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Web Appendix A. Proof that 7 is approximately unbiased at the first-order for =

The overall population prevalence is definedras f(Y;; = 1), where individualj is
randomly selected from the population of interest. Assuomg{i) about the availability of
relatives allows us to expanflY;; = 1) as follows

™ = f(Yi;=1)
= f(Yy =1y = 1)f(Yiy =1)+ f(Yi; = 1Yy = 0) f(Yiy = 0), (A1)

where individualij’ is randomly selected from among;’s relatives with disease status
Y. (In the remainder of this proof, we will assume thag j.) We can rewrite the above
equation as

T = f(Yy =1y =Dr+ f(Yy = 1Yy =0)(1 —7),

which can be rearranged to give

7TU
= — v A2
: l—m, +7, (A2)
wherer, = f(Y;; = 1|Yi; = 0) andw, = f(Yi; = 1]Y;;; = 1). The parameters, and
7, can be defined in terms of the finite population:

— i=1 7 ] : (A3)



whereN = Zj.v;'l I(Y;; = 1), the number of affected members in famijyand
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whereNY = Zj.v:il I(Y;; = 0), the number of unaffected members in family

Now, recall that

o0 (A.5)
1 _pA _'_pU

wherep, is the proportion of case probands’ relatives who are adfict
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andp,, is the proportion of control probands’ relatives who areeti€d,

FA+FU ni*

| S IV =1)
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p —_=
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The estimatorr in (A.5) can be approximated by a second-order Taylor expans



around bp, and B, the expected values pf, andp,, respectively:
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Inserting expressions for the derivatives and then talkiegekpectation of both sides of the
above equation yields

oA Ep, _ Var(p,) (1 — Ep,) Var(p,,)Ep,
1-Ep,+Ep, (1-Ep,+Ep,)* (1-Ep,+Ep,)’
COV(pU,pA) (1 - EpA - EpU)

(1 - EpA + EpU)3

(A.6)

In order to determine the bias in the leading term on the 4ingimntd side of (A.6), we
must derive expressions for the biaggfandp,, as estimators for,, andr,, respectively.
Beginning with the former, we introduce indicators in ortierewritep, as a sum over
every member of every family in the population, except foe affected member of each
family who is arbitrarily designated as the (case) proband:

> Y -y

i=1 {j: JEJ*

> Y

i=1 {j: jeJr}

Py, =

whereJ: = {j : 1 < j < N;andr;(j) # 1}, a set containing the indices of the non-
proband members of family(after ascertainment); arzﬁ@ equalsl if family memberij is
sampled as part of a case-ascertained family and equalerwise. The indicato?{j‘- will
depend o}, the case-ascertainment indicator for famijlwhich equald if family i is as-
certained via an affected proband @natherwise (with the constraint thEF L0 =F,)

If 5;* = 0, thend;} = 0 by definition, but if5; = 1, thens;} can equal or 1.



To obtain an expression for the biagqfas an estimator far, , we employ the strategy
of Hartley and Ross (1954) for determining the bias of a ragmator. This strategy
begins by expanding the covariance betwgeland its denominator:

cop Y Y 1) = E(X Y s =n) B E(X Y )

i=1 {j: jeJr} i=1 {j: jeJr} =1 {j:jeJ;}
F
= Z > E@ =1)—Ep,- > > E@©)
i=1 {j: jeJ;} i=1 {j'jEJ*}
- Y e B Y Y E(EG
i=1 {j: jeJ;} i=1 {j:jeJr}

Under Assumption (v), the probability that relativeis sampled is a constant referred to
ass. Using this fact to replace B;}|5;") in the last line of the above equation yields

COV(pA,Z > 5) = > ) E(s6+0(1-N)1(Y;; = 1)

i=1 {j: JEJ* i=1 {]jEJZ*}
F
—Ep,- Y > E(s6+0(1-6))
i=1 {j: jeJr}
F F
= sy E@Y) Y IYy=1-Ep,-sy E@EY) Y1
=1 {7 jeJ}} i=1 {7rjed;}
F
= s> E@E)(N! —1)—Ep,-s)> E@E)N, 1)
i=1 i=1
F

where the third line follows becausg does not include one affected member of family

who is designated as the case proband; and where the fouetifioliows because, under

