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Collection of Hair Follicle Cells. Healthy volunteers were asked to
follow a set schedule for at least 1 wk. Wake-up time and meal
times were set based on the lifestyle habits of each subject. The
subjects were asked to have breakfast, lunch, and dinner about 1,
6, and 13 h after waking up in the morning, respectively. They
were also asked to refrain from consuming excess alcohol, eating
excessive snacks, and taking long naps. Each subject wore an
Actiwatch on their nondominant wrist to objectively ascertain
behavioral rhythms. Hair follicle cells were collected by firmly
holding and pulling the root of scalp hair, and hair follicle cells
(the cells attached to the hair roots) were quickly soaked in dis-
solution buffer (RNeasy Micro Kit; QIAGEN). Hair follicle cells
were stored at −70 °C until RNA purification. At each sampling
point, about 10 male hair follicle cells (scalp hair) and about 20
female hair follicle cells (scalp hair) were required. Sufficient
amounts of RNA can also be obtained using five facial hair follicle
cells. When collecting scalp hairs, samples were obtained from
different regions of the scalp. Although there may be individual
and racial differences in yield, hairs from the tip of the chin tend to
yield a greater amount of RNA. The RNeasy Micro Kit (QIA-
GEN) was used with frozen cytolysis solution to purify total RNA.
After checking the quality and concentration of total RNA using
a Bioanalyzer (Agilent) or NanoDrop (LMS), samples were used
to determine clock gene mRNA. The present study was approved
by the Ethical Review Board of Saga University, and informed
consent was obtained from each subject.

Animals. Mice were housed using a strict 12 h/12 h light/dark
regimen. Tissues were immediately frozen in liquid nitrogen and
stored at −80 °C until processed for RNA. All protocols for
experiments using animals in this study were approved by the
Saga University Animal Research Committee. Quantification of
relative RNA levels was performed with SYBER Green real-
time PCR technology as described previously (1). Briefly, DN-
ase-treated total RNA (2.5 μg) was reverse-transcribed using an
oligo(dT) primer and SuperScript reverse transcriptase (In-
vitrogen). The cDNA equivalent of 20 ng of total RNA was
PCR-amplified in a PRISM 7300 detection system (Applied
Biosystems).

mRNA Determination. Total RNA was reverse-transcribed using
ReverTra Ace (Toyobo), and real-time PCR was performed using
a TaqMan MGB probe (Applied Biosystems) and 1/20 volume of
the reverse-transcription product. Data were obtained using
a PRISM 7300 (Applied Biosystems) and corrected by 18S rRNA.
Primers were selected when there was no unspecific amplification
in dissociation curves and when amplification efficiency was rela-
tively favorable.FAM-MGB(a6-carboxyfluoresceinfluorescentdye
and a minor groove binding) labeling was carried out on designed
matching probes. The sequences of the primers and probe for each
human gene are shown in Dataset S1. In addition, as a technique
for determination differing from real-time PCR, RNA determi-
nation was performed using branched-DNA probes (QuantiGene;
Panomics). With this method, total RNA purification, reverse
transcription, and PCR amplification are not required, and target
mRNA is thus directly detected in cytolysis solutions. This RNA
determination technique differs markedly from real-time PCR.
Data were corrected by Pp1a levels.

Microarray Experiments. At each sampling point, about 20 scalp
hairs were collected. Total RNA was prepared using the RNeasy

Micro Kit (QIAGEN). After checking the quality and concen-
tration of total RNA using a Bioanalyzer (Agilent) and Nano-
Drop (LMS), samples were used for microarray experiments. One
hundred and fifty nanograms of total RNA was amplified and
labeled using the Affymetrix Whole-Transcript (WT) Sense
Target Labeling Protocol without rRNA reduction. Affymetrix
GeneChip Human Gene 1.0 ST arrays were hybridized with 11 μg
of labeled sense DNA, washed, stained, and scanned according
to the protocol described in the WT Sense Target Labeling
Assay Manual. Affymetrix GeneChip software was used to de-
termine the average difference between perfectly matched oli-
gonucleotide probes and single-base-pair mismatches for each
probe set. Data were then scaled globally to make the total in-
tensity of each microarray equal. The resulting hybridization
intensity values reflect the abundance of a given mRNA relative
to the total RNA population and were used in all subsequent
analyses.
Genes with significant changes were screened by one-way

