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Web Appendix A. Proof that π̂ is approximately unbiased at the first-order for π

The overall population prevalence is defined asπ ≡ f(Yij = 1), where individualij is

randomly selected from the population of interest. Assumption (i) about the availability of

relatives allows us to expandf(Yij = 1) as follows

π ≡ f(Yij = 1)

= f(Yij = 1|Yij′ = 1)f(Yij′ = 1) + f(Yij = 1|Yij′ = 0)f(Yij′ = 0), (A.1)

where individualij′ is randomly selected from amongYij ’s relatives with disease status

Yij′. (In the remainder of this proof, we will assume thatj′ 6= j.) We can rewrite the above

equation as

π = f(Yij = 1|Yij′ = 1)π + f(Yij = 1|Yij′ = 0)(1 − π),

which can be rearranged to give

π =
π

U

1 − π
A

+ π
U

, (A.2)

whereπ
U
≡ f(Yij = 1|Yij′ = 0) andπ

A
≡ f(Yij = 1|Yij′ = 1). The parametersπ

A
and

π
U

can be defined in terms of the finite population:

π
A

≡ f(Yij = 1|Yij′ = 1)

=

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij = 1) I(Yij′ = 1)

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij′ = 1)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)(NA
i − 1)

∑F
i=1

∑Ni

j=1

(
I(Yij = 0)NA

i + I(Yij = 1)(NA
i − 1)

)

=

∑F
i=1(N

A
i − 1)NA

i∑F
i=1(Ni − 1)NA

i

; (A.3)
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whereNA
i =

∑Ni

j=1 I(Yij = 1), the number of affected members in familyi, and

π
U

≡ f(Yij = 1|Yij′ = 0)

=

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij = 1) I(Yij′ = 0)

∑F
i=1

∑Ni

j=1

∑
j′ 6=j I(Yij′ = 0)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)NU
i∑F

i=1

∑Ni

j=1

(
I(Yij = 0)(NU

i − 1) + I(Yij = 1)NU
i

)

=

∑F
i=1 NA

i NU
i∑F

i=1(Ni − 1)NU
i

, (A.4)

whereNU
i =

∑Ni

j=1 I(Yij = 0), the number of unaffected members in familyi.

Now, recall that

π̂ =
p

U

1 − p
A

+ p
U

, (A.5)

wherep
A

is the proportion of case probands’ relatives who are affected,

p
A

=

F
A∑

i∗=1

ni∗∑

j∗=2

I(Yi∗j∗ = 1)

F
A∑

i∗=1

ni∗∑

j∗=2

1

;

andp
U

is the proportion of control probands’ relatives who are affected,

p
U

=

F
A

+F
U∑

i∗=F
A

+1

ni∗∑

j∗=2

I(Yi∗j∗ = 1)

F
A

+F
U∑

i∗=F
A

+1

ni∗∑

j∗=2

1

.

The estimator̂π in (A.5) can be approximated by a second-order Taylor expansion
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around Ep
U

and Ep
A
, the expected values ofp

U
andp

A
, respectively:

π̂ ≈ Ep
U

1 − Ep
A

+ Ep
U

+ (p
U
− Ep

U
)

∂π̂

∂p
U

∣∣∣∣
Ep

U
,Ep

A

+ (p
A
− Ep

A
)

∂π̂

∂p
A

∣∣∣∣
Ep

U
,Ep

A

+
1

2
(p

U
− Ep

U
)2 ∂2π̂

∂p
U

2

∣∣∣∣
Ep

U
,Ep

A

+
1

2
(p

A
− Ep

A
)2 ∂2π̂

∂p
A

2

∣∣∣∣
Ep

U
,Ep

A

+ (p
U
− Ep

U
) (p

A
− Ep

A
)

∂2π̂

∂p
U
∂p

A

∣∣∣∣
Ep

U
,Ep

A

Inserting expressions for the derivatives and then taking the expectation of both sides of the

above equation yields

Eπ̂ ≈ Ep
U

1 − Ep
A

+ Ep
U

− Var(p
U
) (1 − Ep

A
)

(1 − Ep
A

+ Ep
U
)3

+
Var(p

A
)Ep

U

(1 − Ep
A

+ Ep
U
)3 (A.6)

+
Cov(p

U
, p

A
) (1 − Ep

A
− Ep

U
)

(1 − Ep
A

+ Ep
U
)3

In order to determine the bias in the leading term on the right-hand side of (A.6), we

must derive expressions for the bias ofp
A

andp
U

as estimators forπ
A

andπ
U

, respectively.

