
APPENDIX: MATHEMATICAL DETAILS

Standard applications of branching processes (e.g. (1)) assume that we observe only a few
realizations (and often only one) of the process over many generations. We, on the other
hand, have only a single observation (the final live and dead cell counts) for a large number
of realizations (in our context, each embryo is a single realization of the process). This means
that many available results on parameter estimation for branching processes are not applica-
ble. Nevertheless, as indicated in the main text, it turns out that we can estimate all the re-
quired parameters of the model using standard maximum likelihood techniques, and in par-
ticular by maximizing the likelihood L(α,δ,ns,nf) of the data. It is in fact more convenient to
work with log L rather than L itself, because this is numerically more manageable, and clearly
the choice of L(α,δ,ns,nf) that maximizes log L is the same as that which maximizes L.

Computing the likelihood

To compute L, or log L, we need the probability Q
(nf)
jk (α,δ,ns) of an embryo having j live and k

dead cells at generation nf for a model with parameters α, δ and initial condition 2
ns cells at

generation ns. Then if we have observed R embryos, with live and dead cell counts j(r) and
k(r) for the r th embryo (with 1 ≤ r ≤ R), the log likelihood is simply

log L(α,δ,ns,nf) =
r

R

=
∑

1

log Q
(nf)
j(r)k(r)(α,δ,ns) . [1]

To compute log L, it thus remains only to show how to calculate Q
(nf)
jk (α,δ,ns). For ease of ex-

position, let us from now on drop α, δ and ns from the notation for Q
(nf)
jk . Recall that we as-

sume that the dead cells counted in Fig. 2A are precisely those that have died in the transition
from generation nf -1 to generation nf . This depends purely on the number of live cells in gen-
eration nf -1. Thus, we may compute Q

(nf)
jk  from the probability distribution P

(nf -1)
i  of the number

of live cells in generation nf -1 (where P
(n)
i  is the probability that at the nth generation an em-

bryo has i live cells) using the formula

Q
(n+1)
jk =

i

n

=
∑

0

2

B
(n)
jkiP

(n)
i  , [2]

where B
(n)
jki  is the probability that an embryo with i cells at generation n gives rise to precisely j

live cells and k dead cells at generation n+1. Note that the summation needs to be taken only
to i = 2n, because P

(n)
i  = 0 for i > 2n. This is because the number of cells at most doubles in

each generation, and hence 2n is the largest possible number of cells at generation n. We can
derive an explicit expression for B

(n)
jki  in terms of the probabilities α, δ, and γ by considering an

embryo with i cells at generation n that gives rise to one with j live and k dead cells in gen-
eration n+1. Suppose that exactly q cells divide, creating 2q daughter cells. If we are to end
up with exactly j cells in the next generation, this means that j - 2q cells must neither divide
nor die, with probability δ (j-2q) for any particular choice of such cells. The remaining i - q - (j-
2q) = i - j + q must therefore die, with probability α (i-j+q). But we are assuming that we have k
dead cells in the next generation, so i - j + q = k, or q = k - i + j. Taking into account the num-
ber of possible permutations of choosing q cells to divide, j - 2q cells do nothing, and i - j + q
to die, we obtain the multinomial probability:



B
(n)
jki = i

k i j i k j k
!

( )!( )! !− + − −2 2 γ (k-i+j)δ (2i-2k-j)α k [3]

for all k such that 0 ≤ k ≤ i, 0 ≤ k-i+j ≤ i and 0 ≤ 2i-2k-j ≤ i. For any other combination of i,j,k,
and embryo with i cells cannot give rise to one with j live and k dead cells, and hence B

(n)
jki  = 0.