ANOVA of 2 d of microarray expression profiles with a P value
threshold of 0.1, counting 2-d data as duplicate data of a day,
followed by a permutation test to evaluate significance in circa-
dian rhythmicity of each gene expression. These time-course
gene expression data are normalized by their root-mean-squares
and randomly permuted 10,000 times to calculate P values of fast
Fourier transform (FFT) and cosine fitting correlation (CF)
analysis of the data. Correlation P value of CF analysis was
calculated as the ratio of the number of permutation correla-
tions, calculated from nonlinear least-squares fitting of a 24-h-
period cosine curve to the data, that had higher correlation value
than the nonpermuted data to the number of tested permutation
data. P value of FFT analysis was calculated as the ratio of the
number of permutation data that had higher 24-h-period power
of FFT analysis than nonpermuted data to the number of tested
permutation data. Obtained P values were used to filter genes by
false discovery rate (FDR) of α = 0.05.

Cosine Curve Fitting of Experimental Data. A 24-h-period cosine
curve (Eq. S1) was fitted by the nonlinear least-squares method
to the time-course gene expression data we obtained, with E(t)
indicating gene expression level at time t, A indicating the am-
plitude of the cosine curve, ω indicating the phase, and C in-
dicating the offset value. Fitted curves were used for
mathematical representation of rhythms of gene expression for
comparison with predicted rhythm curves.

Prediction of Rhythm of Expression from Three-Point Experimental
Data. Gene expression rhythm curves for Per3 and Nr1d2 were
predicted as follows: First, the levels of gene expression of Per3
and Nr1d2 at time t, E(t)per3 and E(t)nr1d2, were modeled as in
Eq. S2, where A indicates amplitude, ω indicates the Per3 phase,
C indicates the offset value, and θ indicates the phase difference,
and subscripts are gene names. Phase difference between Per3
and Nr1d2 was set to an experimental value, the mean of Per3
and Nr1d2 phase differences of 17 healthy volunteers. Each
phase difference was calculated from fitted cosine curves of Per3
and Nr1d2. Next, the model equations (Eq. S2) were fitted to the
target three-point experimental data using the conjugate gradi-
ent minimization method. Model parameters were determined
by minimizing the sum of squares of differences between ex-
perimental data and equation values at the same time points.
Initial values of A and C for the method were set to the am-
plitudes of standard curves described later and the mean of the
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target three-point data, respectively. The initial value of the Per3
phase parameter ω was set to each hour of the day, and the
resulting curves yielding the minimum sum of squares of differ-
ences were chosen as those for predicted rhythm of expression
for target three-point data.

Determination of Optimal Sampling Interval. To ascertain optimal
sampling time intervals for stable and accurate prediction, we
examined our method of prediction using various sampling
intervals and start times. First, a cosine curve was fitted to actual
measurements obtained from each of 13 healthy volunteers, and
24 combinations of hypothetical sampling times were set for each
hour of the day. Three sampling time points were selected based
on target time intervals, and the above three-point prediction was
applied.Means and SEs of the phase time differences between the
predicted curves and the cosine fitted curves were calculated for
each of the 24 combinations of sampling starting time. Results
showed that the optimal sampling interval for our 3-h-interval
experimental data was a 6 h-6 h interval.

Prediction of Rhythm of Expression from Three-Point Experimental
Data by Standard Curve Fitting. Improvement of the accuracy of
prediction was performed using fixed amplitudes and offsets in
a fitting model for three-point prediction (Eq. S2). First, a cosine
curve was fitted to actual measurements obtained from each of
the six healthy volunteers. Mean amplitude and offset of the
fitted curves for each gene were set to fitting model parameters
(Eq. S2) and used as “standard curves.” Next, the standard
curves were fitted to three-point measured data by the nonlinear
least-squares method to determine Per3 phase ω, with the initial
value set to each hour of the day. The resulting curves with the
lowest SEs were selected as those for prediction of rhythm of
gene expression for three-point data.

Cross-Validation. To evaluate the validity of the standard-curve
method, 6-fold cross-validation was performed. Among sampling
data of six normal individuals which were used to define
parameters of the standard curve, five were used as a training
dataset to define the standard curve and the remaining one was
used as test data to estimate the phase by the standard curve. This
was performed for all possible combinations of the six individuals
and phase estimation errors were calculated from them.

