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Supplemental methods and data 

A) Measurement of transient outward current (ITO) 

ITO was recorded under Na
+
- and Ca

2+
-free conditions with a pipette solution containing (in 

mM): 110 K-aspartate, 20 KCl, 0.5 MgCl2, 4 MgATP, 5 EGTA, 5 HEPES, and 10 glucose (pH 7.2), 

and an extracellular solution containing (in mM): 140 cholineCl, 1.0 CdCl2, 0.5 MgCl2, 5.0 HEPES, 5.5 

glucose, and 5.4 KCl (pH 7.4). ITO was elicited by 300 ms voltage steps from -70 mV to a range of 

potentials (-40 to 60 mV) in 10 mV increments. Peak ITO was measured as the maximal outward current 

relative to steady state. 

 

B) Numerical methods for calculation of electro diffusion 

The electric field that drives the advection comes from the negatively charged phospholipid 

head-groups in the lipid bi-layer of the sarcolemma (1, 2). The charges cause an electric double layer in 

close proximity to the cell membrane (3, 4). The double layer is thin as the negative potential is 

screened by the ions in the solution. In the double layer the potential attracts cations causing an 

elevated concentration of these near the membrane, while repelling anions. The charged head-groups of 

the membrane also serve as cation binding sites, and thus act as buffers for these ions (5, 6). It has been 

shown that the Gouy-Chapman theory, together with appropriate membrane association constants for 

the sarcolemmal buffers, can be used to resolve the electric potential in the double layer (3, 5, 7). The 

electric potential, Φ, is described in dimensionless units as Φ = Ψ/ΨT , where the unit of Ψ and ΨT is 

Voltage. ΨT is a temperature-dependent characteristic potential given by: 

 T

kBT

e
. (1) 

A single exponential can be used to approximate Φ (7): 

 0e
x2 D . (2) 

Here Φ0 is the potential at the membrane, where x2 is zero. λD is the Debye length, which is calculated 
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to be ~ 1 nm (7). Given the potential we can now state the advection-diffusion equation that governs 

the movement of ions in the dyad:  

  
c

t
D 2c cz . (3) 

Here D and z are the diffusion constant and the valence of Ca
2+

. 

 

C)  Numerical methods for the continuous model 

We used a finite element method for the spatial discretization of the PDEs, and a backward 

Euler method for the temporal discretization. The size of the time step was determined by an adaptive 

time-stepping scheme based on the mean value of the relative time derivative of the included field. The 

advection term in Eq. 3 causes numerical problems when discretized using finite element method (8). 

To avoid these difficulties we transformed Eq. 3 into: 

 a
u

t
D a u,  (4) 

where a e z
, and u ez c , as previous studies also have done (9). The original Ca

2+
 can be retrieved 

by: c e z u . This technique allowed us to use a coarser mesh close to the T-tubule, and the resulting 

linear system needed to solve each time step became symmetric. The sparse linear system was 

assembled using PyDOLFIN from the FEniCS project, (http://www.fenics.org), and solved using a 

Krylov solver from the PETSc linear algebra library(10) together with an algebraic multi-grid 

preconditioner from the Hypre library (11). 

 

D) Numerical methods for the discrete models 

Some of the propensity (rate) functions in the Markov models depend on the continuous 

variables: Ca
2+

 and V. The α and β functions depend on the membrane potential, and the activation 

function of the RyRs depends on the local [Ca
2+

]. To be able to correctly evolve the stochastic system 
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we therefore needed to solve the discrete system coupled to these continuous variables. We developed a 

modified Gillespie method (12) to accomplish this.  

Let S = S(t) be a vector holding the present states of the included Markov models and let 

N N(S)  be the number of possible transitions that can be undertaken from these combination of 

states. The propensity function of the i
th

 transition is denoted by λi = λi (t). The total propensity for the 

next transition,  = (S, t) , is given by a sum over all λi: 

 i

i

N

. (S1) 

The time for the next stochastic transition is exponentially distributed, if we assume that λ is constant. 

The time to the next stochastic transition, ∆tt , is realized by drawing one random number, r1 , from a 

uniform distribution on the unit interval and transform it according to:  

 t t  = 
-ln r1

.  (S2) 

The transition time is relative to the present time in the simulation. If a transition takes place at time t + 

∆tt , we need to realize which of the N possible transitions that actually took place. Drawing another 

random number, r2, from the same distribution as above, does this. The k
th

 transition takes place if, 

 j

j 0

k 1

r2 j

j 0

k

 (S3) 

where λ0 = 0, and k = [1 N ]. The Gillespie method assumes constant propensity functions between 

the transitions. However most of the included propensity functions in the LCC and RyR models are not 

constant, and we therefore have to modify the method. Instead of realizing a transition based on a given 

propensity, we realize a dimensionless time to the next transition, tt
* , using λ = 1 in Eq. S2. tt

*  

relates to the actual transition time by,  

 tt
tt

*

 (S4) 
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A time step, ∆t < ∆tt , is chosen during which constant external variables is assumed, and hence 

constant propensity functions. To minimize the error of assuming constant continuous variables during 

a time step we need to choose a small ∆t when such variables change greatly, for example during an 

upstroke of the AP. Using the chosen ∆t we update the continuous system and reduce the dimensionless 

transition time according to,  

 t t  = 
-ln r1

.  (S5) 

Whenever ∆tt , from Eq. S4, is smaller than the chosen ∆t a transition occurs before the time step is 

completed. We realize the transition and check whether the transition changes the status of a channel. If 

it does, we say that the transition is a channel transition. The continuous system is solved up to the 

transition time by setting ∆t =∆tt . Finally we realize the transition, changing the state of the continuous 

system. We then draw a new dimensionless transition time, ∆t∗ and start over again. If the transition 

was not a channel transition we can skip it, but we need to draw a new dimensionless transition time. 

 

Supplemental Figure Legends 

 

Supplemental Figure 1. 3-dimenionsal computation model of the dyad. A. The dyadic cleft was 

modeled as a cylindrical disk, with height = 12 nm. B. RyRs were positioned in a highly regular 2-

dimensional lattice, with a 5:1 ratio between the number of RyRs and LCCs (white circles). Two dyad 

sizes were modeled; a large dyad (100 RyRs, 20 LCCs) and a smaller dyad (25 RyRs, 5 LCCs) C. 

LCCs were raised 2 nm from the t-tubule membrane. 

 

Supplemental Figure 2. Markov models were employed to describe the channel dynamics of LCCs 

and RyRs. A. The 12-state LCC model initially described by Jafri et al (13) was slightly modified in 

our study. B. A minimalistic Markov model was employed for RyRs. 
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Supplemental Figure 3. Current-voltage relationships for transient outward current (ITO). ITO density 

was reduced in CHF myocytes across a range of voltages. ncells: SHAM = 12, CHF = 10; P<0.05 vs 

SHAM.  
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