Supporting Information for

Synthesis of DiamidoPyrrolyl Molybdenum Complexes Relevant to Reduction of

Dinitrogen to Ammonia

by

J. Chin, R. R. Schrock,* and P. Müller

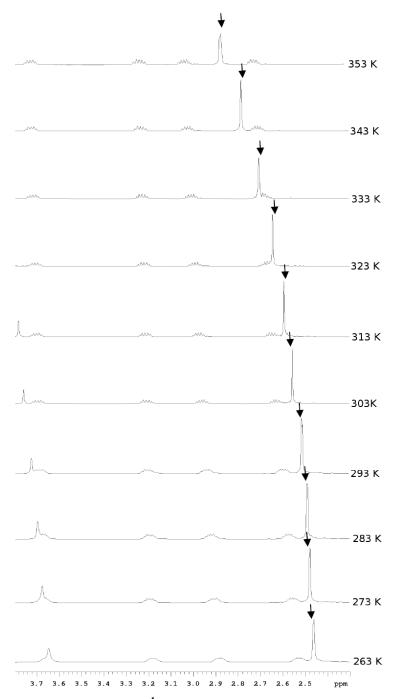


Figure S1. Temperature-dependent ¹H NMR spectrum of [(C₆F₅N)₂Mespyr]MoNMe₂; the arrow indicates the position of the dimethylamide chemical shift

Crystallographic Details

Low temperature diffraction data were collected on a Siemens Platform threecircle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å), for the structures of compounds [(C₆F₅N)₂Pyr]MoCl and [(C₆F₅N)₂Pyr]MoNMe₂ and on a Bruker D8 three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphitemonochromated Cu K α radiation ($\lambda = 1.54178$ Å) for the structure of [(Ar^{t-Bu}N)₂Pyr]MoN, performing φ - and ω -scans. All structures were solved by direct methods using SHELXSⁱ and refined against F^2 on all data by full-matrix least squares with SHELXL-97,ⁱⁱ following established refinement strategies.ⁱⁱⁱ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the *U* value of the atoms they are linked to (1.5 times for methyl groups).

Compounds $[(C_6F_5N)_2Pyr]MoCl and <math>[(C_6F_5N)_2Pyr]MoNMe_2$ both crystallize in the monoclinic space group $P2_1/c$ with one target molecule per asymmetric unit. Apart from a disorder of one of the two pentafluoro-phenyl rings in the structure of **08186**, structure determination of both compounds was straightforward and without complications. The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters. In addition, planarity restraints were applied to the disordered aromatic groups. The ratio between the two components of the disorder was refined freely and converged at 0.72(2).

Compound $[(Ar^{t-Bu}N)_2Pyr]MoN$ crystallizes in the monoclinic space group $P2_1/n$ with one target molecule and 1.5 molecules of fluoro-benzene per asymmetric unit. The half occupied solvent molecule is disordered about the crystallographic inversion center. The four tert-butyl groups show signs of slight disorder. The disorder could not be

resolved, however, but similarity restraints as well as rigid bond restraints for displacement parameters were applied to the tert-butyl groups. The solvent molecules were refined with the help of planarity restraints as well as similarity restraints on 1-2 and 1-3 distances to make the two independent molecules geometrically equivalent.

Table S1: Crystallographic Information for Structures X, Y, and Z.

Compound Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	X [(C ₆ F ₅ N) ₂ Pyr]MoCl C30 H23 Cl F10 Mo N4 760.91 100(2) K 0.71073 Å Monoclinic P2(1)/c a = 10.0775(5) Å b = 19.4734(9) Å c = 16.1625(8) Å $\alpha = 90^{\circ}$ $\beta = 107.3480(10)^{\circ}$ $\gamma = 90^{\circ}$	Y [(C_6F_5N) ₂ Pyr]MoNMe ₂ C32 H29 F10 Mo N5 769.54 100(2) K 0.71073 Å Monoclinic P2(1)/c a = 8.6519(6) Å b = 16.6172(11) Å c = 21.5630(15) Å $\alpha = 90^{\circ}$ $\beta = 90.2090(10)^{\circ}$ $\gamma = 90^{\circ}$	Z [$(Ar'^{Bu}N)_2Pyr$]MoN C55 H72.50 F1.50 Mo N5 928.12 100(2) K 1.54178 Å Monoclinic P2(1)/n a = 17.0308(4) Å b = 14.0790(4) Å c = 20.7053(5) Å $\alpha = 90^{\circ}$ $\beta = 97.678(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume	3027.5(3) Å ³	3100.1(4) Å ³	4920.1(2) Å ³
Z Deveite (colorlated)	4	4	4
Density (calculated)	1.669 Mg/m ³	1.649 Mg/m ³	1.253 Mg/m ³
Absorption coefficient	0.612 mm ⁻¹	0.516 mm ⁻¹	2.537 mm ⁻¹
F(000)	1520	1552	1972
Crystal size	0.42 x 0.35 x 0.18 mm ³	0.48 x 0.35 x 0.04 mm ³	$0.45 \ge 0.15 \ge 0.10 \text{ mm}^3$
Theta range for data collection	1.68 to 29.57°.	1.55 to 29.13°.	3.61 to 67.73°.
Index ranges	-13<=h<=13, -25<=k<=27, -	-11<=h<=11, -22<=k<=22, -	-20<=h<=20, -16<=k<=16, -
	22<=1<=22	29<=l<=29	24<=l<=24
Reflections collected	57573	78331	93103 8710 [B(int) = 0.02(0]
Independent reflections Completeness to theta =	8488 [R(int) = 0.0344] 100.0 %	8342 [R(int) = 0.0396] 100.0 %	8719 [R(int) = 0.0269] 97.9 %
29.57°	100:0 /8	100.0 /8	31.3 /0
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.8978 and 0.7832	0.9797 and 0.7898	0.7855 and 0.3948
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints /	8488 / 0 / 418	8342 / 498 / 538	8719 / 143 / 610
parameters			
Goodness-of-fit on F ²	1.069	1.062	1.026
Final R indices	R1 = 0.0249, wR2 = 0.0606	R1 = 0.0252, $wR2 = 0.0592$	R1 = 0.0243, wR2 = 0.0606
[I>2sigma(I)]			
R indices (all data)	R1 = 0.0294, WR2 = 0.0640	R1 = 0.0317, wR2 = 0.0635	R1 = 0.0252, WR2 = 0.0613
Largest diff. peak and hole	0.487 and -0.355 e.Å ⁻³	0.558 and -0.374 e.Å ⁻³	0.361 and -0.389 e.Å ⁻³

i. Sheldrick, G. M. Acta Cryst. 1990, A46, 467.

ii. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

iii. Müller, P. Crystallography Reviews 2009, 15, 57.