Assumption (iii) about proband selection and Assumptiohé(bout single ascertainment,
E(62) can be rewritten a8/ F, s, wheres, = 1/ 3.1, N/, the sampling fraction for
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case probands. The last line above can be rearranged to give

SN - ) COV(pAaZ >, )

i= i=1 {j:jeJ!}
Ep, — Fl =—

> ONAN - 1) sF, SAZ NA(N; —

i=1 =1

Since the second term on the lefthand side of the above equatjustr, as written in
(A.3), the bias op, can be written as

Cor<pA,Z > s )-SD(pQ-SD(i > 53)

=1 {j: jeJ;} =1 {j:jeJ;}

I @A

sF,s, ZNZ-A(Ni -
i=1

Since the denominator on the righthand side of the abovetieguaguals the expectation
of 32121 X5 jesr) O We can rewrite (A.7) as

Ep, — 7, :—C0r<pA,Z 3 5)~SD(pA)-CV<i 3 5;;‘.), (A.8)

=1 {J JEJ* =1 {]jEJl*}

where C(Y1 > jeart d;3), the coefficient of variation, is defined as the ratio of the
standard deviation o, 3" ;. ;. -, 0/ tothe mean ob>/", 37, vy 071,

We examine the magnitude of each of the three multiplicamd®e righthand side of
(A.8). First, SOp, ) must be less thai5 because , is a proportion. Second, it is difficult
(if not impossible) to construct a population where @Z 1 E{] jers) 6A> is larger than
2, as would be expected for a quantity that is effectively tma of binary variables (albeit
non-identical, non-independent ones). Third, under Aggtion (ii), which states that fam-

ily size and disease status are uncorrelated, (@or> D ese) 5;;‘.) is negligible.

This is true because Assumption (ii) ensures that the agesag of the case-ascertained
families included in the study will have a negligible coatbn with the proportion of the
relatives in those families who have the disease. Puttiagethree facts together, we see



that the bias op , is negligible when Assumption (ii) holds.

To illustrate the importance of Assumption (i) in guaramig thatp, is approximately
unbiased forr,, we examine the bias ¢f, in two fictional populations. The first is the
same population used in the simulation experiments in @edtj where the lifetime preva-
lence of disease was setltb.5% for females from all families an8l.9% for males from all
families. The second is a population created in an identasdlion, except that the preva-
lence of disease was set16.5% for females and.9% for males from families with three
or fewer members, and t©5% for females an®.9% for males from families with four or
more members. Note that the overall prevalence of diseasguial in both populations,
but in the second population, a disproportionately largaloer of the diseased individuals
belong to small families. For each population, we sampléd0 datasets, each consisting
of 64 case probandsF{, = 64) and all of their relativess( = 1). We calculate¢, and
S > jeur) d;; for each dataset and then used the resulting values to ¢stihesthree
multiplicands in (A.8) for that population. Web Table 1 prats the values of the three mul-
tiplicands in the two populations, as well as the biag pin percentage terms. The middle

column of Web Table 1 reveals that Gar,, S0 Do jert) 6;;‘-) and the percentage bias

of p, are negligible in the first population, where Assumptioh ifiolds. Comparing the
middle column to the right-most column in Web Table 1 revéladd the percentage bias of
p, is approximatelyl 00 times larger for the second population, where Assumptipddies

not hold. This increase in bias is due to the larger value 0#(@59, > Do ety 6;;‘.) :

We can use the approach employed above to obtain an analegptession for the
bias ofp, as an estimator for,,

F F
Ep, —m, = —C0r<pU,Z > 55)~SD(pU)-CV(Z > 65 (A9)

i=1 {j: jeJs} i=1 {j: jeJ;}

whereég equalsl if relative 75 is sampled as part of a control-ascertained family and
equals0O otherwise. Since the same arguments made for the multiplgcan (A.8) also
apply to the multiplicands in (A.9), we see that the biagpofwill be negligible when
Assumption (ii) holds. For both populations described @&)®Web Table 2 presents values
of the three multiplicands in (A.9) and the percentage bfas, 0 calculated fromt, 000
datasets containing, = 58 control probands and all of their relatives= 1). The bias of
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Web Table 1
Components of the bias of p, when Assumption (ii) does and does not hold

Term Value
(for F, =64 ands = 1)

Population 1 Population 2
Cor(N;, NA/N;) ~ 0 CornN;, NA/N;) ~ —0.19

SD(p,) 0.033318 0.038691
CV(Z L Y ey 0 0.058140 0.054310
Percentage bias of, ' -0.0017% 0.173%

T Percentage bias ¢f, equalsl00 - (Ep, — 7,)/m,, wherer, ~ 0.16; and where

EpA—WA:COI(pA,Z d o ) SD(p,) - cv(i > 5;;‘.).