Beginning with the former, we introduce indicators in orderto rewritep
A

as a sum over

every member of every family in the population, except for one affected member of each

family who is arbitrarily designated as the (case) proband:

p
A

=

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij I(Yij = 1)

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

whereJ∗
i = {j : 1 ≤ j ≤ Ni andri(j) 6= 1}, a set containing the indices of the non-

proband members of familyi (after ascertainment); andδA
ij equals1 if family memberij is

sampled as part of a case-ascertained family and equals0 otherwise. The indicatorδA
ij will

depend onδA
i , the case-ascertainment indicator for familyi, which equals1 if family i is as-

certained via an affected proband and0 otherwise (with the constraint that
∑F

i=1 δA
i = F

A
.)

If δA
i = 0, thenδA

ij = 0 by definition, but ifδA
i = 1, thenδA

ij can equal0 or 1.
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To obtain an expression for the bias ofp
A

as an estimator forπ
A
, we employ the strategy

of Hartley and Ross (1954) for determining the bias of a ratioestimator. This strategy

begins by expanding the covariance betweenp
A

and its denominator:

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
= E

( F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij I(Yij = 1)

)
− Ep

A
· E

( F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)

=

F∑

i=1

∑

{j: j∈J∗

i
}

E(δA
ij)I(Yij = 1) − Ep

A
·

F∑

i=1

∑

{j: j∈J∗

i
}

E(δA
ij)

=
F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δA
ij |δA

i

))
I(Yij = 1) − Ep

A
·

F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δA
ij |δA

i

))
.

Under Assumption (v), the probability that relativeij is sampled is a constant referred to

ass. Using this fact to replace E
(
δA
ij|δA

i

)
in the last line of the above equation yields

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
=

F∑

i=1

∑

{j: j∈J∗

i
}

E
(
sδA

i + 0(1 − δA
i )

)
I(Yij = 1)

− Ep
A
·

F∑

i=1

∑

{j: j∈J∗

i
}

E
(
sδA

i + 0(1 − δA
i )

)

= s

F∑

i=1

E(δA
i )

∑

{j: j∈J∗

i
}

I(Yij = 1) − Ep
A
· s

F∑

i=1

E(δA
i )

∑

{j: j∈J∗

i
}

1

= s
F∑

i=1

E(δA
i )(NA

i − 1) − Ep
A
· s

F∑

i=1

E(δA
i )(Ni − 1)

= sF
A

s
A

F∑

i=1

NA
i (NA

i − 1) − Ep
A
· sF

A
s

A

F∑

i=1

NA
i (Ni − 1)

where the third line follows becauseJ∗
i does not include one affected member of familyi

who is designated as the case proband; and where the fourth line follows because, under

Assumption (iii) about proband selection and Assumption (iv) about single ascertainment,

E(δA
i ) can be rewritten asNA

i F
A

s
A
, wheres

A
= 1/

∑F
i=1 NA

i , the sampling fraction for
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case probands. The last line above can be rearranged to give

Ep
A
−

F∑

i=1

NA
i (NA

i − 1)

F∑

i=1

NA
i (Ni − 1)

= −

Cov

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)

sF
A

s
A

F∑

i=1

NA
i (Ni − 1)

.

Since the second term on the lefthand side of the above equation is justπ
A

as written in

(A.3), the bias ofp
A

can be written as

Ep
A
− π

A
= −

Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
· SD

(
p

A

)
· SD

( F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)

sF
A

s
A

F∑

i=1

NA
i (Ni − 1)

. (A.7)

Since the denominator on the righthand side of the above equation equals the expectation

of
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij , we can rewrite (A.7) as

Ep
A
− π

A
= − Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
· SD

(
p

A

)
· CV

( F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
, (A.8)

where CV(
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij), the coefficient of variation, is defined as the ratio of the

standard deviation of
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij to the mean of
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij .

We examine the magnitude of each of the three multiplicands on the righthand side of

(A.8). First, SD(p
A
) must be less than0.5 becausep

A
is a proportion. Second, it is difficult

(if not impossible) to construct a population where CV
(∑F

i=1

∑
{j: j∈J∗

i
} δA

ij

)
is larger than

2, as would be expected for a quantity that is effectively the sum of binary variables (albeit

non-identical, non-independent ones). Third, under Assumption (ii), which states that fam-

ily size and disease status are uncorrelated, Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij

)
is negligible.

