A combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery

Kerry P. Mahon[†], Kevin T. Love[†], Kathryn A. Whitehead[†], June Qin[‡], Akin Akinc[‡], Elizaveta Leshchiner[†], Ignaty Leshchiner[†], Robert Langer[†], Daniel G. Anderson^{*†}

[†]Department of Chemical Engineering and David H. Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139.[‡]Alnylam Pharmaceuticals, Inc., 300 Third Street, Cambridge, MA 02142

Supporting Information

Scheme 1 Synthesis of amine modified core lipidoids

Synthesis of 2

15g of **1** (1,3-diaminopropane, 74.12g/mol, 243mmol, 1.0 eq.) was added to 150ml of CH_2Cl_2 and the solution was cooled in an ice bath to 4^oC. In a separate vessel, 3.9g Di-*tert*-butyl dicarbonate (218.25g/mol, 24.3mmol, 0.1 eq.) was dissolved in 20ml CH_2Cl_2 and added to the amine solution dropwise over one hour. The reaction was allowed to gradually warm to room temperature while stirring overnight. After extraction 5 times with 20ml H_2O , the organic layer was dried with MgSO₄ and concentrated to an oil. 2.6g (83%). MW calc. (C₈H₁₈N₂O₂)= 174.13 found 171.15.

¹H NMR (300 MHz, CDCl₃, δ): 4.95 (s, 1H, N*H*), 3.25-3.13 (m, 2H, NC*H*₂), 2.80-2.73 (m, 2H, NC*H*₂), 1.55-1.55 (m, 2H, CH₂CH₂CH₂), 1.45 (s, CH,(OC*H*₃)₃).

Synthesis of **3**

Added 6.05g dodecylacrylamide (239.4g/mol, 19.0mmol, 2.2 eq.) and 2.0g **2** (174.14g.mol, 8.6mmol, 1.0 eq.) to a 20ml scintillation vial equipped with a stirbar. Loosely capped the vial and placed at 90^oC for 5 days. Purified using silica gel chromatography with a solvent gradient of 5-30% Ultra (75:22:3 CH₂Cl₂: MeOH: NH₄OH) in CH₂Cl₂ over 120 min. 2.5g (33%). MW calc.($C_{38}H_{76}N_4O_4$)= 652.58 found 652.57

¹H NMR (300 MHz, CDCl₃, δ):

6.95–6.85 (m, 2H, N*H*), 4.6 (s, 1H, N*H*), 3.25–3.1 (m, 6H, NC*H*₂), 2.70–2.60 (m, 4H, NC*H*₂), 2.36-2.31 (m, 2H, NC*H*₂)2.29-2.25 (m, 4H, C(O)C*H*₂), 1.71 (s, 2H, NCH₂C*H*₂CH₂N), 1.57-1.50 (m, 4H, NHCH₂C*H*₂CH₂), 1.47 (s, 9H, C(O)O(C*H*₃)₃), 1.26-1.23 (m, 36H, CH₂C*H*₂CH₂), 0.93-0.85 (m, 6H, C*H*₃).

Synthesis of 4

Dissolved 2.5g **3** (653.03g/mol, 8.1mmol, 1.0 eq.) in 3ml THF. In a separate vessel, added 3.2g 37% HCl (36.46g/mol, 81mmol, 10 eq.) to 1ml THF. Added the HCl solution dropwise to the solution of **2** over 5 min. Stirred rapidly overnight at room temperature. Diluted the reaction mixture in 75ml CH_2Cl_2 and extracted 2x 50 ml H_2O , 1x 50ml brine. Dried the CH_2Cl_2 solution

with MgSO₄ and concentrated under vacuum. Purified using silica gel chromatography with a solvent gradient of 20-50% Ultra in CH₂Cl₂ over 80 min. 1.6g (76%) MW calc.(C₃₃H₆₈N₄O₂)= 552.53 found 552.54 ¹H NMR (300 MHz, CDCl₃, δ): 6.80-6.75 (m, 2H, N*H*), 3.24-3.13 (m, 4H, NC*H*₂), 2.73-2.67 (m, 6H, NC*H*₂), 2.51-2.45 (m, 2H, NC*H*₂), 2.35-2.29 (m, 4H, C(O)C*H*₂), 1.65-1.52 (m, 2H, NCH₂C*H*₂CH₂NH₂), 1.51-1.40 (m, 4H, NHCH₂C*H*₂CH₂CH₂), 1.36-1.19 (m, 36H, CH₂C*H*₂CH₂),

0.92-0.83 (m, 6H, CH₃).

