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PROGRAMMING METHODS

Here we discuss the specifics of the methods described in the text. For a general review of simulation
techniques for diffusion, see Saxton (1).

The overall structure of the program is as follows. A bash script executes a loop over obstacle
configurations, in which

1. a Fortran program generates equilibrium obstacle positions by Brownian dynamics or Monte
Carlo methods;

2. a ghull and Mathematica program does the Voronoi analysis of the obstacles;
3. a Fortran program finds the percolation threshold.

At the end of the loop, a Fortran program finds the cumulative distribution function (CDF) of
the thresholds and analyzes it. Programs communicate by text files. This approach is simple and
modular; it generates coordinate files of equilibrated positions so that the data can be reanalyzed
if necessary; and it avoids having to call Mathematica from Fortran or vice versa. The goal is to
minimize hassle, not to maximize elegance.

Obstacle configurations

To generate obstacle configurations by Brownian dynamics, obstacles are placed on the smallest
square grid that contains at least the prescribed number of obstacles, and obstacles are randomly
deleted until the prescribed number is reached. For soft repulsive disks, the system is then annealed
by standard Brownian dynamics (2) until the energy is constant. For hard disks, the system is
annealed by standard Metropolis Monte Carlo moves (2) and equilibration is measured by the
radial distribution function. For each obstacle configuration, a fresh set of obstacles is generated
from the beginning to ensure the independence of the configurations. Periodic boundary conditions
are used. The ran2 random number generator (3) is used, modified for inline use.

The calculations are done in physical units, not dimensionless units. The diffusion coefficient
of the obstacles is 0.1 ym?/s = 0.0001 nm?/ns. The obstacle diameter is o = 4 nm, and the time
increment is 0.5 ns. The Verlet neighbor list is updated every 32 time steps. Equilibration times
range between 16 x 10242 time steps for the lowest concentrations to % x 10242 for the highest.

System sizes

Percolation thresholds are defined in the limit of an infinite system, so it is essential to vary the
system size. Here the calculations were carried out for a range of relative system sizes L, for each
obstacle concentration. The starting system, designated L, = 1.0, had number density 24k/um?
(1k = 1000), physical system size L = 100 nm, and 240 obstacles. From this we generated the base
systems at each number density 4k, 8k, 16k, 24k, 32k, 40k, 48k by changing the physical system
size at an approximately constant number of obstacles. At each number density, we generated a
size series L, = 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 (and sometimes larger) by multiplying the base
system size by L, and the base number of obstacles by L?, and rounding as required. The ratio of



the actual number density to the nominal was at worst 1.008; typically it was much closer (mean
1.0002, SD 0.0022). For the 24k series, for the L, = 0.5 and 3.0 runs, physical system sizes were
50 and 300 nm respectively, and the numbers of obstacles were 60 and 2160. All the runs at a
given value of L, had approximately the same number of obstacles, regardless of number density.
Quantities related to the system size for L, = 1 are given in Supporting Table S1.

Most runs used 100 independent obstacle configurations. For the runs with L, = 1.0 and below,
and a few larger systems, 500 or 1000 configurations were used to get a smoother CDEF. In all cases
percolation thresholds were found in each direction for each obstacle configuration.

Table S1: System sizes for the L, = 1 series

Number  Area  System Number of

density  fraction size obstacles
1/pm? nm
4000  0.05026 244 238
8000 0.10053 174 242
16000 0.20106 122 238
24000 0.30159 100 240
32000 0.40212 86 237
40000 0.50266 78 243
48000 0.60319 70 235

Voronoi analysis

The Voronoi analysis of obstacle positions was first done in Mathematica V5.0 to take advantage
of its graphics and analysis capabilities (4). This version was too slow for production runs so the
program was revised to use ghull (5, 6) via the mPower (7) Mathematica interface. These programs
are much faster, and retain the capabilities of Mathematica. The mPower output is parsed using
Mathematica.

To test for percolation one must define north-south (NS) and east-west (EW) conduction pre-
cisely. The obstacles are within a square, so the diagonals of the square are used to define the
N,S,E;W quadrants and the convex hull of the obstacles is used to define in and out. Using
the convex hull is physically reasonable because it is where obstruction begins to have an effect.
Specifically, for each Voronoi bond crossing the convex hull, the intersection of the bond with the
convex hull is found, and the bond is classified as N,S,E,;W depending on the quadrant in which
the intersection occurred. This approach complicates the program but eliminates arbitrariness in
assignments when a Voronoi bond crosses a diagonal far outside the convex hull.