This is true because Assumption (ii) ensures that the average size of the case-ascertained

families included in the study will have a negligible correlation with the proportion of the

relatives in those families who have the disease. Putting these three facts together, we see
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that the bias ofp
A

is negligible when Assumption (ii) holds.

To illustrate the importance of Assumption (ii) in guaranteeing thatp
A

is approximately

unbiased forπ
A
, we examine the bias ofp

A
in two fictional populations. The first is the

same population used in the simulation experiments in Section 4, where the lifetime preva-

lence of disease was set to11.5% for females from all families and5.9% for males from all

families. The second is a population created in an identicalfashion, except that the preva-

lence of disease was set to16.5% for females and7.9% for males from families with three

or fewer members, and to6.5% for females and3.9% for males from families with four or

more members. Note that the overall prevalence of disease isequal in both populations,

but in the second population, a disproportionately large number of the diseased individuals

belong to small families. For each population, we sampled1, 000 datasets, each consisting

of 64 case probands (F
A

= 64) and all of their relatives (s = 1). We calculatedp
A

and
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij for each dataset and then used the resulting values to estimate the three

multiplicands in (A.8) for that population. Web Table 1 presents the values of the three mul-

tiplicands in the two populations, as well as the bias ofp
A

in percentage terms. The middle

column of Web Table 1 reveals that Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij

)
and the percentage bias

of p
A

are negligible in the first population, where Assumption (ii) holds. Comparing the

middle column to the right-most column in Web Table 1 revealsthat the percentage bias of

p
A

is approximately100 times larger for the second population, where Assumption (ii) does

not hold. This increase in bias is due to the larger value of Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij

)
.

We can use the approach employed above to obtain an analogousexpression for the

bias ofp
U

as an estimator forπ
U

Ep
U
− π

U
= − Cor

(
p

U
,

F∑

i=1

∑

{j: j∈J∗

i
}

δU
ij

)
· SD

(
p

U

)
· CV(

F∑

i=1

∑

{j: j∈J∗

i
}

δU
ij) (A.9)

whereδU
ij equals1 if relative ij is sampled as part of a control-ascertained family and

equals0 otherwise. Since the same arguments made for the multiplicands in (A.8) also

apply to the multiplicands in (A.9), we see that the bias ofp
U

will be negligible when

Assumption (ii) holds. For both populations described above, Web Table 2 presents values

of the three multiplicands in (A.9) and the percentage bias of p
U
, calculated from1, 000

datasets containingF
U

= 58 control probands and all of their relatives (s = 1). The bias of
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Web Table 1
Components of the bias of p

A
when Assumption (ii) does and does not hold

Term Value
(for F

A
= 64 ands = 1)

Population 1 Population 2
Cor(Ni, N

A
i /Ni) ≈ 0 Cor(Ni, N

A
i /Ni) ≈ −0.19

Cor

(
p

A
,
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij

)
0.001459 -0.137009

SD(p
A
) 0.033318 0.038691

CV(
∑F

i=1

∑
{j: j∈J∗

i
} δA

ij) 0.058140 0.054310

Percentage bias ofp
A

† -0.0017% 0.173%

† Percentage bias ofp
A

equals100 · (Ep
A
− π

A
)/π

A
, whereπ

A
≈ 0.16; and where

Ep
A
− π

A
= Cor

(
p

A
,

F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
· SD

(
p

A

)
· CV

( F∑

i=1

∑

{j: j∈J∗

i
}

δA
ij

)
.

p
U

is negligible for the first population, but is again approximately100 times larger for the

second population because the correlation betweenp
U

and its denominator is larger. Thus,

the bias ofp
U

is negligible when Assumption (ii) holds.

The fact thatp
A

andp
U

have negligible bias under the assumptions enumerated in Sec-

tion 2 implies that the bias in the leading term of (A.6) is negligible. Thus, to a first-degree

approximation,̂π is an unbiased estimator forπ.

