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1 Supplementary Methods

1.1 Participants

A total of 130 right-handed, healthy, English-speaking individuals participated in the stud-
ies included in this dataset. All participants were free of neurological and psychiatric history
and gave informed consent to participate according to protocols approved by the University
of California, Los Angeles Institutional Review Board.

1.2 fMRI acquisition

Imaging was performed using a 3T Siemens AG (Erlangen, Germany) Allegra MRI scanner
at the UCLA Ahmanson-Lovelace Brain Mapping Center. For all subjects, whole-brain
functional imaging was performed using a T2*-weighted echoplanar imaging (EPI) sequence
with common parameters [repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 90;
matrix, 64 x 64; field of view (FOV), 200 mm; slice thickness, 4 mm; interleaved acquisition].
The only acquisition parameters that varied between subjects were the interslice interval,
which was either Imm or Omm across different studies, and number of slices, which varied
from 25 to 34 slices across studies. In addition to the functional images, a T2-weighted
matched-bandwidth high-resolution anatomical scan (same slice prescription as EPI) and
magnetization-prepared rapid-acquisition gradient echo (MPRAGE) were acquired for each
subject for registration purposes.

1.3 Task designs

The design of each of the tasks is described below.
Task 1: Risk-taking (Stover et al., 2006). Subjects performed the Balloon Analog Risk
Task (Lejuez et al., 2002), in which they decide on each trial whether to continue taking



risk (in this case, inflating a balloon) in order to potentially receive a greater reward.
Decision-making trials on which subjects accepted further risk were compared to visual
fixation baseline.

Task 2/2a: Probabilistic classification (Foerde et al., 2006). Subjects performed a
probabilistic classification task, in which they classified items without feedback after having
previously learned the task by trial and error. Classification trials were compared to a visual
fixation baseline.

Task 3: Pseudoword rhyme judgment (Xue & Poldrack, 2007). Subjects judged whether
pairs of visually presented pseudowords rhymed or not, in a blocked design. Rhyme judg-
ment trials were compared to a visual fixation baseline

Task 4: Tone counting (Foerde et al., 2006). Subjects were presented with a series
of high- and low-frequency tones, and asked to keep a running count of the number of
high tones, with a probe at the end of each 36-second block. Tone-counting blocks were
compared to blocks of rest.

Task 5: Mixed gamble decision making (Tom et al., 2007). Subjects performed a gamble
acceptability judgment on mixed (gain/loss) gambles that varied in the amount of potential
gain and loss. Gamble trials were compared to a visual fixation baseline.

Task 6: Semantic decision on mirror-reversed text (Cazalis et al., 2004). Subjects
performed a living/nonliving decision on words presented in mirror-reversed text. Mirror-
reading trials were compared to a visual fixation baseline.

Task 7: Reading pseudowords aloud (Xue et al., 2008). Subjects were presented with
pronounceable pseudowords and asked to read them aloud. Reading trials were compared
to a visual fixation baseline.

Task 8/8a: Successful response inhibition (Aron & Poldrack, 2006; Xue et al., 2008).
Subjects performed the stop-signal task, which requires inhibition of a motor (finger) re-
sponse when an infrequent auditory cue is presented. Stop trials on which subjects suc-
cessfully inhibited the response were compared to a visual fixation baseline.

2 Analysis procedures

2.1 Preprocessing

Initial analysis was performed using the FSL toolbox from the Oxford Centre for fMRI of
the Brain (www.fmrib.ox.ac.uk/fsl). The image timeseries was first realigned to compensate
for small head movements using FSL. MCFLIRT. Data were spatially smoothed using a
5 mm full-width-half-maximum Gaussian kernel. Registration was conducted through a
3-step procedure, whereby EPI images were first registered to the matched-bandwidth
high-resolution structural image, then to the MPRAGE structural image, and finally into
standard [Montreal Neurological Institute (MNI)] space (MNI avgl52 template), using 12-
parameter affine transformations. Statistical analyses were performed in native space, with
the statistical maps normalized to standard space prior to higher-level analysis.



