
1 SUPPLEMENT
1.1 Proof of Lemma 2.8
First, we give intuition for the recurrence in Lemma 2.8,
and then we sketch a proof of its correctness. We note that
the proof of correctness for Lemma 2.8 mirrors, in many
ways, the proof of correctness of Theorem 1 in (Kahn et al.,
2010) that gives a recurrence for computing a minimum-length
feasible generator for a source string X and a target string Y ;
here, instead, we want to count the total number of feasible
generators ΨX that have a fixed length k.

We state a lemma that we proved in (Kahn et al., 2010) that
describes an important structural property of the subsequences
comprising a feasible generator ΨX .

Lemma 1.1 (Non-overlapping Property, (Kahn et al.,
2010)). Consider a source string X and a sequence of
duplicate operations of the form δX(si, ti, pi) that generates
the final target string Y from an initially empty target string.
The substrings Xsi,ti

of X that are duplicated during the
construction of Y appear as mutually non-overlapping (Def.
2.3) subsequences of Y .

The recurrence for computing N
(k)
X (Y) is efficient

because the non-overlapping property allows us to subdivide
the characters of the target string Y into independent
subproblems. For example, if we are considering the set of
feasible generators that contain some subsequence S of Y ,
SS = {ΨX : S ∈ ΨX}, then for every ΨX ∈ SS , all other
elements of ΨX cannot overlap the characters inS. Therefore,
the substrings of Y in between successive characters of S
define subproblems that can be computed independently.

Note that every character of Y must appear at least once in
X . In order to count the number of feasible generators ΨX

with length k > 1, we must consider all subsequences of Y
that could have been generated by a single duplicate operation
and the number of ways we could combine exactly k of those
subsequences to form a feasible generator ΨX . The recurrence
is based on the observation that in any feasible generator,
ΨX , y1 must be the first (i.e. leftmost) character in some
element of ΨX . There are then two cases to consider: either
(1) y1 was the last (or rightmost) character in the substring
that was duplicated from X to generate y1, or (2) y1 was not
the last character in the substring that was duplicated from X
to generate y1.

Proof. (sketch)
The recurrence defines two quantities: N

(k)
X (Y) and

N
(k)
X (Y, i). We shall show, by induction, on |Y | and k

that for a pair of strings, X and Y , the value N (k)
X (Y) is

equal to the number of length-k feasible generators ΨX , and
that N (k)

X (Y, i) is equal to the number of length-k feasible
generators ΨX under the restriction that the character y1 is
copied from index i in X , i.e. xi generates y1. N (k)

X (Y) is

computed by summing over all characters xi of X that can
generate y1..

As described above, we must consider two possibilities in
order to compute N (k)

X (Y). In every feasible generator ΨX ,
the character y1 must appear in some subsequence Sy1 ∈
ΨX of Y that contains y1 as a leftmost character and that
corresponds to a substring of X that was copied conjointly to
produce the subsequence Sy1 . Either:

• Case 1: y1 was the last (or rightmost) character in the
substring ofX that was copied to produce y1, i.e. Sy1 has
length 1, or

• Case 2: xi+1 is also copied in the same duplicate operation
asxi, possibly along with other characters as well, i.e. Sy1

has length greater than 1.

For case one, number of length-k feasible generators ΨX

is equal to the number of length-(k − 1) feasible generators
ΨX(Y2,|Y |) for source string X and target string Y2,|Y | (the
suffix of Y); the union of the subsequence corresponding
to the single character y1 and any length-(k − 1) feasible
generator ΨX(Y2,|Y |) results in a length-k feasible generator
ΨX . For case two, Lemma 1.1 implies that the total number
of length-k feasible generators ΨX is the product of two
independent subproblems. Specifically, for each j > 1 such
that xi+1 = yj and for each l ∈ {1, 2, . . . , k}, we compute:
(i) number of length-l feasible generators for source string
X and target string Y2,j−1, namely N

(l)
X (Y2,j−1), and (ii)

the number of length-(k − l) feasible generators for source
string X and target string y1Yj,|Y | that include an element
Sy1 in which y1 is generated by xi. To compute the latter,
recall that all relevant feasible generators (corresponding to
case 2 above) ΨX must contain an element that corresponds
to a duplicate operation in which xi and xi+1 are copied
conjointly. The number of relevant length-(k − l) feasible
generators for source string X and target string y1Yj,|Y | that
contain an element Sy1 that corresponds to a substring of X
starting at xi and also containing xi+1 is equal to the number
of relevant length-(k− l) feasible generators for source string
X and target string Yj,|Y | that contain some element Syj that
corresponds to a substring of X starting at xi+1, namely
N

(k−1)
X (Yj,|Y |, i+ 1).