We now turn to the bias introduced by the second-order terms in (A.6). First, note that

the final second-order term in (A.6) introduces no bias because Cov(p
A
, p

U
) = 0. Next,

note that the numerators of the first two second-order terms in (A.6) can be re-written as[
Ep

U
(1 − Ep

U
)/

∑F
A

+F
U

i∗=F
A

+1 (ni∗ − 1)
]
(1−Ep

A
) and

[
Ep

A
(1 − Ep

A
)/

∑F
A

i∗=1 (ni∗ − 1)
]
Ep

U
,

respectively. We can ignore the summations in the denominators of these terms because

they are approximately equal under assumption (ii) that disease status is uncorrelated with

family size and under the assumption thatF
A
≈ F

U
. Now, the only difference between the
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Web Table 2
Components of the bias of p

U
when Assumption (ii) does and does not hold

Term Value
(for F

U
= 58 ands = 1)

Population 1 Population 2
Cor(Ni, N

A
i /Ni) ≈ 0 Cor(Ni, N

A
i /Ni) ≈ −0.19

Cor

(
p

U
,
∑F

i=1

∑
{j: j∈J∗

i
} δU

ij

)
-0.008865 -0.098235

SD(p
U
) 0.025768 0.020937

CV(
∑F

i=1

∑
{j: j∈J∗

i
} δU

ij) 0.061170 0.060793

Percentage bias ofp
U

† 0.0018% 0.2281%

† Percentage bias ofp
U

equals100 · (Ep
U
− π

U
)/π

U
, whereπ

U
≈ 0.055; and where

Ep
U
− π

U
= Cor

(
p

U
,

F∑

i=1

∑

{j: j∈J∗

i
}

δU
ij

)
· SD

(
p

U

)
· CV

( F∑

i=1

∑

{j: j∈J∗

i
}

δU
ij

)
.

two terms is that(1 − Ep
A
)Ep

U
is multiplied by(1 − Ep

U
) in the first term and byEp

A

in the second term. Thus, if we assume thatE (1 − p
U
) > Ep

A
, then the first second-order

term, which has a negative sign in front of it, is larger in magnitude than the second second-

order term, which has a positive sign in front of it. As a result, the bias introduced through

the second-order terms in (A.6) will be non-positive ifE (1 − p
U
) > Ep

A
andF

A
≈ F

U
.

However, the results of the simulation experiments in Section 4, wherêπ underestimates

π by only a very small amount, suggest that the bias introducedthrough the second- (and

higher-) order terms is very small in practice.�
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Web Appendix B. Proof that π̂x is only slightly biased at the first-order for πx

We defineπx ≡ f(Yij = 1|Xij = x), where individualij is randomly selected from

among the members of the population withXij = x. Assumption (i) allows us to expand

f(Yij = 1|Xij = x) as

πx = f(Yij = 1|Yij′ = 1, Xij = x)f(Yij′ = 1|Xij = x) (B.1)

+ f(Yij = 1|Yij′ = 0, Xij = x)f(Yij′ = 0|Xij = x),

where individualij′ is randomly selected from amongYij ’s relatives with disease status

Yij′. (In the remainder of this proof, we will assume thatj′ 6= j.) Under Assumption (vii)

about the independence of probands’ disease status and relatives’ covariates,

πx = f(Yij = 1|Yij′ = 1, Xij = x)f(Yij′ = 1) + f(Yij = 1|Yij′ = 0, Xij = x)f(Yij′ = 0),

follows from (B.1). We can rewrite the preceding equation as

πx = πx
A
π + πx

U
(1 − π), (B.2)

whereπx
A
≡ f(Yij = 1|Yij′ = 1, Xij = x) andπx

U
≡ f(Yij = 1|Yij′ = 0, Xij = x). The

parametersπx
A

andπx
U

can be defined in terms of the finite population:

πx
A

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)
∑

j′ 6=j I(Yij′ = 1)
∑F

i=1

∑Ni

j=1 I(Xij = x)
∑

j′ 6=j I(Yij′ = 1)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)(NA
i − 1)

∑F
i=1

∑Ni

j=1

(
I(Xij = x)I(Yij = 1)(NA

i − 1) + I(Xij = x)I(Yij = 0)NA
i

)

=

∑F
i=1 NAx

i (NA
i − 1)

∑F
i=1

(
Nx

i NA
i − NAx

i

) , (B.3)
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and

πx
U

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)
∑

j′ 6=j I(Yij′ = 0)
∑F

i=1

∑Ni

j=1 I(Xij = x)
∑

j′ 6=j I(Yij′ = 0)