2.2 First-level analysis

Statistical modeling was performed separately for each imaging run. Regressors of interest
were created by convolving a delta function representing trial onset times (for event-related
studies) or a boxcar (for blocked-design studies) with a canonical (double-gamma) hemo-
dynamic response function. Time-series statistical analysis was carried out using FILM
(FMRIB’s Improved Linear Model) with local autocorrelation correction after highpass
temporal filtering (Gaussian-weighted LSF straight line fitting, with sigma=33.0s). For
each study, contrasts were performed to compare the task condition to baseline, and Z
(Gaussianized t) statistic images were created based on these contrasts. The mask for
each individual (which was used to determine the mask for the classifier analyses) was
determined by thresholding the brain-extracted image at 10% of its maximum value to ex-
clude background voxels; the masking did not employ any information about task-related
activation.

2.3 Classifier analysis

Classifier analyses were performed on the Z statistic images created for each subject in
the first-level analysis. SVM was performed using libsvm (Chang & Lin, 2001), with a
linear kernel and cost parameter C optimized by limited search. Voxels were selected by
taking the intersection of the first-level masks in standard space, which resulted in a mask
with a total of 214,940 voxels. Analysis of the entire dataset was performed using one-
versus-one classification (all pairs, decision based on majority vote) with generalization
accuracy determined using n-fold crossvalidation. The empirical null distribution for this
analysis was obtained by performing the classification analysis 200 times with the task
labels randomly permuted in each run. Mean chance performance across the 200 runs was
13.3%; the 95th percentile of the distribution of accuracy (18.5%) was taken as the p < .05
threshold.

2.4 ROI anlaysis

SVM was performed separately within each region of interest within the Harvard-Oxford
Probabilistic Atlas, which is included in FSL version 4.0. which includes 48 cortical regions.
The analysis was performed separately for left and right hemispheres, as well as combining
the two hemispheres. The SVM analysis was performed as in the whole-brain analysis,
using a linear kernel, with an optimized C value, and N-fold crossvalidation.

2.5 Localized SVM analysis

The local kernel classifier (fixed radius radial basis or ”searchlight”) analysis was performed
at each voxel by extracting data from an 8 mm sphere around that voxel (including only



voxels that fall within the whole-brain mask). These data were submitted to 10-fold cross-
validation using a linear multiclass (one-vs-one) SVM, and the crossvalidation accuracy
value was assigned to the center voxel.

2.6 Diagnosticity analysis

We implemented a sensitivity /perturbation approach (Hanson & Halchenko, 2008; Hanson
et al., 2004), which measures the error for a given TASK category (see Table 1). Specifically,
to estimate SVM-based sensitivity, we used one of the simplest criteria proposed (Guyon
et al., 2002; Ishak & Ghattas, 2005; Rakotomamonjy, 2003), which is the reciprocal of the
separating margin width W = 1/w;, where w; = > o;y;z;. Rakotomamonjy (2003) has
shown that these voxel weights W in a linear SVM are equivalent to the contribution of that
voxel to the generalization performance altogether, as if it were removed. Minimization of
this criterion leads to maximization of the margin width. In the case of linear SVM, the
squared values of the separating plane normal coefficients (i.e., w?), as stated, effectively
correspond to the change of the criteria W as if the voxel i is removed. Therefore, the
classifier is less sensitive to the features with low w?. Additionally, in order to increase
diagnostic selectivity, we derived weights for each TASK category by using only TASK;
SVs. Thus, higher voxel value tends toward typical regions in the classification space for
the SV appropriate TASK category. Given cross validation, SVM maps were produced for
all possible classifiers, and aggregated by voting with the presence or absence of a voxel
sensitivity per map, creating an aggregate map, thresholded at a vote value associated with

p < .01.