=1 {J JEJ* i=1 {‘j_]GJZ*}

p,, 1S negligible for the first population, but is again approately 100 times larger for the
second population because the correlation betweeand its denominator is larger. Thus,
the bias ofp,, is negligible when Assumption (ii) holds.

The fact thap, andp, have negligible bias under the assumptions enumeratectin Se
tion 2 implies that the bias in the leading term of (A.6) is lngible. Thus, to a first-degree
approximation7 is an unbiased estimator fat

We now turn to the bias introduced by the second-order temnf&.6). First, note that
the final second-order term in (A.6) introduces no bias beedlo\p,,p,) = 0. Next,
note that the numerators of the first two second-order tem{é.6) can be re-written as
|Epy (1= Ep,)/ S5 (nie = 1)] (1=Bp,) and | Ep, (1 = Ep,)/ S, (e = 1)| Bp,,
respectively. We can ignore the summations in the denomigsaif these terms because
they are approximately equal under assumption (ii) thaaie status is uncorrelated with
family size and under the assumption tihgt~ F,,. Now, the only difference between the



Web Table 2
Components of the bias of p,, when Assumption (ii) does and does not hold

Term Value
(for F, = 58 ands = 1)

Population 1 Population 2
Cor(N;, NA/N;) ~ 0 Cor(N;, NA/N;) ~ —0.19

Cor(pm DD DI 55) -0.008865 -0.098235
SD(p,) 0.025768 0.020937

CV(XE, Y sery 09) 0.061170 0.060793
Percentage bias of, | 0.0018% 0.2281%

T Percentage bias @f, equalsl00 - (Ep, — 7, )/m,, wherer, ~ 0.055; and where

Ep, —m, = Cor<pU,Z > 5) SD(p,,) - cv(i > 55).

=1 {J JEJ* i=1 {_]_]GJZ*}

two terms is thatl — Ep,)Ep,, is multiplied by (1 — Ep,,) in the first term and byp,

in the second term. Thus, if we assume thdll — p,,) > Ep,, then the first second-order
term, which has a negative sign in front of it, is larger in miaigde than the second second-
order term, which has a positive sign in front of it. As a rédihle bias introduced through
the second-order terms in (A.6) will be non-positiveFif{1 — p,) > Ep, andF, = F,,.
However, the results of the simulation experiments in $eacti, wherer underestimates
7 by only a very small amount, suggest that the bias introdtizexigh the second- (and
higher-) order terms is very small in practidi.



Web Appendix B. Proof that 7* is only slightly biased at the first-order for =*

We definer” = f(Y;; = 1|X;; = =), where individual;j is randomly selected from
among the members of the population with; = . Assumption (i) allows us to expand
f(Yi; =1|X;; =x) as

= f(Yz‘j = 1|Yz'j' =1,X; = x)f(Yz‘j’ = 1|Xij = x) (B.1)
+ (Vi = 1Yy = 0, X35 = 2) f(Yiyr = 01Xy; = ),

where individualij’ is randomly selected from among;’s relatives with disease status
Y;;. (In the remainder of this proof, we will assume thiatt j.) Under Assumption (vii)
about the independence of probands’ disease status atidaglaovariates,

xT

™ = [V =1V =1, X =) f(Yyy = 1) + f(Yy; = 1Yy = 0, X5 = 2) f(Yiyr = 0),
follows from (B.1). We can rewrite the preceding equation as

™ = mir+a(l—mn), (B.2)
Whereﬂ‘j = f()/” = ]'D/Z]/ = 1,X2'j = ZE’) andﬂ'U = ()/Z] = ]'D/Z]/ = O,Xij = ZE’) The
parameters? andw can be defined in terms of the finite population:

N S Y (Y = DXy =) 3, 1 (Vi = 1)
S o (X =) 3, (Vi = 1)
Sl Y (Y = DX, = 2) (N = 1)
S i (X = )Yy = D(NA = 1) +1(Xy; = 2)I(Yy; = 0)N)
S NN 1)
Y (NPNA = Nfe)!

