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I. Experimental Details. For the low-temperature Hall effect and
magnetoresistivity measurements, a dilution refrigerator was
utilized (T ≥ 18 mK). A solenoid along with a split-coil magnet
allowed for Hall-effect measurements in the crossed-field geome-
try that is sketched in Fig. S1a. In this setup the dual role of the
magnetic field is unraveled by using one field (B1) to generate the
Hall response and another field (B2) to tune the ground state of
the sample across the quantum critical point.

The smallmagnetic field (B1) provided by the solenoid is used to
produce the linear-response Hall effect. Therefore it was oriented
along the magnetic hard c axis and perpendicular to the electrical
current flowing within the crystallographic ab plane. Conse-
quently, the Hall voltage Vy is generated transverse to the current
within the ab plane. The induced voltages were amplified by
low-temperature transformers, and the signals were measured
by a standard lock-in technique. We extracted the Hall resistivity
ρH as the antisymmetric component of the field-reversed transver-
sal voltage, ρHðB1;B2Þ ¼ t½VyðþB1;B2Þ − Vyð−B1;B2Þ�∕2I (with
t being the thickness of the sample). The linear-response Hall
coefficient RHðB2Þ was subsequently derived from the initial slope
of the Hall resistivity ρHðB1;B2ÞjB2

RHðB2Þ≡ lim
B1→0

ρHðB1;B2Þ∕B1 [S1]

for small fields B1 ≤ 0.4 T (cf. Fig. S2).
The field B2 that tunes the material from the magnetic ground

state to the paramagnetic one is generated by the split-coil mag-
net and applied within the magnetic ab plane. This magnet covers
a range of B2 extending to a value as large as 4 T, nearly 2 orders
of magnitude larger than the ab-plane critical field, B2c ≈ 0.06 T.
The combination of the two magnets and the dilution refrigerator
enabled us to access a wide range of both temperature and
magnetic field. This was essential for extracting the temperature
dependence of the FWHM as well as for the separation of the
crossover and background contributions. The fitting of the
isotherms was restricted to below 2 T for the crossed-field Hall
results due to deviations from linearity at higher fields. These
deviations are likely associated with the Zeeman splitting of
the bands, which becomes sizable in this field range since B2 is
applied within the easy magnetic plane.

In the case of the single-field Hall experiment (B2 ¼ 0) (see
Fig. S1b), the differential Hall coefficient

~RHðB1Þ≡
∂ρHðB1;0Þ

∂B1

[S2]

was calculated and analyzed. The fitting of the differential Hall
coefficient ~RHðB1Þ with Eq. 5 of the main text leads to the para-
meters ~R0

H and ~R∞
H . In the case of the single-field Hall experiment,

the fitting was performed over the full field range up to 4 T.
Special care was spent to a precise alignment of the field B1

to be parallel to the c axis within less than 0.5°. Such precise
alignment is essential for the single-field experiment as a small
component of this field within the ab plane could easily dominate
the tuning due to the large magnetic anisotropy of the material.

The magnetoresistivity ρðB2Þ (see Fig. S1c for a sketch of the
setup) was monitored during the crossed-field Hall-effect
measurements. By an analogous fitting with the crossover func-
tion, the corresponding parameters ρ0 and ρ∞ were extracted. We

note that for the magnetoresistivity curves the linear term mB is
negligibly small (cf. section IV).

II. Samples. Single crystals of YbRh2Si2 were synthesized using an
indium flux-growth technique as described earlier (1). An addi-
tional optimization of the initial composition and the tempera-
ture profile led to an improved sample quality. This is
manifested in an almost doubled residual resistance ratio of
sample 2 (RRR ¼ 120) compared to sample 1 (RRR ¼ 70).
All samples were polished to thin (t≲ 80 μm) platelets and pre-
screened via resistivity ρðT;BÞ measurements to ensure indium-
free samples.

Two different samples are considered. Sample 1 was taken
from ref. 2 and remeasured in the newly designed high-resolution
setup applying the precise alignment procedure described in
section IVas a cross-check. Sample 2 was chosen from our highest
quality batch. These two samples span the whole range of sample
dependences in the low-temperature Hall effect (3): The low-
temperature Hall coefficient seems to depend on tiny changes
of the composition (samples from the same batch, on the other
hand, show identical behavior).