For simplicity, periodic boundary conditions were not used in the Voronoi analysis, except in
one series of test runs.

To avoid an occasional problem of having a few Voronoi vertices at extremely large distances,
boundary points are generated using a program option in mPower. This option generates a set of
extra points outside the convex hull of the original points on a outer polygon geometrically similar



to the convex hull and approximately 1.4x its radius. The extra points are roughly equally spaced
along the outer polygon, with a small random component. The Voronoi diagram is constructed for
the set of obstacles plus extra points, and then the extra points and the Voronoi bonds outside the
outer polygon are dropped. This program feature was useful but it sometimes gives Voronoi bonds
that extend from one edge across the entire figure. It is necessary to test for this and try a new set
of random extra points on the outer polygon when this problem occurs.

Percolation thresholds

The percolation threshold is found using a bisection routine (8, 9) adapted from Press et al. (3)
using the standard Hoshen-Kopelman algorithm (10) to test for bond percolation. For each obstacle
configuration this algorithm gives upper and lower limits for percolation, and the mean is used.
Thresholds for both NS and EW percolation are used. Clearly the thresholds are not independent
— sometimes a single bond controls both NS and EW percolation and the thresholds coincide —
but using both is the most efficient use of relatively expensive equilibrated configurations. The
output is a list of mean percolation thresholds, typically 100 NS and 100 EW. These are sorted and
the CDF is obtained directly from the sorted list. This method has the advantage over standard
histograms that there is no need to impose a bin size and no information is discarded in the binning
(11-14).

Determination of thresholds from CDFs

To obtain the percolation threshold, the midpoint of the CDFs must be extrapolated to infinite
system size. Several methods to determine the midpoint of the CDFs gave very similar results. (a)
Calculate the mean value of the distribution directly. (b) Read the 50% point directly from the
CDF. (c¢) To provide some smoothing, fit a straight line to the linear region of the CDF around
the 50% point (typicaly > 50) points) and calculate the midpoint from the best-fit line. (d) Fit an
incomplete beta function to the entire CDF and determine the 50% point, as done in earlier work
(15). (A potential problem with the last method is that one must assume some functional form, and
a least-squares fit to a particular function might distort the relevant behavior near the 50% point
in an attempt to fit the less relevant noisy ends to an approximate function. Becker and Ziff (16),
however, had good results using various assumed functional forms to analyze their highly accurate
data.) The mean of the distribution was used routinely. In all these methods, the midpoint is
extrapolated to infinite L by plotting the midpoint versus 1/LY, where v is a scaling exponent
discussed later. Alternatively one might use the intersection points of the CDFs as estimates of the
threshold (see Saxton (15) for discussion and references). On the scale of text Fig. 3, this approach

looks plausible, but at higher magnification, the intersections are more scattered than one would
like.

Error estimates

The percolation diameter for a given set of conditions is highly reproducible. For six independent
calculations at a number density of 24k /um?, system size 150 nm, and 540 obstacles, the percolation



diameter was 6.495 + 0.012 (mean + SD), and the width of the distribution was 0.205 % 0.008.

To choose the method of extrapolation to infinite system size, we fitted the data for random
overlapping disks in various ways, and chose the one that gave the best agreement with the known
value. The best agreement was from a least-squares fit to data for L, > 1.5. Values from fitting
L, > 1 and L, > 2 were used to estimate the error bars. We take the standard deviation of
the percolation diameters to be 0.8%, a value that puts 15 out of 21 test runs within 1 standard
deviation of the theoretical value.

Another test — an informal runs test — compared the percolation diameters in systems of various
sizes. In the calculations varying Vj, the data points for each size were consistently in the order Vy =
1, 2, and 4, as were the extrapolated values, consistent with a real difference. In the calculations
varying n, the data points for n = 6 were consistently different from those for n = 12 and n =
18, but the latter two sets were intertwined so not significantly different. For periodic versus
nonperiodic boundary conditions, the thresholds for the periodic case were always higher than
those for nonperiodic. The extrapolated values were likewise different but by a very small amount.