Simulation. To examine the limit of three-point phase prediction
for rhythms that vary from the standard curve, phase prediction
errors for randomly generated rhythm data were examined.
Generally, circadian rhythm is approximated by a 24-h-period
cosine curve, and therefore Per3 and Nr1d2 rhythm data are
generated based on cosine curves. Parameters of the cosine curve,
amplitude, phase, and oscillation offset are randomly set, cen-
tered to those of the standard curve. Ten thousand cosine curves
with different sets of parameters are generated, and these curves
are then used to generate 12 three-point sampling data of dif-
ferent sampling start times with 6 h-6 h sampling intervals. The
phase of Per3 was fixed to 6 h and the phase of Nr1d2 was
randomly set to have a phase difference around that of the stan-
dard curve, 2.1 h. Randomly generated datasets are then per-
formed phase prediction by fitting standard curves, and phase
prediction errors are calculated (see “Prediction of Rhythm of
Expression from Three-Point Experimental Data by Standard
Curve Fitting” in SI Materials and Methods).

Prediction of Rhythm of Expression from Single-Point Experimental
Data by Standard Curve Fitting. Phase predictions of single-point
data were achieved by an extension of the three-point data
prediction method using nine gene standard curves (Bmal1, Rev-
erbα, Rev-erbβ, Per1, Per2, Per3, Cry1, Npas2, and DBP) for
prediction. A cosine curve was fitted to the time course of gene

expression in each tissue obtained from three mice, and its am-
plitude and offset were used for the gene expression standard
curve. We assumed a fixed phase difference among the selected
genes in each tissue, and the phase differences of standard curves
were obtained from the fitted cosine curves. As in the case of
phase prediction of three-point data by standard curve fitting,
those nine standard curves were fitted to single-time-point data
for expression of nine genes by the nonlinear least-squares
method. To avoid biasing of results due to exponential differ-
ences between expression values, each measured datum and
standard curve were weighted by the inverse of the amplitude of
the corresponding standard curve. The resulting curves with the
lowest SEs were selected as those for the prediction of rhythm of
gene expression for single-point data.

EðtÞ ¼ A cos
�
2πðtþϖÞ

24

�
þ C [S1]

Per3 : Eper3ðtÞ ¼ Aper3 cos
�
2πðtþϖÞ

24

�
þ Cper3

Nr1D2 : Enr1d2ðtÞ ¼ Anr1d2 cos
�
2πðtþϖ þ θÞ

24

�
þ Cnr1d2

[S2]

SI Result 1
Phase differences exist in rhythms of expression among clock
genes, and such phase intervals were stable. Using the phase
interval for phase prediction, we focused on Per3 and Nr1d2,
whose expression rhythm data could consistently be obtained
from human hair follicle cells and exhibited small individual
differences in phase interval (Fig. 2B). To accurately calculate
the phase interval, rhythms of expression of Per3 and Nr1d2 were
investigated in 17 healthy subjects (Fig. S7A). The peak times for
Per3 and Nr1d2 were determined by fitting a cosine curve using
the nonlinear least-squares method. Results showed that the
average phase difference for Per3 and Nr1d2 was 2.2 ± 0.097 h.
Although marked individual differences were observed in the
phases of rhythm of expression, the phase interval appeared
stable for Per3 and Nr1d2. This was also the case for shift
workers (white circles) and a subject who habitually exercised
vigorously at night (gray circles). Using phase differences, the
rhythm of expression of Per3 and Nr1d2 was fitted to a 24-h
cosine curve (SI Materials and Methods; Eq. S2). A indicates
amplitude, ω indicates Per3 phase, C indicates offset value, and θ
indicates phase difference, and subscripts are gene names. Be-
cause Per3 phases were used to indicate Nr1d2 phases, the two
model formulae included five unknown constants. To mathe-
matically deduce these unknown constants, five independent
equations are needed. Because a single two-gene assay could
yield two equations using the model formulae, at least three
samplings were required with the present model. We therefore
attempted to predict the phases of rhythm of expression by
collecting samples at three different time points.