III. Anomalous Hall Contribution. In heavy-fermion metals, an asym-
metric scattering of the conduction electrons from the 4f
moments—the skew scattering—leads to an anomalous contribu-
tion to the Hall coefficient mostly relevant at high temperatures
(4). However, our analysis of the crossover at the quantum critical
point (QCP) is not affected by the anomalous Hall effect, because
its contribution to the Hall resistivity

ρaHðB1Þ ¼ CρðB1Þμ0MðB1Þ [S3]

is essentially linear in field. It adds a small, but constant anomalous
contribution Ra

H to the differential Hall coefficient with an
absolute value of less than 0.07 × 10−10 m3∕C. This is negligible
compared to the large variation of ∂ρH∕∂B1 (compare vertical bars
in Figs. S3 and S4b). Furthermore, both the inflection point and
the sharpness of the crossover are invariant to a constant offset. In
Eq. S3, C denotes a constant that was determined from fits to
RHðTÞ at high temperatures (≈100 K in YbRh2Si2) (5) where
no sample dependences are observed (3). The resistivity ρðB1Þ
was measured simultaneously, and the magnetization MðB1Þ for
the relevant geometry (B∥c) was taken from ref. 6. Because the
anomalous contribution does not influence our analysis, we have
simply considered the raw data.

IV. Crossovers in Hall Effect and Magnetoresistivity. Fig. S3 shows the
single-field Hall-effect results of YbRh2Si2 for sample 2. The
crossover found in the differential Hall coefficient ~RHðB1Þ was
fitted by the same crossover function as in the crossed-field
experiment (Eq. 5 of the main text). In particular, it is possible
to identify the crossover and background contributions. The
corresponding results and the fits for the crossed-field (RHðB2Þ)
and the single-field ( ~RHðB1Þ) experiments of sample 1 are shown
in Fig. S4.

The magnetoresistivity (ρðB2Þ) data are illustrated in Fig. S5
for samples 1 and 2. Here, the same crossover function (Eq. 5
of the main text) was used, with the linear term being negligibly
small, m≃ 0. We analyzed the magnetoresistivity crossover up to
1 K. This allows us to extract the FWHM over this enlarged
temperature range as depicted in Fig. S6 proving that the width
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follows the unique linear temperature up to such high tem-
peratures.

No signature is seen in the temperature dependence of
the FWHM for any of the experiments at the Néel transition
(cf. main text). Only below 30 mK does the FWHM extracted
from both the crossed-field Hall effect and the magnetoresistivity
crossovers seem to tend slightly toward larger values compared to
the overall linear temperature dependence; see Fig. 3 of the main
text. We assign this to influences arising from the nearby classical
phase transition as at this temperature the phase boundary is
approached by the Hall crossover. This is seen in the phase dia-
gram with the FWHM around the crossover field substantially
extending into the magnetically ordered phase for temperatures
below 30 mK only (cf. horizontal bars in Fig. 4 of the main text),
the temperature below which the seeming deviations from line-
arity occur. Further indications of this additional influence are
observed in the crossed-field Hall coefficient curves that exhibit
visible spread at lowest temperatures within the ordered phase
(Fig. 1 of the main text and Fig. S4).

The FWHM extracted from the single-field measurements, on
the other hand, continues to obey the linear form down to the
lowest temperatures accessed. Given this continuity, we consider
the single-field data to represent the intrinsic quantum critical
behavior. This property of the single-field experiment may arise
from the fact that only here the tuning field is applied along the
magnetic hard axis. For this orientation the magnetization and
consequently also the classical magnetic fluctuations are by
almost one order of magnitude smaller compared to those for
fields applied within the magnetic easy plane (6). The latter con-
figuration is realized in both the crossed-field Hall effect and the
magnetoresistivity measurements.

Finally, we note that within the experimental accuracy the
FWHMof all themeasurements is compatible with the linear form
in the whole temperature range. Taking all this together, the data
imply that the linear temperature dependence of the FWHM
represents the behavior intrinsic to the quantum criticality.

The vanishing FWHM implies a jump of the magnetoresistivity
at zero temperature, in contrast to the common behavior of
Kondo systems for which the width of the change in magnetor-
esistivity remains finite at zero temperature (7). This represents a
key element in our interpretation of the Hall crossover in terms of
a Fermi-surface reconstruction.

V. Sample Dependence of the Background Contribution. The tem-
perature dependences of R0

H and R∞
H are shown in Fig. 2A of

the main text for both samples. The results of the low-field value
R0
H are in good agreement with those of the measured zero-field

(B2 ¼ 0) initial-slope Hall coefficient RHðTÞ (ref. 3). This is
nontrivial as R0

H is the result of the fitting procedure specified
in Materials and Methods of the main text, and not fixed to the
zero-field value. Both R0

HðTÞ andR∞
H ðTÞ decrease as the tempera-

ture decreases. Below TN , the initial-slope Hall coefficient clearly
obeys a quadratic temperature dependence as demonstrated in
Fig. S8a. This finding allows for a proper extrapolation of
RHðTÞ and R0

HðTÞ to T → 0, which in turn enables us to conclude
that the difference between R0

H and R∞
H , i.e., the height of the Hall

crossover, remains finite for both samples on approaching zero
temperature. Identical observations were made for the para-
meters extracted from the magnetoresistivity crossover (Fig. S8b
and Fig. 2B of the main text) as well as for those of the crossover
in the single-field Hall effect (Fig. S7).

