Supplementary Information

GRIM-19 and p16^{INK4a} synergistically regulate cell cycle progression and E2F1-responsive gene expression Peng Sun[‡], Shreeram C. Nallar^{§§}, Abhijit Raha^{§§}, Sudhakar Kalakonda^{§§}, Chidambaram N. Velalar, Sekhar P. Reddy⁵, Dhananjaya V. Kalvakolanu^{*[‡]§§}

*Department of Microbiology & Immunology, [‡]Molecular and Cellular Cancer Biology Graduate Program, ^{§§}Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201. [§] Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205

Fig.S1: Aminoacid sequence of human INK4A. Locations of INK4-related tryptic peptides detected by MALTI-TOF analysis. MEPAAGSSMEPSADWLATAAARGRVEEVRALLEAGALPNAPNSYGRRPIQVMMMGSARVAELLLLHGAEPNCADP ATLTRPVHDAAREGFLDTLVVLHRAGARLDVRDAWGRLPVDLAEELGHRDVARYLRAAAGGTRGSNHARIDAAEG PSDIPD

Immunofluorescence microscopy: Methanol-fixed HeLa cells were permeabilized and incubated with the indicated primary antibodies. For detecting GRIM-19 (Green channel) and p16 (Red channel), FITC-conjugated anti-mouse IgG and Texas red-conjugated anti-rabbit IgG were used, respectively. Hoechst was used to visualize nuclei (Blue channel). Images were captured using a fluorescence microscope (Olympus BX-FLA, Osaka) fitted with digital camera (QICAM) and processed by Q-capture pro 5.1 software (Q-Imaging corporation). Co-localization of p16 and GRIM-19 can be seen in the merged image. Scale Bar = 15 μ m

Immunofluorescence microscopy: Methanol-fixed cells were permeabilized and incubated with GRIM-19-specific monoclonal antibody. FITC-tagged secondary antibody was used to detect GRIM-19 (Green channel). For detecting mitochondria (Red channel), cells were incubated with Mito-tracker (Invitrogen) for 15 min followed by methanol fixation, permeabilization and incubation with the indicated antibodies. Hoechst was used to visualize nuclei (Blue channel). Images were captured using a fluorescence microscope (Olympus BX-FLA, Osaka) fitted with digital camera (QICAM) and processed by Q-capture pro 5.1 software (Q-Imaging corporation). For designations see Suppl Table 1A

Immunofluorescence microscopy: Methanol-fixed cells were permeabilized and incubated with p16-specific monoclonal antibody. For detecting p16 (Green channel), FITC-conjugated anti-mouse IgG was used. Hoechst was used to visualize nuclei (Blue channel). Images were captured using a fluorescence microscope (Olympus BX-FLA, Osaka) fitted with digital camera (QICAM) and processed by Q-capture pro 5.1 software (Q-Imaging corporation). For designations see Suppl Table 1C

Exogenous *GRIM19* and *CDKN2A* (p16) messages transcribe equivalently in MCF-7 cell line pairs. A) Schematic representation to detect transgene-derived mRNA. B) Relative abundance of transgene-derived *CDKN2A* and *GRIM19* mRNA as measured by real-time PCR.

Co-expression of GRIM-19 and p16 exert synergistic inhibitory effect on G1/S progression. Double thymidine-blocked MCF-7 cell line pairs were released and cell population analyzed by FACS at 0h and 4h. Cells in G1 (Pink), S (Green) and G2-M (Blue) phase are shown as shown as a stack for each cell line. Raw data obtained at 0h and 4h for each sample was used to calculate cells exiting G1 and represented as % change compared to 0h.

Construct	Sequence $(5' \rightarrow 3')$		
ID	Sense oligo	Anti-sense oligo	
WT	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGGTG		
K5N	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAACGTGAAG		
Q8A	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGGTGAAGGCGGACATG		
D9A	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGGTGAAGCAGGCGATGCC	CAG <u>GGATCC</u> CGTGTACCACATGAAGCCG	
M10A	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGGTGAAGCAGGACGCGCCTCC		
P11A	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGGTGAAGCAGGACATGGCGCCGCC		
Δ1-17	GCG <u>GAATTC</u> GCCACCATGCCCATCGACTACAAGCGGAAC		
K99R*	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	GGGCACGTCTCGCATGATGATGGC	
	GCCATCATGCGAGACGTGCCC	GCG <u>GGTACC</u> CGTGTACCACATGAAGCCG	
V105D*	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	AGACTCCCCCACTCGCCAGTC	
KIU5K*	GACTGGCGAGTGGGGGGGGGGTCT	GCG <u>GGTACC</u> CGTGTACCACATGAAGCCG	
AHLH*	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	CACGGATCCCCACTTCATTATGCTCCA	
	CTTGGATCCGCGCTGTTGCCACTGTTA	GCG <u>GGTACC</u> CGTGTACCACATGAAGCCG	
ΔABD*	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	TCTGGATCCCTTCATGATGATGGCCTC	
	TTATTGGATCCGTGCCCCCTTGATC	GCG <u>GGTACC</u> CGTGTACCACATGAAGCCG	
∆TPD*	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	TTAGGATCCAGACTCCCCACCTT	
	TTATAGGATCCGAGCTGTACGGGCTG	GCG <u>GGTACC</u> CGTGTACCACATGAAGCCG	
ΔSH3	GCG <u>GAATTC</u> GCCACCATGGCGGCGTCAAAGG	TTATT <u>GGTACC</u> GATCAAGGGGGGGCAC	

Suupl Table 1A: Primers employed in PCR for generating point mutations and deletions in human GRIM19 ORF

Restriction enzyme sites are underlined in the primer sequence. * cloned using overlap-extension PCR.