Together, Eqs. 2 and 3 allow us to compute Q
(n+1)
jk  from P

(n)
i . But additionally note that

P
(n)
i =

k

n

=
∑

0

2

Q
(n)
ik  , [4]

and hence we have an explicit method of computing P
(nf -1)
i  from P

(nf -2)
i  and so on, all the way to

the initial distribution P
(ns)
i , which assuming the initial condition of 2

ns cells in generation ns is
given by P

(ns)
i  = 1 for i = 2

ns and P
(n s)
i  = 0 for i ≠ 2

ns. Eqs. 1 to 4 thus give a complete algorithm
for computing log L(α,δ,ns,nf) for any given (α,δ,ns,nf). They also allow us to calculate the
probability P

(n)
0  of having no live cells at generation n, which is plotted in Fig. 5.

Maximizing the likelihood

A variety of numerical methods then exist for finding the maximum of log L, e.g. (2). For
ease of implementation we chose an extremely simplistic approach, namely of successive
searches in each parameter in turn. We thus start with an initial guess α0,δ0 and in turn hold α
and δ fixed while maximizing the other, using a standard gold section line search, (2). Thus,
in more detail, we first compute an α1 that maximizes log L(α,δ0), then a δ1 that maximizes
log L(α1,δ), then an α2 that maximizes log L(α,δ1) and so on, until the desired accuracy is ob-
tained. To maximize over the discrete parameters, we simply maximize log L(α,δ,ns,nf) over
α and δ for reasonable choices of ns,nf and choose those that give the highest value. Note that
since there are data points with more than 128 cells in Fig. 2A, we must have nf ≥ 8.

This approach is numerically very inefficient, and far faster methods are available such as the
Nelder-Mead simplex algorithm (2). However, it is extremely easy to set up and to modify as
the model changes and evolves. In particular, adding further parameters involves little effort.
It is thus especially appropriate for initial data exploration, where the model, and the pa-
rameters to be maximized are in a frequent state of flux. Furthermore, despite its inefficiency,
this method was able to determine the maximum in a few minutes on an average personal
computer for all but the most complicated models that we investigated.

Simulating the model

Having chosen the parameters it is straightforward to implement the model on a computer to
simulate a population of embryos for any given number of cell cycles. For each embryo, we
pass from one generation to the next simply by generating one or more random numbers for
each cell in the embryo to determine the fate of that cell. Thus for our preliminary model, we
generate a single random number ξ, which is uniformly distributed between 0 and 1. If 0 ≤ ξ
< α then the cell dies, if α ≤ ξ ≤ α + δ then the cell does nothing, and if α + δ ≤ ξ ≤ 1 (which
occurs with probability 1 - α - δ = γ, then the cell divides to give rise to two daughter cells.
This procedure is repeated for every cell for each generation, for however many generations
we wish to simulate.



The refined model

If α is selected randomly from α1, …, αm, with probabilities p1, …, pm, then the distribution of
live and dead cells at the nth generation is simply the corresponding combination of the dis-
tributions for the simple model with each of the α1, …, αm in turn. Thus

Q
(n)
jk =

i

m

=
∑

1

pi Q
(n)
jk (αi) ,

where Q
(n)
jk (α) denotes the distribution of the simple model with death rate α.

Other extensions: Dead cell clearance

In fitting the model we have hitherto assumed that each dead cell in Fig. 2A corresponds to
one cell dying during the last cell cycle simulated by the model, i.e., in the transition from
generation nf -1 to generation nf . To test the validity of this, we extended the model in two
different ways to examine the effect of the removal of dead cells from the system. The first
corresponds to the situation that dead cells are cleared relatively quickly compared to the cell
cycle, so that at a given instant we observe only a fraction of those cells dying in one cycle.
We model this by assuming that each of the dead cells created in the transition to the final
generation had a probability β of being counted (and hence 1-β of being cleared before it
could be observed). This amounts to replacing Q

(nf)
jk  by ~Q

(nf)
jk , where ~Q(n) is derived from Q(n) in a

similar fashion to Eqs. 2 to 4 but now using binomial probabilities:

~Q
(n)
ij =

k

in

=

−

∑
0

2
k

j k j
!

