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SI Text
SI Model. Basics of cardiac propagation. Synchronized contraction
of the heart is initiated by propagating electrical waves of excita-
tion. In normal conditions the excitation of the heart originates in
the sinoatrial (SA) node (Fig. S1 and Fig. S2A), which is located
in the right atrium. The SA node is a small strip of specialized
muscle that is capable of self-excitation. The impulse that origi-
nates in the SA node travels outward in all directions and excites
the two atria (Fig. S2B). The excitation is transmitted from atria
to the ventricles of the heart at the atrioventricular (AV) node,
which is located in the intraatrial wall between the atria and the
ventricles. The propagation through the AV node is very slow,
which results in a delay between the atrial excitation and the
ventricular excitation and causes the atria to contract earlier than
the ventricles. The impulse spreads rapidly from the AV node
through a specialized conducting system to the muscle fibers
of the ventricles (Fig. S2C). The conducting system is formed
by the bundle of His, its branches and the Purkinje fibers, and
transmits impulses to the endocardial surface of the left and right
ventricle. Following propagation through the Purkinje fibers the
excitation enters the ventricular tissue and activates the ventricles
of the heart, causing ventricular contraction (Fig. S2D).

Propagation of excitation in cardiac tissue is anisotropic; the
myocardium is arranged into muscle fibers, as shown in Fig. 1
of the main text, and the propagation along cardiac fibers is
2–3 times faster than across them. Studies of cardiac anatomy
(1) have identified that speeds may also vary transverse to the
fibers; the fibers in the heart are locally organized into sheets,
and there is higher connectivity inside a sheet than transverse
to it. This electrophysiological anisotropy is the basis for our in-
troduction of the el-metric.

Details of ionic model simulations.
1. Methods.
Cardiac tissue was modeled by the following system of parabolic
partial differential equations (2–4):
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iz ¼ D3

∂V
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where ðx;y;zÞ denotes the Cartesian coordinate system, with the
slab parallel to the xy-plane. The term θ is the angle between the
fiber direction and the (fixed) x axis, and depends on the z vari-
able only (fibers are assumed to lie in parallel planes), andD1,D2,
D3 measure conductance longitudinally along fibers, orthogonal
to the sheets, and perpendicular to the slab respectively. Cm ¼
1 μF∕cm2 represents the membrane capacitance and Iion is the
sum of all transmembrane ionic currents.

The system [S1–S4], along with additional expressions for Iion,
describes action potential dynamics in continuous cardiac tissue.

For numerical simulations we use a discretization (2, 5) with
equal space steps h in the x, y and z direction and evaluate needed
derivatives using the approximations

∂2V∕∂x2 ¼ ðV ðxþ h;y;zÞ þ V ðx − h;y;zÞ − 2. � V ðx;y;zÞÞ∕h2
∂2V∕∂y2 ¼ ðV ðx;yþ h;zÞ þ V ðx;y − h;zÞ − 2. � V ðx;y;zÞÞ∕h2
∂2V∕∂z2 ¼ ðV ðx;y;zþ hÞ þ V ðx;y;z − hÞ − 2. � V ðx;y;zÞÞ∕h2
∂2V∕∂x∂y ¼ ðV ðxþ h;yþ h;zÞ þ V ðx − h;y − h;zÞ

− V ðx − h;yþ h;zÞ − V ðxþ h;y − h;zÞÞ∕4h2

Here V is the transmembrane potential and t is time.
We use the Luo-Rudy phase 1 model (LR1) (6) for the calcu-

lation of the total current: Iion ¼ INa þ Isi þ IK þ IK1 þ IKp þ Ib,
where INa ¼ GNam3hjðV − ENaÞ is the fast Naþ current,
ISi ¼ GSidf ðV − ESiÞ is the slow inward Ca2þ current, Ik ¼
Gkxx1ðV − EkÞ is the slow outward Kþ current, IK1 ¼ GK1K1∞
ðV − EK1Þ is the time-independent Kþ current, IKp ¼ GKpKpðV −
EKpÞ is the plateau Kþ current, and Ib ¼ GbðV − EbÞ is the back-
ground current. The variables m, h, j, d, f and x are gating vari-
ables, which dynamics can be modeled by

dy
dt

¼ ðy∞ − yÞ∕τy; [S5]

where y represents any of the gating variables. We use standard
parameters from (3, 4, 6) withGNa ¼ 16.0 mS∕cm2. For more de-
tails of the model see ref. 6.

We integrated Eq. S1 by the Euler method with time step Δt ¼
0.003 ms and used finite differences with a space step of
Δx ¼ 50 μm to calculate the Laplacian. We used diffusion coeffi-
cients in the ratio D1∶D2∶D3 ¼ 1∶0.0625∶0.25, with D1 ¼
0.001 cm2∕ms. We simulated a one-dimensional cable to find
the speed of propagation in different directions, obtaining velo-
cities of 0.58 m∕s (in the fiber direction), 0.29 m∕s (in the sheet
direction), and 0.13 m∕s in the normal direction.