Conjugation to library

Added 120mg **4** (0.21mmol, 1.0 eq.) to a 2ml vial equipped with stir bar. Added 0.24 mmol, 1.1 eq. of the appropriate acrylate/ acrylamide. Placed in a 90^oC oven for 18 hrs. (acrylates) or 3 days (acrylamides).

Synthesis of **6**

Added 515mg **5** (diethylenetriamine, 103.17g/mol, 5.0 mmol, 1.0 eq) and 5.0g dodecylacrylamide (239.4g/mol, 20.9mmol, 4.2eq.) to a 20ml scintillation vial equipped with a stirbar. Set up in duplicate. Loosely capped the vial and placed in an oven at 90° C for 6 days. After cooling, dissolved the material in both vials in 5ml CH₂Cl₂. And purified using silica gel chromatography with a solvent gradient of 10-40% Ultra in CH₂Cl₂ over 40 min. Left with 2.26g (21%) of the desired product.

MW calc. $(C_{64}H_{129}N_7O_4)$ = 1060.01 found 1060.02

¹H NMR (300 MHz, CDCl₃, δ): 7.40–7.35 (m, 1H, N*H*), 7.15-7.10 (m, 1H, N*H*), 6.75-6.70 (m, 1H, N*H*), 3.25-3.1 (m, 8H, C(O)C*H*₂), 2.90-2.25 (m, 24H, NHC*H*₂, NC*H*₂), 1.55-1.40 (m, 8H, NHCH₂C*H*₂), 1.40-1.17 (m, 72H, CH₂C*H*₂CH₂), 0.93-0.86 (m, 12H, C*H*₃).

Synthesis of 7

Added 2.2g **6** (1060.1g/mol, 2.1mmol, 1.0 eq) and 1.63g N(Boc)-bromoethylamine (224 g/mol, 7.3mmol, 3.5eq) to a 20ml scintillation vial. Added 3ml DMF and stirbar. Added 292mg NaH.(60% dispersion, 24g/mol, 7.3mmol, 3.5 eq). Loosely capped the vial and placed in a 90^oC oven for 2.5 days. Diluted the reaction with 10ml CHCl₃ and filtered to remove the solids in the reaction. Further diluted with 100ml CHCl₃ and washed 2x 50ml H₂O and 1x50ml brine. Combine aqueous layers and extract with 50 ml CHCl₃. Combined the organic layers, dried the solution with MgSO₄ and concentrated under vacuum. Purified using silica gel chromatography with a solvent gradient of 10-40% Ultra in CH₂Cl₂ over 60 min. 1.47g (59%).

MW calc. $(C_{71}H_{142}N_8O_6)$ = 1203.10 found 1203.08

¹H NMR (300 MHz, CDCl₃, δ): 7.40-7.35 (m, 1H, N*H*), 7.20-7.05 (m, 2H, N*H*), 5.25-5.20 (m, 1H, N*H*), 3.27-3.10 (m, 8H, C(O)C*H*₂), 2.80-2.25 (m, 28 H, NC*H*₂C*H*₂N, NC*H*₂CH₂C(O), NHC*H*₂), 1.55-1.40 (m, 17H, NHCH₂C*H*₂, C(O)O(C*H*₃)₃), 1.37-1.20 (m, 72H, CH₂C*H*₂CH₂), 0.95-0.85 (m, 12H, C*H*₃).

Synthesis of 8

Dissolved 1.47g **7** (1203.94g/mol, 1.22mmol, 1.0 eq.) in 2ml THF. In a separate vessel, added 1.2g 37% HCl (36.46g/mol, 12.2mmol, 10 eq.) to 1ml THF. Added the HCl solution dropwise to the solution of **7** over 5 min. Stirred rapidly overnight at room temperature. Brought to pH 10

using NH₄OH. Diluted the reaction mixture in 100ml CH₂Cl₂ and extracted 3x 30 ml H₂O, 1x 50ml brine. Combined the aqueous washes and extracted with 60ml CH₂Cl₂. Combined the CH₂Cl₂ solutions, dried the CH₂Cl₂ solution with MgSO₄, filtered and concentrated under vacuum. Pruified using silica gel chromatography with a solvent gradient of 10-35% Ultra in CH₂Cl₂ over 40 min. 710mg (53%).

