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ONLINE METHODS
Standard MLM. A standard MLM for GWAS can be written by extending the 
notation of Henderson15 as follows: 

y v u e= + + +W X Z

where y is a vector of a phenotype;  and  are unknown fixed effects repre-
senting marker effects and non-marker effects, respectively; and u is a vec-
tor of size n (number of individuals) for unknown random polygenic effects 
having a distribution with mean of zero and covariance matrix of G = 2K sa

2,  
where K is the kinship (co-ancestry) matrix with element kij (i,j = 1,2,…,n) 
calculated from either a set of genetic markers or pedigrees and sa

2 is an 
unknown genetic variance. W, X and Z are the incidence matrices for v, β and u,  
respectively, and e is a vector of random residual effects that are normally 
distributed with zero mean and covariance R = I se

2, where I is the identity 
matrix and se

2 is the unknown residual variance. The null hypothesis for the 
association test that is v = 0 and the alternative hypothesis is that v ≠ 0. The 
test of the null hypothesis can be performed by either an F test or χ2 test after 
the maximization of the following likelihood: 

L( | , , , , )y v ub s sa e
2 2

Compression. The form of the compressed MLM is the same as equation (1). 
The difference in content is that individuals in u are replaced by their corre-
sponding groups, and kinship among individuals (K) is replaced by the kinship 
among groups (k), which is defined as k k= { }ij , where i,j = 1 to s, and where 
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Under the compressed MLM, the likelihood (L) is as follows: 

L y( | , , , , , )v ub s sa e C2 2

where C is the clustering results after using a clustering algorithm with s groups 
(where s = 1,2, …, n).

P3D. The first step of P3D is to determine population parameters, including 
genetic variance (sa

2), residual variance (se
2) and clustering result (C), by 

maximizing the following likelihood: 

L y( | , , , , )b s su a e C2 2

Then, with the population parameters fixed as empirical Bayesian priors23, 
the non-population parameters (v, β and u) are optimized for each marker 
by maximizing the following likelihood: 

L y( | , , , , )v ub s sa e C2 2
Ŝ Ŝ Ŝ

Equation (6) is maximized by solving equation (1) only once (no iteration) 
while holding those population parameters constant.

Observed data. We examined three genetic association datasets from 
human, dog and maize. Each dataset contained phenotype data and a set of  
genetic markers.

The human dataset was collected from 1,315 adult individuals (specifically, 
European Americans over 17 years old) who participated in the Genetics of 
Lipid Lowering Drugs and Diet Network (GOLDN) study28. There were 637 
genetic markers (388 microsatellite, or simple sequence repeat, markers and 
259 SNP markers) scored on these individuals. All multiallelic simple sequence 
repeat markers were converted into biallelic markers by collapsing alleles into 
two states: the major allele and all other alleles. Measured phenotypes included 
height, physical activity, and serum triglyceride and cholesterol levels. Age and 
sex were also recorded for each individual. A prior study28 found no significant 
population structure in this population and no statistically significant associa-
tion between height and the genetic markers.

The dog dataset was based on 292 dogs from two breeds (Labrador 
retriever and greyhound) and their crosses (F1, F2 and two backcrosses). 
Hip dysplasia was indicated by Norberg angle measured on both the left and 
right sides. The lowest hip score (the minimum between the left and right 
measurements) was used in the analysis29. All dogs were genotyped with 
23,500 SNPs at genome-wide coverage, of which 1,000 SNPs were randomly 
sampled for this study.
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The maize dataset was composed of phenotype (flowering time scored 
as days to pollination), genotype (553 SNPs) and population structure  
(Q matrix) in 277 inbred lines5. No statistically significant association was 
found between the genetic markers and flowering time. This dataset is down-
loadable as a tutorial dataset of the TASSEL software package27.

Simulation schemes. Two schemes were employed to simulate phenotypes 
each for the examination of compressed MLM and P3D. In both schemes, 
we used SNP marker data from the human, dog and maize datasets. Also, 
in each scheme, the population structure effect and impact of kinship  
were retained.

Scheme 1 was to add additional QTN effects to an observed phenotype5. 
This scheme was used to evaluate the compressed MLM approach on pheno-
types with the original genetic architecture being retained. The added QTN 
effect contributed to only a small proportion of variation in that phenotype 
(0.03%–6.00%).