Excluded areas

In the physics literature, percolation thresholds are usually expressed in terms of area fractions. We
evaluated the excluded area numerically for the same obstacle configurations used in the percolation
calculations. From this we obtained CDF's of excluded area as a function of tracer diameter, and
we used these excluded area CDF's to express the CDFs of the percolation thresholds in terms of
the excluded area. The area percolation thresholds of text Table 1 were obtained similarly.

The excluded area was determined numerically using quasirandom points (3), a method that
proved very useful in determining the area covered by a random walk of a particle of nonzero size,
the so-called “Wiener sausage” (17). Quasirandom points are more regularly spaced than random
points but less regularly spaced than a grid.

The most fundamental method of calculating the excluded area is to draw circles of prescribed
radius R around the obstacle centers, place a set of quasirandom points over the entire system, and
count the quasirandom points inside the circles. The fraction of points inside is the excluded area
fraction for that R. But this calculation must be repeated for each value of R. A better way is to
find the nearest-neighbor obstacle for each quasirandom point, and calculate their separation r .
Now ryn is the obstacle radius at which that quasirandom point moves from outside the obstacle
to inside, so one can simply compile the CDF of the ryy, and the CDF is equal to the excluded
area fraction. For simplicity of programming, nearest neighbors were found using the cell index
method (2, pp. 149-151) but not using linked lists because they have poor locality of reference in
memory.

To express the percolation CDF f(d) in terms of the area fraction, we define

f(d) = CDFperc(d) (S1)

9(d) = CDFyen ir(d) = area_fr, (S2)



where d is the diameter. We invert g(d) numerically using the interpolation function in Mathematica
d = g Yarea_fr) (S3)
and then use this function to find the final result

CDPFperc(area_fr) = flg~ " (area_fr)). (S4)

SCALING ANALYSIS

We present a scaling analysis of the percolation data to relate our work to the physics literature
and to show that the percolation problem in terms of the percolation diameter d. can be treated
like the conventional problem in terms of the number or area fraction p.. [An alternative approach,
well suited to the continuum problem, is to use the number of obstacles as the fundamental variable
(9).] The analysis largely follows the procedures of Rintoul and Torquato (18), an admirably clear
description of the analysis of the conventional percolation problem for overlapping 3D spheres.

For a description of highly accurate techniques for the conventional problem, see Becker and
Ziff (16), who obtained the thresholds for bond and site percolation on the Voronoi network and
Delaunay triangulation to six significant figures. Their techniques require very accurate data,
impractical to obtain here because a series of obstacle number densities is needed and the obstacles
must be equilibrated.

First, we find the scaling exponent v for the correlation length. A standard result of percolation
theory is that the width of the CDFs varies as L'/, where L is the system size. The log-log plot
for the soft-disk data is shown in Fig. S1a. The mean slope for the seven different concentrations
is 0.766 £ 0.032, so we assume that v has its usual value of 4/3 in 2D (19, p. 52). Similar plots
for the other interactions gave slopes in the range 0.67 to 0.90. Pooling all the slopes gave a mean
slope of 0.764 4+ 0.066. For random overlapping obstacles the slopes were all below 0.75 but more
extensive calculations would be needed in order to exclude the standard scaling exponent.

Fig. S1b compares the corresponding plots for overlapping, hard, and soft disks at a number
density of 24k /um?. The systems of soft and hard disks have the same number densities and the free
area available to the obstacles is similar, so it is not surprising that the CDF's of the percolation
thresholds have similar widths. In constrast, the free area available in a system of overlapping
disks is much greater, so the fluctuations in percolation thresholds and the widths of the CDFs are
greater.

Next, we use this exponent to extrapolate the Monte Carlo percolation thresholds to an infinite
system. The standard scaling variable from the percolation literature is zs. = (p — pC)Ll/ Y, where
p is the observed percolation threshold for a finite system of size L, and p. is the percolation
threshold for an infinite system. (We shall see the rationale for this scaling variable in Fig. S3.)
For large systems, if the CDFs are plotted as a function of the scaling variable, they collapse to
the same curve. In the standard scaling problem, p. is obtained by plotting p versus 1 /Ll/ ¥ and
extrapolating the best-fit line to infinite L. Here we use the same procedure but in terms of the
diameter, as shown in Fig. S2.

