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Supplementary Information

Supplementary Information 1: Noise repression via Voronoi tesselation

As mentioned previously, the experimental raw data was analyzed with two different independent approaches: The
previously described density analysis and a method that uses noise repression by Voronoi tesselation. The latter
one will be described in the following. Although the two approaches are very different they independently from one
another lead to very similar results. In this section the Voronoi tessellation approach to eliminate unwanted background
signals inside the fibroblasts or HeLa nuclei is described. Fig. 1A in the manuscript file shows some raw data i.e. the
zy-coordinates of the labeled nucleosomes in the case of a Fibroblast nucleus.

If a set of two-dimensional coordinates is given, a Voronoi cell can be constructed for each of these points. If r is
one of the given points, then the corresponding cell C,. will consist of all points in the xy-plane that are closer to r
than to any other data point. The segments of a Voronoi tessellation are the points that are equidistant to two of the
given points. Fig. 1 shows such a Voronoi tessellation for some random coordinates.

The Voronoi tessellation has some very useful properties: Its dual graph corresponds to the Delaunay triangulation
of the same set coordinates and points are adjacent on the convex hull if and only if their Voronoi cells share an
infinitely long segment. A Voronoi tessellation can be used to solve many frequent geometrical problems like the next
neighbor problem (resp. the all next neighbors problem) and the largest free sphere problem. Furthermore, Voronoi
diagrams are used for the analysis of protein structures [4] and many other problems [5].

The size of a Voronoi cell can be calculated easily with the Gaussian trapeze formula that describes the area of a
polygon:
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The Voronoi tessellation was calculated with the Qhull algorithm [7] in this work by performing a Delauney trian-
gulation first.

For every localization image first a Voronoi diagram was generated (cf. Fig. 1) in order to eliminate the background
noise of the raw data. One can see that points which lie in areas which have a very low density have large Voronoi
cells.

The large scale density fluctuations in the localization data come from regions which were occupied during the
capture time for instance by the nucleoli. Therefore, the number of data points in the final projection image is smaller
in these regions. These data points are not used in the following block analysis.

Furthermore, one can also see that some data points lie even outside the cell nucleus. They are not of interest here
and will be sorted out as well.

After the generation of the Voronoi tessellation all data points the Voronoi cell size of which is larger than a given
cut-off value were taken away. This process is repeated iteratively until the convex hull of the nucleus is unveiled.
During these calculations the interior of the nucleus is not changed at all.

The iterative process gives us the advantage that data points which are close to each other (i.e. points with small
Voronoi cell sizes) are not changed at all, whereas single abandoned points are taken away. Fig. 2 shows an example
of the convex hull determination in the case of a fibroblast nucleus.

After the determination of the nucleus’s convex hull the same iterative selection due to Voronoi cell size is done
with the data points that lie inside the nucleus (cf. Fig. 2). The two steps are independent of each other to have the
possibility of applying different cut-off criteria to the exterior and the interior.

With this method the fluorescent markers which are associated with the heterochromatin are sorted out, too. In
the following block analysis only euchromatin shall be considered.

At the end of the described process one gets a noise reduced localization image (cf. Fig. 2).

Block Analysis

For the nanostructure investigation of the data several steps have to be carried out. For every data point of a given
nucleus first a square with edge length 800 nm that is centered around that very data point is cut out. Then the mean
particle density of that square is calculated.



If the particle density is equal or larger than the the mean particle density of the nucleus, then a circle of radius
400 nm around the considered data point in the center is cut out. Now, if this circle fulfils the same condition i.e.
that its mean particle density is equal or larger than the average density of the nucleus, then all distances between the
central point and all other points in the circle are evaluated. A histogram of these distances is made to calculate the
radial two-dimensional pair distribution function later.

The circles are necessary to avoid any bias from data points that lie in the corners of the square-shaped boxes.
The density cut-off avoids bias from regions that are partially empty (e.g. by edges or projections during the capture
time of the image).

Results

Fig. 3 shows a comparison between the measured distance distribution and the distance distributions one will get, if
one puts the same number of particles into an identically shaped nucleus by random. The difference between the two
curves comes mainly from the influence of the nucleoli.

