi-
cin. Inhibition of CDK activity by two Topoisomerase inhibitors
(Doxorubicin and SN-38) and two NMS CDK inhibitors (PHA-
00848125 and PHA-00793887), used as controls, was tested in
a biochemical assay.

CKD2/CycA activity was measured using 1.08 nM of recombi-
nant protein in 50 mM Tris pH 7.5, 10 mM MgCl2, 1 mM DTT,
3 mM Na3VO4, 0.2 mg∕mL BSA, 4 mM Histone H1 (Sigma
H5505), and 10 uM ATP (Aldrich A2620-9) with 1 nM 33γ P
ATP (Redivue [33γ P] ATP, Amersham 2;500 Ci∕mmole, 10 mCi∕
mL, 3.33 μmoles∕L). Compounds were 3-fold serially diluted
from 10 to 0.00051 mM for IC50 determination. The final concen-
tration of DMSO was 1%.

After 60 min of incubation, an amount of 60 mL of Dowex
resin (SIGMA-Supelco cat.13858-U)/formate, pH 3.0 was added
to stop the reaction and capture unreacted 33γ P ATP, separating
it from the phosphorylated substrate in the solution according to
the literature (42).

A volume of 27 mL of supernatant was transferred into 384
white flat-bottom plates, with 50 mL of Microscint 40 (Perkin-
Elmer), and the radioactivity was counted in the Top Count
(Perkin-Elmer). Experimental data were analyzed by an intern-
ally customized version of the SW package “Assay Explorer”
(MDL Information System) using the four parameter logistic
equation:

y ¼ bottomþ ðtop − bottomÞ∕ð1þ 10ðlog IC50−xÞ�slopeÞ;

where x is the logarithm of the inhibitor concentration, y is the
response; y starts at bottom and goes to top with a sigmoid shape.

As shown in Fig. S2 and in the online SI Table 6, no biochem-
ical inhibition of CDKs by SN-38 and Doxorubicin could be
observed.
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Fig. S1. Drug Community Enrichments. Of 106 identified communities (black thick line), 61 are enriched for at least one common feature (ATC code, direct
target gene, and literature derived evidence). Forty-nine of these enriched communities are enriched for at least one ATC code (blue area) and 24 (red area) are
enriched for, at least, one direct target gene. The intersection of these two sets contains 21 communities (purple area) enriched both for ATC codes and direct
target genes. The enriched MoA of the remaining nine communities (gray area) has been verified by searching the literature.

Fig. S2. Inhibition of CDKs by Doxorubicin and SN38: Biochemical Essay. Inhibition of CDK2/cyclinA complex (CDK2/CYCA) activity by two Topoisomerase
inhibitors (Doxorubicin and SN-38) and two CDK inhibitors (PHA-00848125 and PHA-00793887) developed at Nerviano Medical Sciences, used as controls,
tested in a biochemical assay. Compound concentration is on the x axes, expressed in Moles (M), whereas percentage of inhibition is on the y axes. Different
colors represent different compounds. No biochemical inhibition of CDKs by SN-38 and Doxorubicin could be observed.
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Fig. S3. Western blots following treatmentswith CDK2 and Topo inhibitors. Decreased phosphorylation of RNApolymerase II (RNA Pol II) on Serine 5 (RNAPol II
pSer 5, [CDK7 substrate]) and to a lesser extent on Serine 2 (RNA Pol II pSer2, [CDK9 substrate]) by PHA-00793887 (887), a CDK inhibitor developed at Nerviano
Medical Science, coupled to loss ofMCL1 protein.Minor effects on Serine 5 are observed alsowithDoxorubicin (Dx) and SN-38, but they donot affectMCL1 levels.

Fig. S4. Effects of Fasudil on autophagy. Immuno-fluorescence with anti-LC3 antibody in fibroblasts treated with drugs promoting autophagy. Evaluation of
LC3 levels in human fibroblasts after treatment with drugs: Immunofluorescence (1, Rapamycin; 2, Fasudil; 3, Trifluoperazine; 4, 2DOG; NT, untreated). The
experiments were performed in triplicate and representative results are shown.