Suppl Table 1B: Primers employed in PCR for generating wild-type expression constructs of murine *Cdkn2* family and human CDKN2A.

Construct ID	Sequence $(5' \rightarrow 3')$		
	Sense oligo	Anti-sense oligo	
Cdkn2a	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	CGT <u>GAATTC</u> GCTCTGCTCTTGGGATTG	
Cdkn2c	TACTGT <u>GCTAGC</u> GCCGAGCCTTGGGGGGAAC	CGT <u>GAATTC</u> CTGCAGGCTTGTGGCTCC	
Cdkn2d	TACTGT <u>GCTAGC</u> CTTCTGGAAGAAGTCTGC	CGT <u>GAATTC</u> CATTGGGATCATCATGTG	
CDKN2A	TACTGT <u>GCTAGC</u> GAGCCGGCGGGGGGGGGGGGGGGGGGGGGGGGG	ATG <u>GGATCC</u> TCAATCGGGGATGTCTGAGGG	

Restriction enzyme sites are underlined in the primer sequence.

Construct ID	Sequence $(5' \rightarrow 3')$		
Construct ID	Sense oligo	Anti-sense oligo	
<i>Cdkn2a</i> ΔAR1*	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	CCGCCGAGCGCGCCAGTCTGTCTGC	
	CGTGCGGGCGCGCCTGGAAGCCGG	GAA <u>GGATCC</u> GCTCTGCTCTTGGGATTG	
Cdkn2a ΔAR2*	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	AAAGAATTCGGGGGCGTTGGGCG	
	CCCGAATTCTCACGTAGCAGC	GAA <u>GGATCC</u> GCTCTGCTCTTGGGATTG	
Cdkn2a ΔAR3*	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	GCGTGTCTAGAAAGCCTTCCCGCGC	
	GCTCGTCTAGATGTGCGCGATGCC	GAA <u>GGATCC</u> GCTCTGCTCTTGGGATTG	
<i>Cdkn2a</i> ΔAR4*	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	GCACCCCGCGGAACGCAAATATCGC	
	GTGTACCGCGGCCAACGTCGCCC	GAA <u>GGATCC</u> GCTCTGCTCTTGGGATTG	
Cdkn2a ΔC21	TACTGT <u>GCTAGC</u> GAGTCCGCTGCAGACAGA	GAA <u>GGATCC</u> CCCGTCGGTCTGGG	
<i>CDKN2A</i> G139D*	GGCACCAGAGACAGTAACCATGC	ATG <u>GGATCC</u> TCAATCGGGGATGTCTGAGGG	
	TACTGT <u>GCTAGC</u> GAGCCGGCGGCGGGGAGC	GCATGGTTACTGTCTCTGGTGCC	
CDKN2A S140C*	GCACCAGAGGCTGTAACCATGCC	ATG <u>GGATCC</u> TCAATCGGGGATGTCTGAGGG	
	TACTGT <u>GCTAGC</u> GAGCCGGCGGCGGGGAGC	GGCATGGTTACAGCCTCTGGTGC	
<i>CDKN2A</i> H142R*	GGCAGTAACCGTGCCCGCATAG	ATG <u>GGATCC</u> TCAATCGGGGATGTCTGAGGG	
	TACTGT <u>GCTAGC</u> GAGCCGGCGGCGGGGAGC	CTATGCGGGCACGGTTACTGCC	
<i>CDKN2A</i> A147G*	CGCATAGATGGCGCGGAAGG	ATG <u>GGATCC</u> TCAATCGGGGATGTCTGAGGG	
	TACTGT <u>GCTAGC</u> GAGCCGGCGGCGGGGAGC	CCTTCCGCGCCATCTATGCG	

Suppl. Table 1C: Primers employed in PCR for generating mutant Cdkn2a/CDKN2A constructs.

Restriction enzyme sites are underlined in the primer sequence. * cloned using overlap-extension PCR.

Transarint ID	Sequence $(5' \rightarrow 3')$		
Transcript ID	Sense oligo	Anti-sense oligo	
МСМ4	GACGAAGCCTATGACAGGCG	TAGCATGGGCTTCTGCTAAGCG	
DHFR	ACTGAACAACCAGAATTAGCA	TCAGAGAGAACACCTGGGTAT	
МҮВВ	CGGAGCCCCATCAAGAAAGT	AGGTGTCGTGAAGTGGCTTC	
TK1	AGACACTCGCTACAGCAGC	CTCTGGAAGGTCCCATCCAGT	
GRIM19 (native)	TGCCACTGTTACAGGCAGAAACC	TGAAGCCGTGGCTGGCATGGAGAGC	
GRIM19 (transgene)	TGCCACTGTTACAGGCAGAAACC	TTCTGAGATGAGTTTTTGTTCGGGGCC*	
CDKN2A (transgene)	GTCAGGGGCGCGCCTGGATGTGCGC	CCAGGTGAATATCAAATCCTCCTCG*	

Suppl. Table 2: Primer employed in real-time PCR for evaluating expression levels in human cell lines.

* Expression vector-borne sequence present in the transcript.