In order to examine the chromatin nanostructure the radial two-dimensional pair distribution function gop(r) was
used.

The pair distribution function will be proportional to the conditional probability p(r) of finding a marker at a
distance r, if another one is sitting at the origin. It is normalized in a way that a value of one corresponds to the
mean particle density of the system. That means unbound H2B histones which are also fluorescently labelled are not
expected to contribute to any structural motif since they are assumed to be uniformly distributed all over the nucleus.

For this analysis the formerly described block analysis was used to find and cut out suitable spheres with a radius
of 400 nm. Then all distances between the center and any other marker in each sphere are evaluated to calculate
p(r) and it was averaged over all possible spheres in a particular nucleus (i.e. gap(r) is calculated by a histogram of
~ 10% — 107 distances). The centers of the spheres themselves were not considered. Thus, one gets one distribution
function per nucleus.

The two-dimensional pair distribution function is given by
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where Ar=10nm is the binning width for the histogram used to calculate p(r), (N — 1)/A is the average particle
density of the 400nm-sphere and N is the total number of particles the sphere contains. The factor w[2rAr + Ar?] is
just the area of a ring of width Ar with a mean radius of r + Ar/2.

The average pair distribution functions for HeLa and Fibroblast nuclei are shown in Fig. 4. One can clearly see
that a chromatin nanostructure beyond the level of the nucleosome exists: gop(r) is larger than one for distances
below 150 nm which means that the nucleosomes are organized somehow.



Fibroblast Raw Data with Voronoi Tessellation
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Figure 1: This figure shows a Voronoi diagram of the localization data. One can see that points that are close to each
other have small Voronoi cell sizes, whereas other points that are trailed off have large cells. For this figure Fibroblast
#27 was used.



Iterative Approach to the Nuclear Envelope . 104Initial State of the Interior of the Nucleus
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Figure 2: Noise repression with Voronoi tesselation. A and B An example of the determination of the convex hull
of a Fibroblast nucleus. Iteratively, data points are sorted out which have a too large Voronoi cell size (cf. red dots).
The different iterations are marked with the labels 1,2 and 3 (top). The convex hull after every iteration is shown as
well (black dashed line). C and D This figure shows the noise reduction in the interior of a Fibroblast nucleus. Again
Voronoi diagrams are calculated iteratively and data points with too large cell sizes are sorted out (cf. red dots) just
like the heterochromatin.
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Figure 3: A comparison of a measured H2B distance distribution and a random particle distribution within an
identically shaped nucleus. The differences come mainly from the influence of the nucleoli.



Chromatin Nanostructure

15* T T T T L I I
® gzD(r) Fibroblasts
< Gyp(r) Hela
< 1.4¢ -
o | X
> |0 @
% 1.3 P -
3 x| ?
S 12 X :
s °*®e
% X X o9
= 1.1F X o PP i
T X XXX).().( : ’g
S A 4
TS X ® %
ngx‘

| | | | | | | | | |
O'90 20 40 60 80 100 120 140 160 180 200 220

distance r [nm]

Figure 4: The radial two-dimensional pair distribution function describes the nanostructure of the em GFP-marked nu-
cleosomes for the Fibroblasts and HeL.a strain I. One can clearly see some structure beyond the scale of the nucleosome
since gap(r) is larger than one for small distances. The error bars indicate the cell-to-cell variation.
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Supplementary Information 2: Analysis of the radial distribution function
of a Lennard-Jones fluid.
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Figure 5: To analyze the effect of 2D projections on the radial distribution function g(r), a three-dimensional Lennard-
Jones system is simulated. Panel A displays an example conformation. As microscopy data provides a 2D projection
of points comprising about 600 nm along the optical axis, a section is cut out of the simulation box (marked by the
red plane). Panel B displays this section which is in this example 20% (f = 0.2) of the linear system size L. This
data is then projected onto a 2D plane (panel C) and the radial distribution function is calculated. Panel D shows
the results for the radial distribution function g(r). The red curve displays the results for the 3D radial distribution
function. It displays the typical behaviour: Below the hard-sphere radius of the fluid particles o, no other particles
can be found. The first peak corresponds to the first shell of molecules arranging close to each other due to the
attractive interactions. Calculations are shown for a slice thickness of the slice of 6% and 20% of the linear system
size. Assuming typical diameter of a human cell of about 10 pum, the optical section used in microscopy of 600 nm
corresponds to the 6%-curve (fraction f = 0.06). Obviously, the projected radial distribution function still displays the
structure-defining maxima and minima, although they are less pronounced. This analysis indicates that the projected
rdf does not conceal structural information.