Fig. S5. Effects of Fasudil on HeLa Cells. Western blot with anti-LC3 antibody in drug treated Hela cells treated: 1, Rapamycin; 2, Fasudil 10 μm; 3, Fasudil
30 μM; 4, Trifluoperazine 1 μM; 5, 2DOG 100 μM; NT, untreated. LC3II levels are increased following treatment with Fasudil, Trifluoperazine, and 2DOG as
compared to the untreated control. The experiments were performed in duplicate and representative results are shown.
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Table S1. First 10 neighbors and 10 closest communities of the tested compounds

Closest 10 neighbors

NMS-Tanespimycin NMS-E973 NVP-AUY922

Distance Compound Distance Compound Distance Compound
0.436 Alvespimycin* 0.4436 Alvespimycin* 0.6084 Alvespimycin*

0.4913 Geldanamycin* 0.4891 Geldanamycin* 0.6391 Monorden*

0.5176 Monorden* 0.5294 Monorden* 0.7123 Geldanamycin*

0.6315 Tanespimycin* 0.6568 Tanespimycin* 0.7506 Puromycin
0.6533 Puromycin 0.6723 Puromycin 0.7608 Tanespimycin*

0.7178 Trifluoperazine 0.7308 Trifluoperazine 0.7756 Gefitinib
0.7542 Parthenolide 0.7638 Disulfiram
0.7561 Thiostrepton 0.7842 Methylbenzethonium_chloride
0.7608 Withaferin_A 0.785 Parthenolide
0.7724 Disulfiram 0.7903 Lanatoside_C

NMS-Doxorubicin NMS-SN38 Flavopiridol

Distance Compound Distance Compound Distance Compound
0.5587 Daunorubicin* 0.3215 Irinotecan* 0.454 Alsterpaullone*

0.6495 GW-8510 0.5641 Camptothecin* 0.4857 GW-8510*

0.6536 Hycanthone 0.6158 Apigenin* 0.5374 Apigenin*

0.6555 Ellipticine* 0.6251 Phenoxybenzamine 0.5534 0175029-0000
0.6689 Irinotecan 0.6363 Etoposide 0.5789 Daunorubicin
0.69 Camptothecin 0.6596 Luteolin* 0.5966 Doxorubicin
0.6921 Etoposide* 0.6675 Tyrphostin_AG-825 0.5976 Camptothecin
0.6926 Mycophenolic_acid 0.6877 Daunorubicin 0.6196 Ellipticine
0.6996 Phenoxybenzamine 0.6882 Thioguanosine 0.627 H-7*

0.7175 Doxorubicin* 0.6903 Hycanthone 0.6301 Tyrphostin_AG-825
PHA-690509 PHA-793887 PHA-848125

Distance Compound Distance Compound Distance Compound
0.3838 GW-8510* 0.4715 0175029-0000 0.6212 0175029-0000
0.4613 Doxorubicin 0.4846 GW-8510* 0.6352 Apigenin*

0.4794 Alsterpaullone* 0.5145 Alsterpaullone* 0.6504 Harmine*

0.5001 H-7* 0.537 Apigenin* 0.6672 Thioguanosine
0.5593 Daunorubicin 0.5694 Daunorubicin 0.6711 GW-8510*

0.5873 Camptothecin 0.5976 Doxorubicin 0.6746 Luteolin*

0.5956 Ellipticine 0.6014 Ellipticine 0.6795 Daunorubicin
0.6048 Mitoxantrone 0.6353 Tyrphostin_AG-825 0.6828 Irinotecan
0.6144 Tyrphostin_AG-825 0.6582 Luteolin* 0.6877 Camptothecin
0.6274 Fisetin* 0.6607 Camptothecin 0.6886 Piperlongumine

Closest 10 communities

NMS-Tanespimycin NMS-E973 NVP-AUY922

Distance Community Distance Community Distance Community
0.1285 28† 0.1310 28† 0.1285 28†

0.1296 104 0.1996 63 0.1296 40
0.1329 63 0.2481 40
0.1863 40 0.2566 100
0.2567 100 0.2640 104

NMS-Doxorubicin NMS-SN38 Flavopiridol

Distance Community Distance Community Distance Community
0.0978 14† 0.0888 32† 0.048 14†

0.1458 3 0.1174 14 0.0603 90
0.19 16 0.1434 3 0.0625 32†

0.2374 32 0.2581 89 0.0954 89
0.3955 40 0.3798 75 0.1929 52

0.1995 85
0.2527 40
0.2564 63
0.3781 104
0.3874 61
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Closest 10 communities