!( )− (1-β )(k-j)β j Q
(n)
ik  . [5]

The second possibility, corresponding to dead cells persisting for times in excess of a cell cy-
cle is more complex to model and a number of different implementations is possible. We
chose to suppose that in the transition from generation n to generation n+1, each dead cell has
a probability of β' of being cleared. This gives a distribution Q̂(n) of live and dead cells, which
is derived from Q(n) exactly as in Eq. 5, except that β is replaced by 1-β'. We then assume that
the live cells die, remain, or divide with probabilities α, δ, and γ  as in the standard model.
This allows us to compute Q(n+1) from Q̂(n) using a calculation similar to that for Eq. 3. Sup-
pose that an embryo with i live and q dead cells gives rise to one with j live and k dead cells.
Then if d cells divide, we must have j - 2d cells neither dividing nor dying. Hence i - j + d
cells die, and because we start with q dead cells and end up with k, we have q + i - j + d = k.
This implies that d = k - q - i + j, and substituting into j - 2d and i - j + d respectively shows
that 2q + 2i - 2k - j cells neither divide nor die, and k - q cells die.  Using multinomial prob-
abilities similar to Eq. 3 and summing over all possibilities gives:

Q
(n+1)
jk =

i j

j k

≥

+

∑
2 q k i j

k k i j

≥ − +

− +

∑
2

min{ , }
i

k q i j i q k j k q
!

( )!( )!( )!− − + + − − −2 2 2 γ (k-q-i+j)δ (2i+2q-2k-j)α (k-q) Q̂
(n)
iq

for 0 ≤ j ≤ 2n+1, 0 ≤ k ≤ 2n+1-j. The summation ranges ensure that 0 ≤ k-q ≤ i, 0 ≤ 2q+2i-2k-j ≤ i
and 0 ≤ k-q-i+j ≤ i.

Fitting the extended models yielded β = 1 and β' = 0, indicating that our initial assumption
was reasonable. We intend to use such extended models to obtain estimates of mean clear-
ance times and cell cycle lengths in a future paper.



Other extensions: Size dependence

The model can easily be extended to test the hypothesis that the cell death rate may depend
on the size of the embryo and in particular, as suggested in the introduction and by Fig. 2A,
that larger embryos have lower cell death rates. The simplest possible such dependence is a
linear one, which can be introduced into the model by assuming that the death rate for an em-
bryo with i live cells is given by

α = αc  +  αs i , [6]

where αc and α s are parameters that are estimated by maximizing the likelihood as before.
The best fit yielded a value of αs ≈ -1.1×10-4 corresponding to a decrease in the death rate of
approximately 1% for every additional 100 cells in the embryo. Unfortunately, this value
turns out not to be statistically significantly different from 0. In particular, if L0 is the re-
stricted maximum likelihood when αs = 0 in Eq. 6 and L* the unrestricted maximum, then
2log (L*/L0) is distributed approximately as χ 2 with 1 degree of freedom, e.g. (3). In our case
we have log L* ≈ -2031.0 and log L0 ≈ -2031.4, yielding a χ 2 value of ≈ 0.8. We thus cannot
reject the hypothesis that αs = 0 even at the 10% significance level. We can similarly com-
pute the 95% confidence limits for αs which turn out to be [-3.9 × 10-4, 1.5 × 10-4].

One possible criticism of Eq. 6 is that the size dependence becomes effective only in the last
few generations, when the embryo is large. A possible alternative is to scale αs by the maxi-
mum number of possible cells in a particular generation. The effective death rate for an em-
bryo with i cells in generation n then becomes

α = αc  +  
    

α s
n2

i . [7]

The likelihood is now maximized atαs ≈ -4 × 10-3 with log L* ≈ -2030.6 indicating a margin-
ally better fit to the data than with Eq. 6. The restricted maximum likelihood when αs = 0 is
still of course log L0 ≈ -2031.4 so that we now have a χ  2 value of ≈ 1.6, which is still too
small to allow us to reject the hypothesis αs = 0. The corresponding 95% confidence limits
for αs are now [-1.3 × 10-2, 1.5 × 10-3].

We intend to investigate whether more sophisticated models can reveal a statistically signifi-
cant relationship in the future.
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