Supplementary Information 3: Simulations of chromosomes

Simulations of chromosomes are conducted using the Dynamic Loop model [2]. In this model, loop formation is
achieved purely on the basis of diffusional motion. Each time, two chromatin segments randomly co-localize, a loop is
formed with a certain probability. The loop attachment points dissolve again after some time, i.e. the lifetime of the
loops is limited. Mapping histone distributions onto such a coarse-grained polymer model, requires the realistic time
and length scales. We force the minimum distance between two chromatin segments to be 30 nm, corresponding to
the presumed diameter of the chromatin fiber. As the bond flucutation model induces a minimum distance between
two segments of 2/3 lattice units, 45 nm correspond to one lattice unit. The persistence length of chromatin is
approximately [, = 150 nm [3], the average length of one segment in the bond fluctuation model 2.71 lattice units, i.e.
approx 122 nm. Thus, such a mapping requires introducing a bending rigidity, which is accomplished by the following
potential for bond angles,
Uhond = Ko(1 —cos®)

Similar potentials have been used in Refs. [5, 1]. To establish a relationship between persistence length I, and the
potential parameter kg, we conduct simulations of self-avoiding walks in a semi-dilute solution of occupancy fraction
10%. The density of chromatin is roughly 10% and this value has been used in other studies [4]. Simulations are run
with different values of k¢ and the angular correlations (cos#) of neighbouring bonds are calculated. The relationship
bewteen the potential parameter kg and the angular correlation is shown in Fig. 6. A realistic chromatin model
requires that (cos @) = exp(—I/l,) = exp(—2.71 - 45nm/150nm) =~ 0.44, yielding an interaction strength of kg = 1.34.

While simulations are conducted with a very low level of coarse-graining, it becomes intractable to simulate whole
chromosomes. This, however, probably does not have a major impact on the structure at the level of single histones.
Simulations are performed in a system of size L3 = (2.88um)? and a density of p = 0.1. 27 chains of length N = 256
are put inside the simulation box.

To compare simulational results with localization microscopy data, histones have to be distributed along the
simulated chromosomes. The linear dimension of L = 64 l.u. corresponds to 2.88 um. Experimental data evaluation
is done in a 2D projection of a slice of thickness d = 600 nm. The average density of localized histones has been
determined to about 150/pm?. In order to obtain a similar density for simulated fibers, K = 5971 histones are
randomly distributed along the contour of the chromosomes. To mimic the effect of the thickness of the chromatin
fiber, each point is shifted randomly within a radius of 15 nm in the plane perpendicular to the chromatin fiber.
Furthermore, excluded volume effects are taken into account by not allowing two virtual fluorophores be closer than
5 nm, the estimated radius of a nucleosome [6]. An example conformation of the system is shown in Fig. 7A. The
distribution of histones is visualized in Fig. 7B. The chromosomes are shown as small red threads, the simulated
localized fluorophores are marked by green points. After distributing histones along the simulated chromosomes, a
z-slice of thickness 600 nm is cut out of the simulation box (Fig. 7C) and all histones inside this slice are projected
onto the zy-plane (Fig. 7D). This projected data is then analyzed the same way as the experimental data, i.e. the
block distribution analysis is conducted.
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Figure 7: Histone distribution and projection for simulated chromosomes (Dynamic Loop Model). A. Example
conformation with several chromosomes in the simulation box. Simulations are set up with an average number of
loops per monomer of 0.32. B. Distribution of localized histones along the fibers (green points). The red threads mark
the path of the chromosomes, the two planes have a distance of 600 nm. C. A slice of thickness 600 nm is cut out of
the simulation box. D. The localized histones inside this slice are then projected onto the plane for conducting the
block analysis.
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