The temperature evolution of the parameter m of Eq. 5 of the
main text (which describes the linear background) is shown in
Fig. S9 for all Hall-effect experiments. The data for the
single-field experiments are restricted to below 0.2 K due to
the crossover extending over an increasingly large field range with
increasing temperature. This prevents a proper determination of

the background contribution within the field range of our experi-
ment (cf. Figs. S3 and S4b). The crossed-field results of sample 1
are limited to temperatures above 0.065 K due to a lack of
high-field data at lower T (cf. Fig. S4a).

Taking all these observations together we find a pronounced
sample dependence for the quantities describing the background
contribution, whereas those associated with the critical crossover
are essentially sample independent (cf. main text).

VI. Single-Electron Green’s Function and the Hall Crossover. The sin-
gle-electron Green’s function, Gðk;E;TÞ (Eq. 1 of the main text)
on either side of the zero-temperature transition and at low
temperatures, can be decomposed as

Gðk;E;TÞ ¼ Gcohðk;E;TÞ þGincðk;E;TÞ: [S4]

This decomposition is an immediate consequence of the fact that
the phases separated by the QCP are taken to be Fermi liquids.
Indeed, because of the jump of the Hall coefficient across the
QCP, the Fermi liquids are taken to have large and small Fermi
surfaces, respectively. The coherent part of Gðk;E;TÞ is given by

Gcohðk;E;TÞ ¼
zk

E − εðkÞ þ iΓkðTÞ
[S5]

describing a quasiparticle, and Gincðk;E;TÞ is a background
contribution. The strength of the quasiparticle excitation, zk , for-
mally defined as the residue of the pole, is nonzero in either
phase. However, to be compatible with the continuous nature
of the zero-temperature transition, zk must vanish as the QCP
is approached: zk → 0 as B → Bc. At T ¼ 0, the quasiparticle
damping Γk vanishes at the small Fermi momenta kF for
B < Bc, and at the large Fermi-momenta k�

F for B > Bc; at these
respective Fermi momenta, the quasiparticles become infinitely
sharp excitations at zero temperature. The coherent part of
Gðk;E;TÞ is therefore the diagnostic feature on either side of
the transition, and it jumps at the QCP in accord with the sudden
Fermi-surface change.

This jump is manifested in the Hall measurement, because the
Hall coefficient is independent of the quasiparticle residue. Note
that our argument builds on the Landau Fermi-liquid nature of
the phases on either side of the QCP, where the Fermi surface and
the forms Eqs. S4 and S5 are well defined. The Hall coefficient of
a Fermi liquid is completely determined by the dispersion of the
single-electron excitations near the Fermi surface (8, 9). The fact
that the quasiparticle residue does not appear in the Hall coeffi-
cient of a Fermi liquid can be seen in a number of related ways. It
is known—both phenomenologically (10) and microscopically
(11)—that the Boltzmann equation of a Fermi liquid does not
depend on the quasiparticle residue; by extension, the Hall coef-
ficient does not depend on the quasiparticle residue. The same
conclusion is reached through a study of the Hall coefficient of a
Fermi liquid using the Kubo formula (8). Finally, for a spherically
symmetric but otherwise arbitrary dispersion, it has been shown
explicitly by diagrammatic calculations that the Hall coefficient is
not renormalized by the electron-electron interactions (9).

At nonzero temperatures, the quasiparticle relaxation rate at
either kF for B < Bc, or k�

F for B > Bc, no longer vanishes. In fact,
inside the Fermi-liquid phase (with either large or small Fermi
surface), the temperature dependence of ΓkF has to be quadratic
in T. However, the Fermi surface remains well defined in these
regimes. At finite temperatures, the change from one Fermi
surface to the other is therefore restricted to the intermediate
quantum critical regime. Because of the absence of a phase
transition at any nonzero temperature, the sharp reconstruction
of the Fermi surface at T ¼ 0 is turned into a Fermi-surface cross-
over across the T�ðBÞ line. The restriction to the quantum critical
regime implicates that the linear in temperature relaxation rate
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present in this regime determines the broadening of the Fermi-
surface change. From the relation of the Hall coefficient to the
Fermi surface (described above), we associate the width of
the Hall crossover with this broadening and consequently with
the relaxation rate Γ of the single-electron Green’s function.