Simulations were also performed using the eikonal model
described in the main text.

For most of the 3D computations we used a 600 × 600 × 90
grid for the ionic model and a 400 × 400 × 60 grid for the eikonal
model. Thus, the space step in the eikonal model was 50% larger
than in the ionic simulations.

2. Results.

2.1. Standard tests.
We performed the ionic simulations with a space step of
Δx ¼ 50 μ, which is about 3–5 times smaller than the accepted
value of the spacestep used to study 3D wave propagation in ionic
models (7, 8). One difficulty was that the orientation of the fibers
with respect to the grid seems to have an effect on propagation
speed; we also simulated individual layers (i.e., 600 × 600 × 1
slabs with parallel fibers) and obtained fiber velocities ranging
from 0.58 m∕s (when fibers were parallel to the x or y axis) to
0.55 m∕s (when fibers were at a 45° angle to the axes) and normal
velocities ranging from 0.13 m∕s (when fibers were parallel to the
x or y axis) to 0.18 m∕s (when fibers were at a 45° angle to the
axes). Thus, even with such a small space step, velocities varied
substantially, and the model did not reproduce the expected 4∶1
anisotropy. In contrast, a similar test with the eikonal model
showed some grid effects, but at a much smaller level, with fiber
velocities ranging from 0.55 m∕s (fibers parallel to an axis) to
0.52 m∕s (fibers at 45°) and normal velocities of 0.14 m∕s regard-
less of direction.
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2.2. Twisted slab.
We simulated a 30 mm × 30 mm × 4.5 mm twisted slab with 180°
fiber rotation using both the ionic and the eikonal models.

Due to the variation in velocities mentioned above and the fact
that the ionic model exhibits a slight delay between the stimulus
and the first activation, we used a linear regression to fit the ar-
rival times in the eikonal model to the arrival times in the ionic
model; the velocities in the eikonal model after fitting were vf ¼
0.55 m∕s in the fiber direction, vs ¼ vf∕2 in the sheet direction,
and vn ¼ vf∕4 in the normal direction.

Fig. S3 shows isochrones calculated using each model; the
upper panels depict the ionic model and the lower panels depict
the eikonal model, in 4 slices representing z ¼ 0, 0.15, 0.3,
0.45 cm. We see good correspondence in all sections, though

one can see that the velocity normal to the fibers seems slightly
faster in the ionic model; the closely spaced contours on the left
and right of the activation site (the center of the leftmost plot) are
spaced a little more tightly in the eikonal model. We attribute this
partly to the effect of grid direction mentioned in the previous
subsection.

Despite this, the differences between the two simulations are
slight. Fig. S4 shows a histogram of the absolute error between
the two simulations; the difference in activation time between
the two models is <1 ms in almost 95% of cases. We thus con-
clude that the eikonal model used in our simulations, even on a
grid with larger space step, provides an accurate description of
wave propagation in anisotropic heart tissue, possibly more accu-
rate than the ionic model in some cases.
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Fig. S1. Schematic cross section of the heart with parts of the conduction system labeled. Based on an illustration by Patrick J. Lynch, illustrator; C. Carl Jaffe,
MD, cardiologist, released under a CC-by license.

Fig. S2. Schematic of the progression of activation through the heart. In the first and second images, a wave of activation originates at the SA node and
progresses through the atria. In the third and fourth, the wave is transmitted from the atria to the ventricles through the AV node, the bundle of His, and the
Purkinje fibers. Based on an illustration by Patrick J. Lynch, illustrator; C. Carl Jaffe, MD, cardiologist, released under a CC-by license.
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Fig. S3. Isochrones for activation times in the ionic and eikonal models. Isochrones are spaced 4ms apart, and the t ¼ 28 ms isochrone is highlighted by a thick
line. The stimulus occurred at the top of the slab, that is, the center of the z ¼ 0 plane.

Fig. S4. A histogram of the difference in activation time between the two models. A positive difference means that the activation time for a point is earlier in
the eikonal model; a negative difference indicates that the point was activated faster in the ionic model; zero difference means that the activation times in the
two models are equal. The histogram was calculated based on 3 · 104 samples from the slab.
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Fig. S5. Isochrones and transverse slices in a slab with 120° fiber rotation. Other parameters are as in Figs. 2 and 3 of the main text.
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Fig. S6. Isochrones and transverse slices in a slab with vf ¼ 1 m∕s, vs ¼ 1 m∕s, vn ¼ :25 m∕s. Other parameters are as in Figs. 2 and 3 of the main text.
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Fig. S7. Isochrones and transverse slices in the model of the ventricles; this figure extends Fig. 4 A–D in the main text.
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