The QTN effect was represented in the unit of phenotypic standard 
deviation (k). The percentage of the total variation explained by the QTN 
(π) is a function of k and sample frequency (f) of the polymorphism at  
the QTN, defined as 1/(1+1/f (1 – f)k2)30. Larger effects (a maximum of  
k = 0.5) were added for the dog and maize datasets, in which the sample 
sizes were smaller. Smaller effects (a maximum of k = 0.2) were added to 
the human dataset, which had a larger sample size sufficient to allow a small 
QTN effect to be detected. For a QTN with the largest effect (k = 0.5), the 
percentage of the total variation explained reaches a maximum value of 
5.88% when f = 0.5. To facilitate comparison between datasets, we listed  
π at the f = 0.3. The genetic effect was assigned to all SNPs, one at a time, 
to produce replicates across all SNPs.

Scheme 2 was to simulate a phenotype with every known element, including 
the contribution of population structure, genetic effects (additive, dominance 
and epistatic) and residual effect. We used this scheme to examine whether 
P3D could work across traits with different genetic architecture. The general 
equation to simulate a phenotype (y) is as follows:

y = population structure + additive + dominance + epistatic + residual

where ‘population structure’ was based on the first five principal compo-
nents, which were derived from all the genetic markers. The population 
structure explained 1% of the total phenotypic variation for humans, 25% 
for dogs and 25% for maize. ‘Additive’ is the sum of all additive effects 
for a known number of causal QTNs (5 or 20). The distribution of these 
QTN effects followed a geometric series31. The effect of the ith QTN was 
set as ai, where a = 0.92. The proportion of the additive effect was defined 
by the narrow-sense heritability (h2), which is the proportion of additive 
variance over the total variance (sum of additive and non-additive vari-
ances). Non-additive variance (dominance, epistatic and residual) was set to  
Va(1 – h2)/h2, where Va is the additive genetic variance calculated among 
the total additive genetic effects across QTNs for each individual. Two levels 
of heritability were examined (h2 = 0.25 or 0.5). ‘Dominance’ is the sum 
of dominance effects from all QTNs with a dominance effect of dai for 
heterozygotes at the ith QTN, where d is the degree of dominance (d = 0, 
0.25, 0.5 or 1). ‘Epistatic’ is the sum of pairwise interaction effects among all 
QTNs. The magnitude of the epistatic effect is indicated by the proportion 
of total variance explained by the epistatic effect (proportion of variance 
of 0, 0.05, 0.1 and 0.2). The ‘residual’ effect follows a normal distribution 
and has a variance to satisfy the contributions from additive, dominance 
and epistatic effects at the designated level. Simulations of the phenotypes 
were repeated 1,000 times. The non-causal SNPs were randomly sampled 
q times for each replicate, where q was set to the same number of QTN in 
each scenario (q = 5 or 20).

Statistical analysis. Proc mixed in SAS26 was used to solve the MLM  
with variance components estimated by the restricted maximum likeli-
hood algorithm. Model fit was examined with three criteria: negative  
log likelihood, adjusted Akaike information criterion and Bayesian infor-
mation content.

For the analysis of the human dataset, the fixed effects were sex, age and 
the quadratic term of age in the evaluation of the observed phenotypes 

(7)(7)

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Nature GeNetics doi:10.1038/ng.546

and phenotypes simulated under scheme 1. Similarly, breed (or fraction of 
Labrador retriever, for the crosses with greyhound) was the fixed effect in 
the analysis of the dog dataset, and population structure was the fixed effect 
in the analysis of the maize dataset. The first five principal components6 
derived from all genetic markers were fit as fixed effects for the phenotypes 
simulated under scheme 2.

Individuals or their corresponding groups were fit as a random effect. 
The kinship among individuals was estimated from the genetic markers 
by the approach of Loiselle et al.32. The individuals in each dataset were 
grouped based on their kinship by using proc cluster in SAS26. The geno-
typic effect of each genetic marker was fit as a fixed effect, one marker at a 
time. The association tests on the markers’ genotypes were performed by 
conducting F tests.

URLs. Compression and P3D were implemented in SAS (Supplementary Note) 
and TASSEL27 software package. The SAS code, standalone TASSEL program 
and demonstration date are available at http://www.maizegenetics.net/.
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