(B.3)



. S M Yy = DX = 2) 3, 1(Viy = 0)

(X =2) 305, 1(Yiy = 0)
Soisy S 1(Yyy = DX, = 2)NY

Soimy S (X = @)1 (Yiy = DN +1(X5; = 2)I(Y;; = 0)(NY — 1))
S NN

= = ! B.4
S (NFNY — NV -

S
0]
ﬂ;dj
1\
I s

where N = 37T 1(Y;; = 1); N = Y00 1Yy = 0); NP = S0 1(Xy = a);

3 K3

N =300 (Vs = DXy = @) and NP7 = 3505 1(Yy = 0)1(Xy; = ).

Now, recall that
Tt =p"T+p (1l —7), (B.5)

where

and

Z Z Xjwjo = ) (Yinje = 1)

=F,+1i*=2
p =
U FA+FU TLZ-*

Y Xy =w

=, +10%=2

The estimatofr® in (B.5) can be approximated by a second-order Taylor expans
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around &, Ep? and B :

7™ ~ (Ep"Em+Ep’(1—En))

an” - Ly 0" . 2y O
+(7T_E7T)a +(pU_EpU) z +(pA_EpA)
& E7 Ep? Ep? Py Ex.Ep? Ep? P Ex.Epy, Bp7,

1, . 07" 1 o*m”

+5 B 55 o —E) 5
T e Epr Epn = N

1, . 2 0P

+§ (pA B EpA) opr2
Eﬁ,Esz,Epz
O*7" o’m”
+ (7 —ER) (p° —Ep") == + (7 — En) (p — Ep?) -
4 4 aﬂ-&pA E7 Ep? Ep? 87rapU E7 Ep?, Ep%
+ (pU B EpU) (pA B EpA) op* Op*
v A E%,Ep%’],EpZ
Taking the expectation of both sides of the above equatieldyi
Ex* ~ (Ep’Ex +Epl(1-E7R)) (B.6)
1 927e 1 2qe 1 T
+ Var(m) —- + SVar(p;) o + SVar(ph) o
2 or? EREps Bt 2 oy ER Ep? Ep” 2 7 opy? ER.Ep? Ep?,
0*r® o7

+ Cov(T, pi) + CoVv(T, pi)

= AT = AT
omops, ER Ep?, Ep?, ompy, ER,Ep? Ep®
0%
+ COV(pf],pi) I O
p pA Ex Epz Ep

We focus now on the leading term of the expectation of the dragkpansion in (B.6):
Ep’ Ex + Ep? (1 — E7). We have already shown in Web Appendix A that, under conasitio
()-(v), 7 has a very small negative bias as an estimatorrforo derive the bias ip% and
pr, we introduce indicators in order to rewrite them as

Z Y SXy =Yy =1+ Y 65X = o)l(Yi = 1)

. HuiEn =1 e
p, = F
i=1 {j: jeJ; } i=1 {j: jeJ;}

11



whereé;;‘.m (or 63“) equalsl if family memberij is sampled as part of a family ascertained
through a case proband with covariate valu@r covariate value in the complementgf
and equal$ otherwise; and

Z > om(X; = +Z > 0TI Xy = a)l(Vy = 1)

P =1 {s: JEJ*} i= 1{J JeJr}

To=
)P DIRTUETEENS Sl Sl TR
=1 {j: jeJ;} i=1 {j: jeJ;}

whered;;* (or 6;;*") equalsl if family memberij is sampled as part of a family ascertained
through a control proband with covariate valuéor covariate value in the complement of
r) and equal$ otherwise. For the sake of brevity, we will refer to the denuators ofp”,
andp? asd’, anddy; , respectively.