2.7 Neural network analysis

Voxels were selected for the neural network (additive sigmoidal kernel approximator) anal-
ysis by computing the relative entropy (—[p * log(p)] where p indicated relative frequency
of a given voxel bandwidth) of each voxel over all brains and tasks and then thresholding
them at p < 1%. This selected a sparse set of 2173 voxels throughout the brain (see figure
S4). These voxels were used as inputs to a neural network using a sigmoidal activation
function, with 2173 input units, 8 logistic output units, and a number of logistic hidden
units varying from zero (essentially equivalent to linear discriminant analysis or logistic
regression) to a total of 14. The networks also generally possessed skip weights, allowing
the network to extract low order statistics (e.g. 1st few eigenvectors) and was trained with
a regularizer (weight decay) to punish high variance solutions. Training was done using
standard BFGS nonlinear optimization over mulitple error criteria, including least squares
and softmax.



2.8 Dimensional visualization

Cluster analysis was performed using an agglomerative hierarchical clustering algorithm
with euclidian distance measure between vectors and centroid linkage group membership
rule, implemented in the hclust function in R. Slice images of the dimensional loadings on
anatomical images were obtained by smoothing the image with weightings for each voxel
by an 8 mm Gaussian kernel.

2.9 Ontology projection

To obtain projections of the neural network dimensions onto the ontology terms, the di-
mensions were first averaged across subjects within each task. This 6 (dimension) X 8
(task) matrix was then multiplied by the 8 (task) X 22 (cognitive concept) matrix to ob-
tain a matrix that provided the weights of each dimension on each concept. These were
treated as distances and scaled to [0,1], and were then exponentiated to the 8th power
to enhance the largest loadings. These values were then used to the create the tag cloud
representations, using the online tool at http://TagCrowd.com.



3 Supplementary results

Supplementary Table 1. Generalization accuracy (via leave-one-out cross-validation) for a selected set
of parameter combinations, as a function of model, regularization, loss function, and feature selection.

Mask Model Loss Function Accuracy
Whole-brain (215K voxels)
SVM Risk Minimization 80%
Entropy mask (2137 voxels)
SVM Risk Minimization 2%
NN (4 hidden) Softmax 61%
NN (6 hidden) Softmax 1%
NN (14 hidden) Softmax 70%
NN (6 hidden) Least Squares 66%
NN (14 hidden) Least Squares 68%
Standard Deviation mask (6175 voxels)
LDA Least Squares 44%
NN (4 hidden) Softmax 45%




Supplementary Table 2a. Confusion matrix for generalization across runs (classifier trained on first run
and tested on second)

True RISK | CLS | DEC | SEM | READ | INH | Accuracy
RISK 15 0 0 0 1 0 93.75%
CLS 1 18 0 0 1 0 90.00%
DEC 1 1 14 0 0 0 87.50%
SEM 1 1 0 11 1 0 78.57%
READ 0 0 0 0 18 1 94.74%
INH 1 0 0 0 0 14 93.33%

Supplementary Table 2b. Confusion matrix for generalization to new subjects on different versions of
tasks 2 and 8 (data for those subjects on tasks 4 and 7, respectively, excluded from training

True | RISK | CLS | DEC | SEM | INH | Accuracy
CLS 2 13 1 2 0 72.22%
INH 0 1 0 0 19 95.00%

Supplementary Table 2c. Confusion matrix for generalization to new subjects on different versions of
tasks 2 and 8 (data for those subjects on tasks 4 and 7, respectively, included in training set)

True | RISK | CLS | DEC | SEM | READ | INH | Marginal
CLS 2 13 1 2 0 0 72.22%
INH 0 1 0 0 7 12 60.00%




Supplementary Table 3. Results from anatomical ROI-based SVM analysis, sorted by decreasing clas-
sification accuracy. Anatomical regions based on Harvard-Oxford Probabilistic Atlas, which is distributed
as part of FSL Version 4.0. B: bilateral, R: right hemisphere, L: left hemisphere.