To be more specific, consider a general scaling form for the
single-electron Green’s function at the Fermi momentum in
the quantum critical region:

GðE;TÞ ¼ 1

Tα ϕ

�
E
Tx

�
: [S6]

For a Gaussian fixed point, a dangerously irrelevant variable will
invalidate E∕T scaling and make x > 1. Correspondingly, the sin-
gle-particle relaxation rate Γ (defined in Eq. 4 of the main text)
will be superlinear in temperature and the Hall-crossover width

as a function of the magnetic field will in general not be linear in
temperature. An interacting fixed point, on the other hand, can
generate x ¼ 1 with a relaxation rate that is linear in temperature
and be compatible with the linear-in-T Hall-crossover width
observed.

An important question concerns the critical exponent y as
defined by the T�ðBÞ line, T�ðBÞ ∝ ðB − BcÞy. This scale equiva-
lently specifies B�ðTÞ, the center of the critical Hall crossover. In
general, B� and FWHM are two independent parameters. Eq. 5,
which fits our data very well (Fig. 1 and Figs. S3–S5), invokes both
parameters to characterize the critical component of the Hall
crossover. We have already shown that the FWHM is robustly
linear in temperature. For the T�ðBÞ line, Fig. 4 of the main text
suggests that the exponent y is less than 1 but its precise deter-
mination, especially from the Hall-effect measurements, requires
accuracies beyond our present experiments.
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Fig. S1. Experimental setups. The experimental setups of the crossed-field and single-field Hall effect and of the magnetoresistivity measurements are
depicted (from left to right).

Fig. S2. Determination of the initial-slope Hall coefficient. The figure shows typical isotherms of the Hall resistivity ρHðB1;B2Þ at selected fields B2. The solid
lines herein are linear fits to the data used to calculate the linear-response Hall coefficient, RHðB2Þ ¼ ρHðB1;B2Þ∕B1.
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Fig. S3. Single-field results on sample 2 of YbRh2Si2. Selected isotherms of the numerically derived differential Hall coefficient ~RHðB1Þ ¼ ∂ρH∕∂B1 for sample 2
are plotted against B1. The solid lines are fits of the crossover function (see Materials and Methods of the main text). At large fields B ≫ B0, the third term
of Eq. 5 of the main text becomes negligible. Consequently, the Hall resistivity is expected to be described by the integral of the first two terms ( ~R∞

H þmB1),
i.e., ρH ¼ c þ ~R∞

H B1 þ m
2 B

2
1 with c denoting the intercept with the ordinate, ρHðB1 ¼ 0Þ. This form was consistently fitted. The vertical, orange bar represents the

anomalous contribution determined from Eq. S3 via the derivative Ra
H ¼ ∂ρaH∕∂B1 (see text).

Fig. S4. Hall-effect results on sample 1 of YbRh2Si2. (a) Crossed-field and (b) single-field results for the Hall coefficient RHðB2Þ and the differential Hall coeffi-
cient ~RHðB1Þ, respectively. For a description of the fitting function we refer toMaterials andMethods of the main text. As in Fig. S3, the anomalous contribution
Ra
H is indicated by the vertical, orange bar (see also section III).
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Fig. S5. Crossover in the magnetoresistivity ρðB2Þ of YbRh2Si2. Results (a) for sample 1 and (b) for sample 2 are depicted. The data were measured simulta-
neously with the crossed-field Hall-effect experiment. For the fitting of the crossover (Eq. 5 of the main text), the linear background term was omitted.

Fig. S6. FWHM up to 1 K. The results extracted from the magnetoresistivity crossover are depicted in an enlarged temperature range up to 1 K. Solid line
represents the very same linear fit as in Fig. 3 of the main text. It is referred to Fig. 3 of the main text for further explanations.
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Fig. S7. Limiting values of the single-field Hall crossover. Fit parameters ~R0
H and ~R∞

H of the single-field Hall-effect measurement ~RHðB1Þ. Results for sample 1 and
sample 2 are depicted along with initial-slope Hall coefficient. Solid curves represent quadratic fits as discussed in the text (see also Fig. S8). Standard deviations
are smaller than the symbol size.

Fig. S8. Evolution of the Hall coefficient in the antiferromagnetically ordered phase. (a) Initial-slope Hall coefficient RHðTÞ is plotted against T2 together with
the fit parameters R0

H and R∞
H . Solid lines represent fits of the form RHðTÞ ¼ c þ A0T2 for temperatures below TN (indicated by arrows) where c denotes the

intercept with the ordinate, i.e., the zero-temperature, initial-slope Hall coefficient, RHðT ¼ 0Þ. These fits are reproduced as solid curves in Fig. 2(A) of the main
text and in Fig. S7. (b) Corresponding plot of the zero-field ρðTÞ and the fit parameters ρ0 and ρ∞ extracted from the magnetoresistivity crossover with an
according fitting function ρðTÞ ¼ ρ0 þ AT2 (ρ0 being the residual resistivity) below TN, which agrees well with previous observations (6).

Fig. S9. Temperature dependence of m, the slope of the linear background contribution extracted from the crossed-field and single-field Hall-effect
measurements.
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