=

∑F
i=1

∑Ni

j=1 I(Yij = 1)I(Xij = x)NU
i∑F

i=1

∑Ni

j=1

(
I(Xij = x)I(Yij = 1)NU

i + I(Xij = x)I(Yij = 0)(NU
i − 1)

)

=

∑F
i=1 NAx

i NU
i∑F

i=1

(
Nx

i NU
i − NUx

i

) (B.4)

whereNA
i =

∑Ni

j=1 I(Yij = 1); NU
i =

∑Ni

j=1 I(Yij = 0); Nx
i =

∑Ni

j=1 I(Xij = x);

NAx
i =

∑Ni

j=1 I(Yij = 1)I(Xij = x); andNUx
i =

∑Ni

j=1 I(Yij = 0)I(Xij = x).

Now, recall that

π̂x = px
A
π̂ + px

U
(1 − π̂), (B.5)

where

px
A

=

F
A∑

i∗=1

ni∗∑

j∗=2

I(Xi∗j∗ = x)I(Yi∗j∗ = 1)

F
A∑

i∗=1

ni∗∑

j∗=2

I(Xi∗j∗ = x)

and

px
U

=

F
A

+F
U∑

i∗=F
A

+1

ni∗∑

i∗=2

I(Xi∗j∗ = x)I(Yi∗j∗ = 1)

F
A

+F
U∑

i∗=F
A

+1

ni∗∑

i∗=2

I(Xi∗j∗ = x)

.

The estimator̂πx in (B.5) can be approximated by a second-order Taylor expansion
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around Êπ, Epx
U

and Epx
A
:

π̂x ≈
(
Epx

A
Eπ̂ + Epx

U
(1 − Eπ̂)

)

+ (π̂ − Eπ̂)
∂π̂x

∂π̂

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
(
px

U
− Epx

U

) ∂π̂x

∂px
U

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
(
px

A
− Epx

A

) ∂π̂x

∂px
A

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
1

2
(π̂ − Eπ̂)2 ∂2π̂x

∂π̂2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
1

2

(
px

U
− Epx

U

)2 ∂2π̂x

∂px
U

2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
1

2

(
px

A
− Epx

A

)2 ∂2π̂x

∂px
A

2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+ (π̂ − Eπ̂)
(
px

A
− Epx

A

) ∂2π̂x

∂π̂∂px
A

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+ (π̂ − Eπ̂)
(
px

U
− Epx

U

) ∂2π̂x

∂π̂∂px
U

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
(
px

U
− Epx

U

) (
px

A
− Epx

A

) ∂2π̂x

∂px
U
∂px

A

∣∣∣∣
Ebπ,Epx

U
,Epx

A

.

Taking the expectation of both sides of the above equation yields

Eπ̂x ≈
(
Epx

A
Eπ̂ + Epx

U
(1 − Eπ̂)

)
(B.6)

+
1

2
Var(π̂)

∂2π̂x

∂π̂2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
1

2
Var(px

U
)

∂2π̂x

∂px
U

2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+
1

2
Var(px

A
)

∂2π̂x

∂px
A

2

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+ Cov(π̂, px
A
)

∂2π̂x

∂π̂∂px
A

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+ Cov(π̂, px
U
)

∂2π̂x

∂π̂∂px
U

∣∣∣∣
Ebπ,Epx

U
,Epx

A

+ Cov(px
U
, px

A
)

∂2π̂x

∂px
U
∂px

A

∣∣∣∣
Ebπ,Epx

U
,Epx

A

.

We focus now on the leading term of the expectation of the Taylor expansion in (B.6):

Epx
A
Eπ̂ + Epx

U
(1−Eπ̂). We have already shown in Web Appendix A that, under conditions

(i)-(v), π̂ has a very small negative bias as an estimator forπ. To derive the bias inpx
A

and

px
U
, we introduce indicators in order to rewrite them as

px
A

=

F∑

i=1

∑

{j: j∈J∗

i
}

δAx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J∗

i
}

δAxc

ij I(Xij = x)I(Yij = 1)

F∑

i=1

∑

{j: j∈J∗

i
}

δAx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J∗

i
}

δAxc

ij I(Xij = x)

11



whereδAx
ij (or δAxc

ij ) equals1 if family memberij is sampled as part of a family ascertained

through a case proband with covariate valuex (or covariate value in the complement ofx)

and equals0 otherwise; and

px
U

=

F∑

i=1

∑

{j: j∈J∗

i
}

δUx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J∗

i
}

δUxc

ij I(Xij = x)I(Yij = 1)

F∑

i=1

∑

{j: j∈J∗

i
}

δUx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J∗

i
}

δUxc

ij I(Xij = x)

whereδUx
ij (or δUxc

ij ) equals1 if family memberij is sampled as part of a family ascertained

through a control proband with covariate valuex (or covariate value in the complement of

x) and equals0 otherwise. For the sake of brevity, we will refer to the denominators ofpx
A

andpx
U

asdx
A

anddx
U

, respectively.