SI Result 2
When predicting rhythmic variations of gene expressions using
three-point data, accuracy of prediction is dependent on sampling
interval. Because marked individual differences exist in phases of
rhythm of expression (Fig. S7A), all possible sampling start times
around the clock need to be considered. We thus performed
three-point phase prediction with various sampling intervals and
start times to ascertain the optimal sampling time interval (Fig.
S7B). A cosine curve was fitted to actual measurements obtained
for each of 13 healthy volunteers, and 24 hypothetical sampling
times were set for each hour of the day. Based on the resulting
model data, three sampling time points were selected based on
target time intervals, and unknown constants that best fit model
Eq. S2 (SI Materials and Methods) were determined using the
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conjugate gradient method. This was performed for all 24 sam-
pling starting times to assess accuracy of prediction. In this
fashion, means and SEs of the time difference between predicted
and model phases were calculated for each sampling time in-
terval. Although the results indicated high accuracy of prediction
for many sampling time intervals (e.g., 6 h-6 h and 3 h-3 h in-
tervals), three-point prediction was not successful with some
sampling time intervals (e.g., 9 h-15 h interval). Accuracy of
prediction was highest with the sampling time interval of 8 h-8 h.

SI Result 3
Fig. S9A shows the results for 3 h-3 h intervals (seven three-point
combinations). As with subject C, when all data were close to the
cosine curve, accuracy of prediction was sufficiently high with
a 3 h-3 h interval, whereas with subject D, when a deviating value
was observed, accuracy of prediction was lower than with a 6 h-
6 h interval. With this standard-curve method, the degree of
tolerance for data fluctuations and errors is high, and highly
accurate yet flexible prediction is possible. Because errors and
fluctuations are unavoidable in actual gene expression meas-
urements in clinical settings, the technique using the standard
curve is superior to the above-noted conjugate gradient method.
However, because gene expression is assumed to follow the
standard curve, the standard-curve method cannot be applied to
data quantified with PCR calibration curves deduced by a di-
lution series of different calibration samples. Constant calibra-
tion samples for real-time PCR must always be used when
measuring gene expression. When analyzing data indicating
markedly low expression (almost always due to insufficient RNA
extraction), the correlation of three measurements to the stan-
dard curve will be low (see the value next to the phase time in
Fig. 4 and Fig. S9A). These cases can be excluded or distin-
guishable as “unmeasurable” or “unhealthy.” In the future, the
accuracy of phase prediction can be further improved by iden-
tifying available genes other than Per3 and Nr1d2, and prediction
may be possible using only two time points.
We explored the possibility of single-point phase prediction

using expression data for nine clock genes obtained from mouse
peripheral tissues (Fig. S9B). Five peripheral tissues were col-
lected from three mice every 4 h around the clock (six time
points), and nine clock gene expressions were examined. The
average cosine curve prepared using these data were defined as
the standard curve. Thirty combinations of single-point prediction

(five tissues and six time points) were performed based on expres-
sion data for the nine clock genes, and phase prediction was suc-
cessful in most cases tested. The maximum error in relation to the
six-point calculated curve was about 2.6 h, although errors were
within 1.5 h in most cases. These findings indicate that one- or two-
point phaseprediction is possible for humandatawithour standard-
curve method using more genes whose rhythms of expression are
consistently detectable in hair follicle cells.

SI Discussion. Although the methodology presented here could be
useful for studying the human circadian clock, there is room for
further improvements. First, the number of hairs required for mea-
surement could be reduced. Inmen, it can be reduced to fewer than
five hairs if beard hair is substituted for head hair, although other
improvements will be needed to characterize the circadian clock in
women with a smaller number of hairs. Additionally, although we
used a general real-time PCR or bDNA-based assay for mRNA
quantification in this study, more sensitive methods of RNA de-
tectionshouldbeconsidered toreduce thenumberofhairs required.
Inourexperience, thenumberofcellsattachedtoapluckedhair root
appears tobedependent tosomeextentonthemethodusedtopluck
hair, and further optimization of this method will be required.
Related to this,we found that there is a positive correlation between
the forceused topluck hairs and the amount of totalRNAextracted
from hairs (Fig. S2 A and B). This correlation may allow efficient
collection of hairs and lead to a reduction in the number of hairs
required. To achieve this, we have manufactured trial pen-shaped
hair tweezers which allow us to select hairs that are firmly rooted
(Fig. S2C). Although our model is based only on two or three clock
genes that were rhythmically expressed with a clear circadian pat-
tern, the accuracy of prediction of circadian phase by three-point
sampling could be improved if other clock genes are used. We
recently adopted a strategy allowing us to perform multigene ex-
pression profiling with simple experimental processes, because the
procedures used for detection in this study are technically difficult
for high-throughput analysis of a large number of samples. Spe-
cifically, rapidmultigene expression profiling frommany specimens
can be performed with the combination of the Luminex instrument
system (Hitachi) and bDNA-basedmRNAquantification (Fig. S3).
If these improvements could be achieved, our hair-based detection
method will markedly contribute not only to basic research on the
human circadian clock but also to the clinical diagnosis of circadian
rhythm disorders.