Region | B accuracy | R accuracy | L accuracy
Precentral Gyrus 56.15 43.08 37.69
Occipital Pole 50.77 47.69 43.85
Lingual Gyrus 43.85 32.31 43.08
Lateral Occipital Cortex, superoir division 41.54 32.31 42.31
Occipital Fusiform Gyrus 40.77 31.54 36.15
Superior Frontal Gyrus 39.23 33.85 26.92
Postcentral Gyrus 37.69 30.77 31.54
Angular Gyrus 37.69 33.08 29.23
Precuneous Cortex 36.92 39.23 30.77
Lateral Occipital Cortex, inferior division 36.15 29.23 37.69
Temporal Fusiform Cortex, posterior division 36.15 28.46 30.00
Supramarginal Gyrus, posterior division 34.62 30.77 25.39
Intracalcarine Cortex 34.62 33.85 35.38
Frontal Orbital Cortex 34.62 32.31 31.54
Temporal Occipital Fusiform Cortex 34.62 32.31 28.46
Superior Temporal Gyrus, posterior division 33.85 33.08 23.85
Superior Temporal Gyrus, anterior division 33.08 22.31 29.23
Paracingulate Gyrus 33.08 28.46 23.85
Planum Temporale 33.08 30.77 23.08
Middle Temporal Gyrus, posterior division 32.31 22.31 37.69
Middle Temporal Gyrus, temporooccipital part 32.31 28.46 17.69
Cingulate Gyrus, posterior division 32.31 32.31 23.08
Cuneal Cortex 31.54 37.69 25.39
Inferior Temporal Gyrus, temporooccipital part 30.77 30.00 23.08
Heschl’s Gyrus (includes H1 and H2) 30.77 25.39 20.77
Frontal Pole 30.00 36.92 21.54
Insular Cortex 30.00 26.92 26.15
Temporal Pole 30.00 21.54 23.85
Juxtapositional Lobule/Supplementary Motor Cortex 30.00 26.92 23.85
Parahippocampal Gyrus, posterior division 29.23 26.15 21.54
Supracalcarine Cortex 28.46 33.85 27.69
Middle Frontal Gyrus 27.69 23.08 23.85
Inferior Frontal Gyrus, pars triangularis 26.92 19.23 17.69
Superior Parietal Lobule 26.92 22.31 24.61

Continued on next page



Supplementary Table 3, continued from last page.

Region | B accuracy | R accuracy | L accuracy
Parietal Operculum Cortex 26.92 29.23 22.31
Central Opercular Cortex 26.15 25.39 24.61
Supramarginal Gyrus, anterior division 25.39 21.54 16.15
Cingulate Gyrus, anterior division 24.61 26.15 19.23
Planum Polare 23.85 21.54 25.39
Subcallosal Cortex 23.08 21.54 16.92
Inferior Frontal Gyrus, pars opercularis 21.54 24.61 23.08
Middle Temporal Gyrus, anterior division 21.54 17.69 23.08
Frontal Medial Cortex 20.77 23.08 23.08
Inferior Temporal Gyrus, posterior division 20.00 19.23 21.54
Frontal Operculum Cortex 16.92 20.77 14.62
Parahippocampal Gyrus, anterior division 15.38 21.54 15.38
Inferior Temporal Gyrus, anterior division 14.62 15.38 19.23
Temporal Fusiform Cortex, anterior division 13.85 12.31 15.38
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Supplementary Figure 1: Overview of data analysis pipeline
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Supplementary Figure 2: Voxelwise classification accuracy from localized SVM
analysis with 8 mm radius.
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. Conjunction (diagnosticity and GLM)
GLM only

B Diagnosticity only

Supplementary Figure 3: Comparison of diagnosticity analysis to standard general
linear model analysis for two tasks. Regions in red represent the conjunction of the
diagnosticity analysis (2 or more votes for the specific task) and the GLM across all

subjects in the relevant task (pj.05 corrected using cluster-based randomization test).
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Supplementary Figure 4: Features identified using entropy measure across the 130
brain/8 task data.
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Supplementary Figure 5: Coding of each task in terms of the presence (white) or
absence (black) of a set of cognitive concepts from a coarse cognitive ontology. The
ontology was derived from the BrainMap.org behavioral domains framework, with a

number of concepts added.
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