To derive the bias of*, as an estimator for’, we use the same Hartley-Ross (1954)
approach employed for, in Web Appendix A:

Cov(p”,d" <Z Z 5Ax| = +Z Z 5’4‘0 x)I(Yijzl)>

i=1 {j: jeJ}} i=1 {j: jeJ;}
— Ep” - E(Z Z 5Ax| = +Z Z 5’45” x))
i=1 {j: jeJ;} i=1 {j: jeJ;}
F
[Z (B (310/) )1 (X = )1 (Y, = 1)

J7}

Z > E(E L 15 )X = o)l = 1)

i=1 {j:jeJ’}

— B [Z > E(E(619) 10X, +Z S E(EEE15) )10, = 0)]

i=1 {j: jeJr} =1 {j: jeJr}

wheres/** equalsl if family 7 is ascertained via an affected proband with covariate value
ando otherwise, and wher&'*" equalsl if family i is ascertained via an affected proband
with covariate value in the complement.ofand0 otherwise. Invoking Assumption (v),

12



the preceding line reduces to

Cov(p®,d®) = [SZ S OEENX =l (V=) s> Y EEIX, = a)l(Y = 1)

i=1 {j: jeJr} i=1 {j:jeJ;}
B[ Y BRI 0 Y I, = o)
i=1 {j: jeJ}} i=1 {j: jeJ}}

F

— DB - s Y BN

F

R [SZ @G )(NF —1) +5Y E(ég“xc)N;‘}
p i=1 z:lF

- [s Fos, Y NM(NM 1) 4 5F, s,y NZAICN;““’C}

i=1 =1
F F
S [SFA s, S NN 1)+ sF s, S N;“CN;C]

i=1 i=1

where NA** = Zj.v;l 1(X;; # x)I(Y;; = 1). Note that the last expression above follows
from the second-to-last expression above under Assumfitipabout proband selection
and Assumption (iv) about single ascertainment. The lgstession above can be rewritten
as

F
Covp®,d,) = sF,s, Z NA*(N —Ep’ -sF,s, > (N/N/ - N),

=1
which, when rearranged and combined with (B.3), gives

Cov(pj , dj)

Ep! — 7, = — =
sF,s,y  (N/Ny = Nj)

i=1

= — Cor(p’,d") - SD(p?) - CV(d"). (B.7)

A TA

We can use the Hartley-Ross (1954) approach to obtain angmad expression for the

13



bias ofp? as an estimator for?:

xT

N Cov(p®, d*)
Ep;, — 7, = — - g U
sF, s,y (N/Nj—N*)
=1

= — Cor(p®,d") - SD(p") - CV(d"). (B.8)

v’ U

We can then use the same arguments made in Web Appendix Adlisktthat the
right-hand sides of (B.7) and (B.8) will be negligible whessiimption (ii) holds. Thus,
under Assumption (ii)p% andp? are approximately unbiased estimators #grandr’,
respectively. Using our previous finding thatslightly underestimater, along with the
fact thatp? will typically exceedp?, for diseases that aggregate in families, we see that the
leading term in (B.6) underestimates slightly. Thus, to a first-degree approximatiai,
is a slightly downwardly biased estimator foy. However, the results of the simulation
experiments in Section 4 suggest that the bias introducetdeblieading term and also the
higher order terms in (B.6) is very small
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Web Appendix C. Standard Errors and Confidence Intervals for7 and 7*

The delta method can be used to obtain approximate standard &r7 andz7®. The
approximate standard error foris

sgr) = w(l—mn) (C.1)
FA FA+FU
T, 20, (nl* — 1) (1—m,) 2p, <nZ — 1)
1+ + 1+ ,
dA(]‘ - 7TA) dA ZZ::l 2 dU7TU dU i*:zF;+1 2

whered, = Y;4, Y0, 1 andd, = S, Y0, 1 p, = Cor(Yiee, Yieyer) for

it =1,...,F,, j5 > 1,77 > 1,andj* # j*; andp, = Cor(Y;-j-, Y;~) for i* =
F,.+1,....,F, +F, 75> 1,757 > 1,andj* # j*. Note that the more the disease
aggregates in families, the larger andp, will be and therefore the larger the standard
error form will be.

The approximate standard error fof is

sg7") = VaXa', (C.2)

where
7% —x® g2 P )2
a= |7 (1-m) (A,TUU) 7 157321 ~ (C.2.9)
and _ -
01,1 0 01,3 0
0 0
. 2.2 024 (C.2.b)
01,3 0 03,3 0
0 0924 0 04.4
with

. . Fu+F, N
T (1—7%) . AZU n.
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A A x—=1
F,+F,
A U
7, (1 —m,) 20, ng —1
044 = di 1+ d— g 9 )
v U *=F,+1
1 A
o T,x° 2 x x€
0-173 — dlEd 0-171 + pA n’l*n’l* )
amA i*=1
and
1 Fj +Fy
T,z x , xc
094 = 7 022+ P, g T T
vu i*=F,+1