Fig. S2 also shows the consistency tests used. The black lines show the fits to different numbers
of points, used in the error estimates. In addition, for each obstacle configuration one could use
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Figure S1: Log-log plot of the width of the CDF's versus system size L, the physical size in nm.
(a) Values for soft disks at number densities 4k, 8k, 16k, 24k, 32k, 40k, and 48k/um?. (b) Values
for soft disks, hard disks, and random overlapping disks at a number density of 24k/um?. (Solid
lines) Least-squares fits to the various data sets. (Dashed line) Theoretical slope.

the threshold for percolation in either direction or the threshold for percolation in both directions.
We use the two thresholds independently, but as shown in Fig. S2, the other choices extrapolate to
the same threshold within error bars.

Finally we examine data collapse. Consider the family of CDFs in Fig. 3 of the text. They
differ in position and steepness, so the intuitively obvious way to compare the curves is to adjust
them to the same center by subtracting the observed mean, and adjust them to the same width by
dividing by the observed width, defined as the standard deviation of the distribution. As Fig. S3a
shows, if we plot the CDFs versus z(expt) = (d — mean)/width, all the different CDFs reduce to
approximately the same curve for all the different model interactions, number densities, and system
sizes, so in that sense they are the same curves. In particular, all the CDFs of Fig. 3 reduce to the
same curve as in Fig. S3a (data not shown).

The scatter in Fig. S3a appears to be predominantly the result of noise in the CDFs, not
differences among interactions, system sizes, or number densities. Fig. S3b shows the scaling plot
for 6 runs under identical conditions, differing only in the random number sequence in the Brownian
dynamics. The scatter in Fig. S3b for these runs is similar to that in Fig. S3a for 39 runs for 39
different sets of conditions. More quantitatively, if we measure the overall scatter by the scatter
in z(expt) at the 50% points of the CDFs, Figs. S3a and S3b are very similar in the range and
standard deviation of z(expt).

This empirical scaling is closely related to the standard scaling analysis. For large systems
the mean is just the percolation threshold d., and as shown in Fig. S1, width l/Ll/”. So
z(expt) o (d — d.)L'¥, which is the standard scaling variable z,. but in terms of d instead of p.
This scaling plot is shown in Figs. S3¢,d. There is clear data collapse, but not to the same extent
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Figure S2: Extrapolation of the observed thresholds to an infinite system for random overlapping
disks at a number density of 24k/um?2. (Purple horizontal line) The theoretical value from Eq. 3 of
the text. In the standard calculation, the mean values (black points) are used in the least-squares
fit. (Solid black line) The standard fit is to the set of points with L, > 1.5. (Dashed black lines)
Fits to the sets of points with L, > 1 and L, > 2 are used to estimate the error. Extrapolations
based on percolation in one direction (or) and percolation in both directions (and) are shown, and
give the same threshold within error bars.
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Figure S3: Data collapse for CDFs. (a) Empirical scaling plot of CDFs versus the scaling variable
z(expt) = (d — mean)/width, where mean is the observed value for each run, and width is the
observed standard deviation of the CDF for that run. The plot shows approximately 20,000 data
points, for soft disks (black), hard disks (green), and random overlapping points (blue). For each
model interaction, a series of 5 to 7 system sizes is included at a number density of 24k/um?
and a series of 7 number densities is included at an approximately constant number of particles
(L, = 2 series). The plot was done in PostScript, where the points are opaque, so green overlaps
black and blue overlaps both. (b) A similar plot for 6 independent runs for soft repulsive disks
at 24k/pm?, system size 150 nm. (c) Theoretical scaling plot of CDFs versus the scaling variable
ZTse = (d — dc)L3/4 for soft disks at number densities of 16k, 24k, and 32k/um?. System sizes
were between 44 and 366 nm. (d) A similar plot for soft, hard, and random overlapping disks at
24k /pum?. System sizes were between 50 and 350 nm.



as in Fig. S3a. For each model interaction and number density, the CDF's for various system sizes
reduce to a common curve, but there are distinct curves for each interaction and number density.
The reason is that each interaction and number density has a different dependence of width on
system size, even though the exponents are approximately the same, as shown in Fig. S1.
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