To derive the bias ofpx
A

as an estimator forπx
A
, we use the same Hartley-Ross (1954)

approach employed forp
A

in Web Appendix A:

Cov
(
px

A
, dx

A

)
= E

( F∑

i=1

∑

{j: j∈J∗

i
}

δAx
ij I(Xij = x)I(Yij = 1) +

F∑

i=1

∑

{j: j∈J∗

i
}

δAxc

ij I(Xij = x)I(Yij = 1)
)

− Epx
A
· E

( F∑

i=1

∑

{j: j∈J∗

i
}

δAx
ij I(Xij = x) +

F∑

i=1

∑

{j: j∈J∗

i
}

δAxc

ij I(Xij = x)
)

=
[ F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δAx
ij |δAx

i

))
I(Xij = x)I(Yij = 1)

+
F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δAxc

ij |δAxc

i

))
I(Xij = x)I(Yij = 1)

]

− Epx
A
·
[ F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δAx
ij |δAx

i

))
I(Xij = x) +

F∑

i=1

∑

{j: j∈J∗

i
}

E
(

E
(
δAxc

ij |δAxc

i

))
I(Xij = x)

]

whereδAx
i equals1 if family i is ascertained via an affected proband with covariate valuex

and0 otherwise, and whereδAxc

i equals1 if family i is ascertained via an affected proband

with covariate value in the complement ofx and0 otherwise. Invoking Assumption (v),

12



the preceding line reduces to

Cov(px
A
, dx

A
) =

[
s

F∑

i=1

∑

{j: j∈J∗

i
}

E(δAx
i )I(Xij = x)I(Yij = 1) + s

F∑

i=1

∑

{j: j∈J∗

i
}

E(δAxc

i )I(Xij = x)I(Yij = 1)
]

− Epx
A
·
[
s

F∑

i=1

∑

{j: j∈J∗

i
}

E(δAx
i )I(Xij = x) + s

F∑

i=1

∑

{j: j∈J∗

i
}

E(δAxc

i )I(Xij = x)
]

=
[
s

F∑

i=1

E(δAx
i )(NAx

i − 1) + s

F∑

i=1

E(δAxc

i )NAx
i

]

− Epx
A
·
[
s

F∑

i=1

E(δAx
i )(Nx

i − 1) + s
F∑

i=1

E(δAxc

i )Nx
i

]

=
[
sF

A
s

A

F∑

i=1

NAx
i (NAx

i − 1) + sF
A

s
A

F∑

i=1

NAxc

i NAx
i

]

− Epx
A
·
[
sF

A
s

A

F∑

i=1

NAx
i (Nx

i − 1) + sF
A

s
A

F∑

i=1

NAxc

i Nx
i

]

whereNAxc

i =
∑Ni

j=1 I(Xij 6= x)I(Yij = 1). Note that the last expression above follows

from the second-to-last expression above under Assumption(iii) about proband selection

and Assumption (iv) about single ascertainment. The last expression above can be rewritten

as

Cov(px
A
, d

A
) = sF

A
s

A

F∑

i=1

NAx
i (NA

i − 1) − Epx
A
· sF

A
s

A

F∑

i=1

(
NA

i Nx
i − NAx

i

)
,

which, when rearranged and combined with (B.3), gives

Epx
A
− πx

A
= − Cov(px

A
, dx

A
)

sF
A

s
A

F∑

i=1

(
NA

i Nx
i − NAx

i

)

= − Cor(px
A
, dx

A
) · SD(px

A
) · CV(dx

A
). (B.7)

We can use the Hartley-Ross (1954) approach to obtain an analogous expression for the

13



bias ofpx
U

as an estimator forπx
U

:

Epx
U
− πx

U
= −

Cov(px
U
, dx

U
)

sF
U

s
U

F∑

i=1

(
NU

i Nx
i − NUx

i

)

= − Cor(px
U
, dx

U
) · SD(px

U
) · CV(dx

U
). (B.8)