F+F T ;%

Further,d’, = Zi’; Yy /(X = ) @ndd? = 340 ED D (X je = 2);

nj. = Z?ilgl(Xi*j* =x) andn¥ = Z N(Xije #2); p% = CONYeje, Yiejur) foOr
=1, FL 5> L5 > 1, 50 # Y X = X = x5 pf = CONYije, Yijor)
fori* = F, +1,....F, + F,, 5* > 1, j* > 1, j* £ j Xpeje = Xpjor = a;
p= = CONYjuje, Yiejur) fOr i = 1, F,, j* > 1, j* > 1, j* # j*, Xpjo = 1,
Xiejor # x; and po** = Cor(Y;j-, V- ]w) fori* = F, +1,....F, + F,, j*. 7% > 1,

J*F G Xieje =, Xiwjor # .

In practice, the population parameters in Equations (Ohtl) (&€.2) are replaced with
estimates, which yields estimated standard errors thatfee to assg7) andsg7*), re-
spectively. Although estimating the parametetsr,, 7, 7%, and=’ will not require
additional calculation because they appear in Equatiorand (2), the parameters, p,,,
0%, 05 pivxc, andpgvx“ will need to be estimated. Estimates can be calculated fnemata
using Pearson correlations for all relevant pairs of redatior instead can be based on prior
information. In situations where the data do not contaifigeht information to estimate
the correlations and there is no prior information aboutrththe value).30 can be used
as an extremely conservative estimate (by comparison,divelations are approximately
0.10 for a disease with heritability and prevalence similar ®Austrian case-control fam-
ily study). In our simulation experiments, we calculated ttorrelations from the data
whenever possible and otherwise set ther. 30.

The estimated quantitiésandsg7) could be used to form a Wald interval for which

16



would take the form Cl= [T £ z,/,5¢(7)], wherez, , is thea/2 quantile of the standard
normal distribution. However, for small population premates £ < 0.2), Wald intervals
do not achieve their nominal coverage level because of #gguént occurrence @6, 0]
intervals for samples with no diseased relatives. Variajssded confidence intervals with
improved coverage probabilities have been proposed foulptipn proportions, includ-
ing the Agresti-Coull (1998) interval, which has its rootsthe work of Wilson (1927).
Simply put, the Agresti-Coull interval improves the Waldarval's coverage properties
by smoothing the proportion estimates and the estimatediatd errors away from zero.
Miao and Gastwirth (2004) have performed simulations taréra the performance of
an Agresti-Coull-type interval (and various other intdsydor proportions estimated from
moderately-sized samples containing dependent clusta@rse the Agresti-Coull-type in-
terval appears to perform well in the simulations and, fertfs easy to compute, we adopt
confidence intervals based on the same concept.

For the overall prevalence, thé0 - (1 — a)% interval takes the form:
Cl =7 4 20V 5 (C.3)

wherer and se are calculated using the formulas forand Sg7), respectively, withp,

replaced by )
dyp, +0.525

d, +22/2

b=

andp,, replaced by

d,p, + 0.523/2

o= dU + 23/2

For the stratum-specific prevaleneég, the100 - (1 — «)% interval takes the form:
Cl=7" % 2,0V 5€" (C.4)

where7® andse” are calculated using the formulas fot andSg7*), respectively, with
p, replaced by ,, p,, replaced by, , p* replaced by

G 2
5 dipt + 0-5%/2
= - 5
! dA + Za/2

17



andp; replaced by ] 15
oDy +0.52; )5
L=t
v dr + Za/

Of course, if the lower (upper) bound of the confidence irgkirveither (C.3) or (C.4)
turns out to be less (greater) th@ul), then it should be replaced with(1).
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Boxplots of Male i pu”, and pa* for 1000 Samples from Simulated Populations with Different Familial Aggregations

(Only Assumption iv. Violated)
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Web Figure 1: Boxplots of maler®, p?, andp?, values calculated for000 samples drawn from four different populations with

varying degrees of disease familiality.
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Boxplots of Female i pu”, and pa* for 1000 Samples from Simulated Populations with Different Familial Aggregations

(Only Assumption iv. Violated)
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with varying degrees of disease familiality.