1.2 The Score Function, σ

We define the score of a generatorω(ΨX) to be some function
that reflects the biological plausibility of the event of choosing
a particular generator ΨX from the space of all generators and
then duplicating the substrings of ΨX in some duplication
scenario. When inferring a sequence of duplicate operations
that can account for the construction of a particular target
string Y by copying substrings of a particular source string
X , a reasonable assumption is that the “simplest” explanation
is the best. We consider the most-parsimonious duplication
scenario–that is, the one requiring the fewest number of

1

Clade

Fig.1.
T

he
m

axim
um

parsim
ony

D
A

G
fora

setof391
duplication

blocks
in

the
hum

an
genom

e.T
he

nodes
representduplication

blocks.E
dges

indicate
evolutionary

relations;an
edge

is
directed

from
a

node
u

to
a

node
v

ifthe
m

ost-parsim
onious

duplication
scenario

includes
duplication

events
thatcopy

substrings
of

u
in

the
construction

of
v.Jiang

etal.
(2007)partitioned

the
duplication

blocksinto
a

setof24
clades(plusone

‘s’group
ofduplication

blocksfound
in

subtelom
eric

regions)thatw
e

indicate
here

w
ith

25
colorson

nodes.
T

he
3

setsofcolored
edges

representinheritance
netw

orksfor3
conserved

subsequencesofduplicons.T
hese

inheritance
netw

orksare
alm

ostentirely
confined

to
a

single
clade

each.
T

he
green

edgesrepresentthe
inheritance

ofthe
duplicon

sequence
[6

9
6
8
,6

9
6
7
,6

9
6
5
,6

9
6
3
,6

9
6
2
,6

9
6
0
]in

clade
‘M

1’,the
red

edgesrepresentthe
inheritance

of
[7

0
3
9
,7

0
3
6
,7

0
3
7
]

in
clade

‘M
2’,and

the
blue

edges
representthe

inheritance
of

[9
4
4
8
,9

4
4
9
]in

clade
‘chr16.’

2

duplicate operations–to be the simplest. As noted above,
the most-parsimonious solution can be computed using the
duplication distance algorithm presented in Kahn and Raphael
(2008, 2009). Therefore, our first consideration for scoring a
generator is that one with small length, e.g. with length equal
to the duplication distance, ought to have a good score.

Given a source stringX , and two different target strings Y1

and Y2, where |Y1| < |Y2|, we assume that if the character
contents of Y1 and Y2 are similar, then the construction of
Y1 from X is more likely than the construction of Y2 from
X . Again, this assumption favors simplicity. Therefore, two
generators with length k that are feasible for Y1 and Y2,
respectively, should be scored in a way that the generator for
Y1 is preferable to that for Y2.

Theorems 2.7 and 2.9 allow for a score function of the
form σ(|ΨX |, l(ΨX)). However, we impose two additional
conditions that are biologically plausible.

1. For integers k1 < k2, σ(k1, l(ΨX)) > σ(k2, l(ΨX)).
This property matches our intuition that a feasible
generator with lesser cardinality (corresponding to a
shorter sequence of duplicate operations needed to
construct the target string) be more likely than a feasible
generator with higher cardinality.

2. For identical source and target strings, X = Y , of length
|X| = |Y | > 1, σ(1, |Y |) >

∑
ΨX :|ΨX |=k σ(k, |Y |)

for any k > 1. This will ensure that the event F
of choosing a length-k generator for any k > 1 is
less probable than choosing a length-1 generator; i.e.
Pr[F |Y,X, k] < Pr[F |Y,X, 1]. This matches our
intuition that the unique feasible generator of length
1 corresponding to the construction of Y by simply
duplicating all of X in a single operation, will have
higher probability than the combination of all feasible
generators of length k > 1. Note that when X 6= Y , this
property also ensures an analogous preference of feasible
generators containing any long, contiguous substring
Xs,t that appears as a substring of Y over feasible
generators that contain fragmented portions of Xs,t to
generate the same substring inY , all other elements being
equal.