We can then use the same arguments made in Web Appendix A to establish that the

right-hand sides of (B.7) and (B.8) will be negligible when Assumption (ii) holds. Thus,

under Assumption (ii),px
A

andpx
U

are approximately unbiased estimators forπx
A

andπx
U

,

respectively. Using our previous finding thatπ̂ slightly underestimateπ, along with the

fact thatpx
A

will typically exceedpx
U

for diseases that aggregate in families, we see that the

leading term in (B.6) underestimatesπx slightly. Thus, to a first-degree approximation,π̂x

is a slightly downwardly biased estimator forπx. However, the results of the simulation

experiments in Section 4 suggest that the bias introduced bythe leading term and also the

higher order terms in (B.6) is very small.�
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Web Appendix C. Standard Errors and Confidence Intervals for π̂ and π̂x

The delta method can be used to obtain approximate standard errors for π̂ andπ̂x. The

approximate standard error forπ̂ is

se(π̂) = π(1 − π) (C.1)

·

√√√√√ π
A

d
A
(1 − π

A
)


1 +

2ρ
A

d
A

F
A∑

i∗=1

(
ni∗ − 1

2

)
 +

(1 − π
U
)

d
U
π

U


1 +

2ρ
U

d
U

F
A

+F
U∑

i∗=F
A

+1

(
ni∗ − 1

2

)
,

whered
A

=
∑F

A

i∗=1

∑ni∗

j∗=2 1 andd
U

=
∑F

A
+F

U

i∗=F
A

+1

∑ni∗

j∗=2 1; ρ
A

= Cor(Yi∗j∗, Yi∗j∗′) for

i∗ = 1, . . . , F
A
, j∗ > 1, j∗′ > 1, andj∗ 6= j∗′; andρ

U
= Cor(Yi∗j∗ , Yi∗j∗′) for i∗ =

F
A

+ 1, . . . , F
A

+ F
U

, j∗ > 1, j∗′ > 1, andj∗ 6= j∗′. Note that the more the disease

aggregates in families, the largerρ
A

andρ
U

will be and therefore the larger the standard

error forπ̂ will be.

The approximate standard error forπ̂x is

se(π̂x) =
√

aΣaT , (C.2)

where

a =
[

π (1 − π)
(πx

A
−πx

U
)π2

π
U

(πx

A
−πx

U
)(1−π)2

1−π
A

]
; (C.2.a)

and

Σ =




σ1,1 0 σ1,3 0

0 σ2,2 0 σ2,4

σ1,3 0 σ3,3 0

0 σ2,4 0 σ4,4




(C.2.b)

with

σ1,1 =
πx

A
(1 − πx

A
)

dx
A


1 +

2ρx
A

dx
A

F
A∑

i∗=1

(
nx

i∗

2

)
 ,

σ2,2 =
πx

U
(1 − πx

U
)

dx
U


1 +

2ρx
U

dx
U

F
A

+F
U∑

i∗=F
A

+1

(
nx

i∗

2

)
 ,
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σ3,3 =
π

A
(1 − π

A
)

d
A


1 +

2ρ
A

d
A

F
A∑

i∗=1

(
ni∗ − 1

2

)
 ,

σ4,4 =
π

U
(1 − π

U
)

d
U


1 +

2ρ
U

d
U

F
A

+F
U∑

i∗=F
A

+1

(
ni∗ − 1

2

)
 ,

σ1,3 =
1

dx
A
d

A


σ1,1 + ρx,xc

A

F
A∑

i∗=1

nx
i∗n

xc

i∗


 ,

and

σ2,4 =
1

dx
U
d

U



σ2,2 + ρx,xc

U

F
A

+F
U∑

i∗=F
A

+1

nx
i∗n

xc

i∗



 .