MW calc. $(C_{66}H_{134}N_8O_4) = 1103.05$ found 1103.04

¹H NMR (300 MHz, CDCl₃, δ): 7.60-7.55 (m, 1H, N*H*), 7.40-7.35 (m, 1H, N*H*), 7.25-7.17 (m, 2H, N*H*), 3.25-3.10 (m, 8H, NHC*H*₂), 2.80-2.60 (m, 10H, NC*H*₂), 2.55-2.40 (m, 10H, NC*H*₂), 2.38-2.25 (m, 8H, C(O)C*H*₂), 1.55-1.45 (m, 8H, NHCH₂C*H*₂), 1.39-1.20 (m, 72H, CH₂C*H*₂C*H*₂), 0.92-0.83 (m, 12H, C*H*₃)

Conjugation to library

Added 120mg **8** (0.11mmol, 1.0 eq.) to a 2ml vial equipped with stir bar. Added 0.12 mmol, 1.1 eq. of the appropriate acrylate/ acrylamide. Placed in a 90° C oven for 18 hrs. (acrylates) or 3 days (acrylamides).

Compound	Library Tail	MALDI Analysis
1a	ОН	Calc.(C ₇₃ H ₁₄₆ N ₈ O ₇): 1247.99 Found:
		1248.02
2a		Calc.(C ₇₆ H ₁₅₁ N ₉ O ₈): 1319.07 Found:
		1319.12
ба		Calc.(C ₈₁ H ₁₆₂ N ₈ O ₈): 1376.2 Found:
		1376.44

10a	Calc.(C ₉₀ H ₁₈₀ N ₈ O ₁₃): 1582.44 Found 1584.2
11a	Calc.(C ₈₁ H ₁₆₂ N ₈ O ₉): 1392.2 Found 1391.96
15a	Calc.(C ₇₈ H ₁₅₇ N ₉ O ₅): 1301.14 Found 1301.54
2b	Calc.(C ₄₃ H ₈₅ N ₅ O ₆): 768.16 Found: 768.53
3b	Calc.(C ₄₁ H ₈₃ N ₅ O ₄): 710.55 Found: 710.13
4b	Calc.(C ₄₂ H ₈₄ N ₄ O ₆): 741.14 Found: 741.85
6b	Calc.(C ₄₈ H ₉₆ N ₄ O ₆): 825.30 Found 825.65
12b	Calc.(C ₄₅ H ₉₀ N ₄ O ₄): 751.22 Found: 751.61
13b	Calc.(C ₄₈ H ₉₆ N ₄ O ₄): 792.74 Found 792.75
15b	Calc.(C ₄₅ H ₉₁ N ₅ O ₃): 750.24 Found: 750.64

	Formulation Parameters			Characterization		
				Total		Entrapment
Compound	Lipidoid	Cholesterol	PEG	Lipid:siRNA	Size (nm)	(% siRNA content)
1a	42	48	10	8	103.5	82
2a	42	48	10	8	48.2	95
6a	42	48	10	8	55.6	96
10a	42	48	10	8	114.1	61
11a	42	48	10	8	45.0	95
15a	42	48	10	8	62.1	95
2b	42	48	10	15	98.7	97
3b	42	48	10	15	138.5	98
4b	42	48	10	15	109.6	86
6b	42	48	10	15	55.4	92
12b	42	48	10	15	85.1	94
13b	42	48	10	15	92.3	91
15b	42	48	10	15	65.1	96

Table S1 Formulation parameters for library testing *in vivo*

Table S2 Formulation parameters for in vivo dose response

	Formulation Parameters			Ch	aracterization	
				Total		Entrapment
Compound	Lipidoid	Cholesterol	PEG	Lipid:siRNA	Size (nm)	(% siRNA content)
6a 15:1	42	48	10	15	111.6	95
10a 12:1	42	48	10	12	99.9	96
6a 15:1	42	48	10	15	167.7	95
10a12:1	42	48	10	12	113.7	84