1. Akashi M, Takumi T (2005) The orphan nuclear receptor RORα regulates circadian
transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448.

Fig. S1. Genes with significant circadian rhythms were selected from microarray gene expression data. Fast Fourier transform (FFT) and cosine fitting cor-
relation (CF) followed by a permutation-derived P value assessment were performed for 10,000 permuted datasets generated from time-course gene ex-
pression data of 2,823 genes that were prescreened by ANOVA of the microarray gene expression data. The P values were then used to screen genes with
significant circadian rhythms by the FDR of α = 0.05. (A) The number of genes selected by CF and FFT. (B) Ranks of clock genes in the selected gene list.
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Fig. S2. Efficient methods for hair sample selection. (A) A device that measures the force necessary to pluck head hair samples was developed. Holding a hair
with the tip of the device (red arrow), the force can be measured by pulling it by electric motor. (B) Using the device shown in A, the correlation between total
RNA extraction and hair removal force was investigated. In the subject shown, head hair samples could be collected efficiently by selecting hairs that required
at least 50 g of force to pluck. (C) A pen-type device that can easily measure the force to pluck a head hair was developed. Holding a hair with the tip (red
arrow), the blue bar (blue arrow) slides depending on tensile force and stops when the hair is removed. The force required to pluck can be ascertained based on
the location of the blue bar, and the device can be used for efficient hair sample selection.

Fig. S3. A high-throughput method of detection of rhythms of clock gene expression. Five facial hairs were collected every 4 h, and the expression of clock
(Per3 and Nr1d2) and correction (PPIB) genes was measured by quantitative RNA analysis using QuantiGene Plex (Panomics). With this system, each well
contains three beads to which branched DNA to detect Per3, Nr1d2, or PPIB mRNA is fixed. A single test can thus simultaneously measure three gene ex-
pressions. After allowing each sample to react, the solution is removed from each well, and the Luminex system (Hitachi) is used to measure signals. The figures
show expression of the clock genes (Per3 and Nr1d2) corrected by PPIB. Application of this technique can increase measurement throughput for determination
of rhythms of clock gene expression.
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Fig. S4. Expression of clock genes in facial hair follicle cells. (A) Expression of clock genes in facial hair follicle cells was measured by RNA determination using
branched DNA. This method differs markedly from real-time PCR, because RNA purification, reverse transcription, and PCR amplification are not required.
Eleven samples of three facial hairs were collected to assess fluctuations in measurement. Clock gene levels were normalized to Protein Phosphatase 1 A (Pp1a).
(B) Time-course sampling of facial hairs was carried out, and rhythms of clock gene expression were measured using the branched-DNA method.