PHA-690509 PHA-793887 PHA-848125

Distance Community Distance Community Distance Community
0.03 90 0.0527 14† 0.0721 14†

0.0464 14† 0.0916 32† 0.0845 32†

0.0585 32† 0.0947 63 0.0927 63
0.0639 89 0.1927 3 0.255 89
0.1283 85 0.383 104 0.2590 104
0.1299 52 0.3762 69
0.1931 74 0.3763 100
0.1933 61 0.3847 3
0.2561 13
0.3837 40

*True positives, drugs sharing the mode of action with the testing one.
†True positives, communities enriched for the mode of action of the testing drug.

Table S2. Selectivity profile of the tested CDK inhibitors

PHA-793887 PHA-848125 PHA-690509 Flavopiridol

Enzyme Average IC50 (uM) Average IC50 (uM) Average IC50 (uM) Average IC50 (uM)

CDK1 0,060 0,398 0,160 0,034
CDK2 0,008 0,045 0,031 0,040
CDK4 0,062 0,160 >10 0,090
CDK5 0,005 0,265 0,090 0,102
CDK7 0,010 0,150 nt 0,754
CDK9 0,138 1,112 0,141 0,025
GSK3 0,079 >10 1,900 0,971
TRKA >10 0,053 nt nt

Table S3. 2-deoxy-D-glucose (2DOG) Analysis

Whole neighborhood

1 Fasudil 0.5162
2 Thapsigargin 0.5644
3 Trifluoperazine 0.577
4 Gossypol 0.633
5 Niclosamide 0.6539
6 Tyrphostin_AG-1478 0.6682
7 Valinomycin 0.678
8 Ivermectin 0.6792
9 Sodium_phenylbutyrate 0.6833
10 BW-B70C 0.6905
11 Calmidazolium 0.6912
12 5224221 0.6968
13 MG-132 0.6971
14 Desipramine 0.7007
15 Rottlerin 0.7013
16 Clotrimazole 0.7054
17 Mefloquine 0.7066
18 Ionomycin 0.7087
19 Tamoxifen 0.7143
20 Cytochalasin_B 0.7164
21 Ciclosporin 0.7201
22 Puromycin 0.7268
23 Pyrvinium 0.7283
24 Astemizole 0.729
25 Alexidine 0.7305
26 Disulfiram 0.7311
27 Fendiline 0.7329
28 Prochlorperazine 0.7387
29 Anisomycin 0.7397
30 Pararosaniline 0.7417
31 Chlorprothixene 0.742
32 Loperamide 0.7422
33 Mometasone 0.7439
34 Iloprost 0.7475
35 0297417-0002B 0.748
36 Thioridazine 0.7488
37 MG-262 0.75
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Whole neighborhood

38 Spiperone 0.7556
39 Arachidonyltrifluoromethane 0.7599
40 Methylbenzethonium_chloride 0.7615
41 5707885 0.763
42 Oligomycin 0.7701
43 Podophyllotoxin 0.7725
44 Homochlorcyclizine 0.7736
45 Perphenazine 0.7742
46 Celastrol 0.7752
47 Vanoxerine 0.776
48 Idoxuridine 0.776
49 5666823 0.7765
50 Hydroxyzine 0.7766
51 Nordihydroguaiaretic_acid 0.7776
52 Geldanamycin 0.7776
53 Metergoline 0.7777
54 Novobiocin 0.7779
55 Terfenadine 0.7781
56 Butoconazole 0.7787
57 Piroxicam 0.7808

2DOG community
2-deoxy-D-glucose

fasudil
sodium_phenylbutyrate
tamoxifen
arachidonyltrifluoromethane
novobiocin

2DOG Rich-club

Member Community

Trifluoperazine* 100
Ciclosporin* 43
Astemizole* 34
Oligomycin* 78
Gefitinib 60
5114445 4
Esculetin 54
Dimethyloxalylglycine 51
Demecolcine 48
Zardaverine 106
CP-319743 10
Terconazole 92
3-aminobenzamide 2
Mycophenolic_acid 75
HC_toxin 16

*Rich-club members significantly connected to 2DOG.

Other Supporting Information Files
Dataset S1 (XLS)
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