Further,dx
A

=
∑F

A

i∗=1

∑ni∗

j∗=2 I(Xi∗j∗ = x) anddx
U

=
∑F

A
+F

U

i∗=F
A

+1

∑ni∗

j∗=2 I(Xi∗j∗ = x);

nx
i∗ =

∑ni∗

j∗=2 I(Xi∗j∗ = x) and nxc

i∗ =
∑ni∗

j∗=2 I(Xi∗j∗ 6= x); ρx
A

= Cor(Yi∗j∗ , Yi∗j∗′) for

i∗ = 1, . . . , F
A
, j∗ > 1, j∗′ > 1, j∗ 6= j∗′, Xi∗j∗ = Xi∗j∗′ = x; ρx

U
= Cor(Yi∗j∗ , Yi∗j∗′)

for i∗ = F
A

+ 1, . . . , F
A

+ F
U

, j∗ > 1, j∗′ > 1, j∗ 6= j∗′, Xi∗j∗ = Xi∗j∗′ = x;

ρx,xc

A
= Cor(Yi∗j∗, Yi∗j∗′) for i∗ = 1, . . . , F

A
, j∗ > 1, j∗′ > 1, j∗ 6= j∗′, Xi∗j∗ = x,

Xi∗j∗′ 6= x; andρx,xc

U
= Cor(Yi∗j∗ , Yi∗j∗′) for i∗ = F

A
+ 1, . . . , F

A
+ F

U
, j∗, j∗′ > 1,

j∗ 6= j∗′, Xi∗j∗ = x, Xi∗j∗′ 6= x.

In practice, the population parameters in Equations (C.1) and (C.2) are replaced with

estimates, which yields estimated standard errors that we refer to asŝe(π̂) andŝe(π̂x), re-

spectively. Although estimating the parametersπ, π
A
, π

U
, πx

A
, andπx

U
will not require

additional calculation because they appear in Equations (1) and (2), the parametersρ
A
, ρ

U
,

ρx
A
, ρx

U
, ρx,xc

A
, andρx,xc

U
will need to be estimated. Estimates can be calculated from the data

using Pearson correlations for all relevant pairs of relatives or instead can be based on prior

information. In situations where the data do not contain sufficient information to estimate

the correlations and there is no prior information about them, the value0.30 can be used

as an extremely conservative estimate (by comparison, the correlations are approximately

0.10 for a disease with heritability and prevalence similar to the Austrian case-control fam-

ily study). In our simulation experiments, we calculated the correlations from the data

whenever possible and otherwise set them to0.30.

The estimated quantitieŝπ andŝe(π̂) could be used to form a Wald interval forπ, which
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would take the form CI= [π̂ ± zα/2ŝe(π̂)], wherezα/2 is theα/2 quantile of the standard

normal distribution. However, for small population prevalences (π < 0.2), Wald intervals

do not achieve their nominal coverage level because of the frequent occurrence of[0, 0]

intervals for samples with no diseased relatives. Various adjusted confidence intervals with

improved coverage probabilities have been proposed for population proportions, includ-

ing the Agresti-Coull (1998) interval, which has its roots in the work of Wilson (1927).

Simply put, the Agresti-Coull interval improves the Wald interval’s coverage properties

by smoothing the proportion estimates and the estimated standard errors away from zero.

Miao and Gastwirth (2004) have performed simulations to examine the performance of

an Agresti-Coull-type interval (and various other intervals) for proportions estimated from

moderately-sized samples containing dependent clusters.Since the Agresti-Coull-type in-

terval appears to perform well in the simulations and, further, is easy to compute, we adopt

confidence intervals based on the same concept.

For the overall prevalence, the100 · (1 − α)% interval takes the form:

CI = π̃ ± zα/2

√
s̃e (C.3)

whereπ̃ and s̃e are calculated using the formulas forπ̂ andŝe(π̂), respectively, withp
A

replaced by

p̃
A

=
d

A
p

A
+ 0.5z2

α/2

d
A

+ z2
α/2

andp
U

replaced by

p̃
U

=
d

U
p

U
+ 0.5z2

α/2

d
U

+ z2
α/2

.

For the stratum-specific prevalence,πx, the100 · (1 − α)% interval takes the form:

CI = π̃x ± zα/2

√
s̃ex (C.4)

whereπ̃x and s̃ex are calculated using the formulas forπ̂x andŝe(π̂x), respectively, with

p
A

replaced bỹp
A
, p

U
replaced bỹp

U
, px

A
replaced by

p̃x
A

=
dx

A
px

A
+ 0.5z2

α/2

dx
A

+ z2
α/2
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andpx
U

replaced by

p̃x
U

=
dx

U
px

U
+ 0.5z2

α/2

dx
U

+ z2
α/2

.

Of course, if the lower (upper) bound of the confidence interval in either (C.3) or (C.4)

turns out to be less (greater) than0 (1), then it should be replaced with0 (1).
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values calculated for1000 samples drawn from four different populations with

varying degrees of disease familiality.
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