A suitable score function that meets these criteria is:

σ(k, |Y |) =
1
|Y |k

. (1)

Undoubtedly, there are other biologically motivated score
functions that may produce meaningful results.

1.3 Simulated Annealing Heuristic
(Giudici and Castelo, 2003) describes an elegant approach
for moving locally in the space of DAGs via three types of
simple moves- adding a new edge, removing an existing one,
or reversing an existing one.

Definition 2.2 Given DAG G = (V,E) we call the DAG
G′ = (V,E′) neighboring of G if and only if we can obtain
G′ fromGwith a single move- adding a new edge, removing,
or reversing an existing edge.

Definition 2.2 Given an objective function f and two DAGs
G1, G2 we call ∆G = f(G1)− f(G2) the difference in their
energies.

Now, given a DAG G = (V,E) and a random move
proposed by the Simulated Annealing we:
1. Examine whether the move is legal (i.e. does not induce a
cycle)
2. Decide wheter to accept the move based on the probability
p = exp(−∆G

T)
3. Perform the move

To decide whether to accept a move or not we need to
computep = exp(−∆G

T), whereT is a temperature parameter.
Then, we compare p with a random number in the interval
(0, 1) and if p > rand(0, 1) we accept the move. We note that
depending on the complexity of the objective function f(G)
computing ∆G could be very expensive. In fact, this is the
case for the max likelihood reconstruction because computing
Pr[Y |X, k] takes in the worst-caseO(|Y |3|X|k2). Therefore,
we employ a hashtable to store the cost of every move we have
examined. As we do hundreds of independent trials we may
often need to examine the same move multiple times, and
the hashtable helps significantly speed up the search for good
moves..

In our implementation we employ an exponential cooling
schedule schedule. The temperature is updated via the
equation Tt+1 = Ttα. We determined empirically that α =
0.98 performs best in terms of efficiency and time.

The simulated annealing heuristic often terminated in local
optima. For a particular instance, the solutions found by all
300 trials would include many globally suboptimal solutions.
However, many of the locally optimal solutions encountered
were “close” to the score for the best solution found. For
example, the search for the max parsimony evolutionary
history given in Fig. 3(a) resulted in a component whose
objective score is 397; more than 1/6 of the total trials returned
solutions whose objective scores are no more than 407 and
well over 1/2 of the total trials returned solutions whose
objective scores are no more than 437 (see Fig. 2).

REFERENCES
Giudici, P. and Castelo, R. (2003). Improving markov chain monte

carlo model search for data mining. Machine Learning, 50(1-2),
127–158.

Jiang, Z., Tang, H., Ventura, M., Cardone, M. F., Marques-Bonet,
T., She, X., Pevzner, P. A., and Eichler, E. E. (2007). Ancestral
reconstruction of segmental duplications reveals punctuated cores
of human genome evolution. Nature Genetics, 39, 1361–1368.

3

380 400 420 440 460 480 500 520 540 560 580
0

10

20

30

40

50

60

Parsimony score

N
um

 lo
ca

l o
pt

im
al

 re
tu

rn
ed

 b
y

SA

Fig. 2. Results of 300 trials of simulated annealing (SA) heuristic:
number of local optima returned by SA vs. objective scores.
Results are from search for max parsimony evolutionary history
for component comprised of duplication blocks from clade ‘chr16’
whose global optimum is given in Fig.3(a).

Kahn, C., Mozes, S., and Raphael, B. (2010). Efficient algorithms
for analyzing segmental duplications with deletions and inversions
in genomes. Algorithms for Molecular Biology, 5(1), 11.

Kahn, C. L. and Raphael, B. J. (2008). Analysis of Segmental
Duplications via Duplication Distance. Bioinformatics, 24, i133–
138.

Kahn, C. L. and Raphael, B. J. (2009). A Parsimony Approach to
Analysis of Human Segmental Duplications. In Pacific Symposium
on Biocomputing, pages 126–137.

4