Fig. S5. The average phase shift of wake time and circadian gene expression was calculated among the six subjects in Fig. 3. The phase delay from the first to
the second week and the phase advance from the second to the third week are shown.
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Fig. S6. Rhythms of clock gene expression in rotating shift workers. We observed a higher oscillation amplitude and maximum expression of circadian clock
gene expression compared with daytime workers when experiments were performed with another set of subjects with a different work schedule. (A–D) For
four rotating shift workers, a work shift table (upper figure) and clock gene expression (lower figures) are shown. The final day in the schedule is the sampling
day. Scalp hair samples were collected every 3 h to ascertain rhythms of clock gene expression by real-time PCR. Expressions relative to 18S rRNA are shown. (E
and F) Peak values (E) and relative amplitudes (F) of clock gene expression rhythms were calculated, and the results were compared among four rotating shift
workers and four healthy individuals. For precise comparison between normal subjects and rotating shift workers, clock gene expression in all eight subjects
was measured under the same experimental conditions and with the same types of handling. SW and DW indicate shift workers and daytime workers, re-
spectively. (G) Cosine curve fitting was applied to clock gene expression rhythm data for each subject, and peak times were calculated.
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Fig. S7. (A) To ascertain the peak time difference between Per3 and Nr1d2, the peak time of each gene was plotted for 17 healthy volunteers (black dots).
Cosine fitting was undertaken for time-series expression data for Per3 and Nr1d2 obtained using scalp or facial hair samples, and time of maximum expression
for Per3 was plotted on the x axis and Nr1d2 on the y axis. The broken line shows the average for peak time difference (2.2 h). White circles indicate the four
shift workers, and gray circles indicate the subject who habitually exercised vigorously at night (the two delayed phases are with exercise). (B) (Left) De-
termination of the ideal three-point sampling time interval for optimal phase prediction. Cosine fitting was performed for rhythms of Per3 and Nr1d2 ex-
pression measured using scalp or facial hair samples, and hypothetical sampling times were set for each hour of the day. For each sampling time interval
combination (for example, 6-6 indicates three samplings with sequential 6-h intervals), the phase time difference between the model and three-point pre-
diction curve (24 combinations) was calculated. Average phase difference was plotted on the y axis, while average SE was plotted on the x axis. The same
analysis was performed for 13 healthy volunteers, and the average was calculated. (Right) Waves predicted based on three-point assays. The results of pre-
diction for 24 combinations of sampling starting times are shown for the 6 h-6 h interval (upper), 3 h-3 h interval (middle), and 9 h-15 h interval (lower). The
broken black line indicates the model curve, black dots indicate hypothetical sample collection times established along the model curve, and color lines indicate
three-point prediction curves for the 24 combinations.
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Fig. S8. One hundred and twenty thousand combinations of three-point sampling data, based on cosine curves with randomized set amplitude, phase, and
oscillation offset, were generated and three-point phase predictions were performed. (A) The phase prediction results in terms of amplitude of Per3 and Nr1d2
expression rhythms. The x and y axes are the relative amplitude and prediction error in hours, respectively. (B) The phase prediction results in terms of os-
cillation offset values of Per3 and Nr1d2 expression rhythms. The x and y axes are the relative oscillation offset value and prediction error in hours, respectively.
(C) The phase prediction results in terms of the phase difference between Per3 and Nr1d2. The x and y axes are the phase difference and prediction error in
hours, respectively. The red dots are the results of expression rhythms with the fixed Per3-Nr1d2 phase difference of 2.1 h, whereas the blue ones are those
with phase differences between 1.1 and 3.1 h.
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Fig. S9. (A) Three-point phase prediction using actual data. Phase prediction was performed using the standard curve for the three-point assay with sampling
time intervals of 3 h-3 h. The standard curve refers to the average cosine curve prepared using actual data. Factors other than phase time, such as period,
amplitude, levels of expression, and the phase interval between Per3 and Nr1d2, were fixed. Black dots indicate actual measurements, the broken black line
indicates a curve calculated based on all nine-point data (ALL), and colored lines indicate three-point predicted curves. Subjects C and D in Fig. 4 and Fig. S9A
are the same individuals. Numbers in parentheses beside figures indicate the time points of the three samplings used for prediction (actual data were obtained
at nine points every 3 h, and three of the nine points were selected), and numbers at the right indicate root-mean-square errors of three-point prediction
curves and three measurements (the smaller the value, the more accurate the prediction). Additionally, numbers on the right show predicted peak times. The
closer the nine-point calculated phase to the three-point predicted phase, the more accurate the prediction. (B) Single-point phase prediction using expression
data obtained from mouse peripheral tissues. Five peripheral tissues were collected from three mice every 4 h, and average levels of expression were calculated
at every time point for nine clock genes. A cosine curve was fitted to time-series average data and defined as the standard curve, whose wave elements other
than phases were fixed when performing prediction (the phase interval among the nine clock genes was also fixed). The standard curve varies in peripheral
tissues. Thirty combinations of single-point prediction (five tissues and six time points) were performed based on expression data for nine clock genes. “Phase”
represents the phase time difference between the six-point calculated and single-point predicted curve; the smaller the absolute value (h), the more accurate
the prediction. The right figure shows the predicted curves for Per2 expression as examples. ZT represents Zeitgeber time.

Dataset S1. A list of circadian rhythm genes isolated by comprehensive gene expression analysis (FFT) of hair follicle cells. The table presents the names of the
rhythm gene clusters shown in Fig. 1B. They are ranked in order of FDR values. The Probe ID column shows the GeneChip probe ID number (Affymetrix).

Dataset S1

Other Supporting Information Files
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