dsRNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis

Patrice Vitali and A.D.J Scadden

Supplementary Figure 1: (a) *In vitro* transcription gives rise to incompletely capped *Fluc* mRNA. Capped or uncapped *Fluc* mRNA were treated ±alkaline phosphatase, radiolabeled using $\gamma^{32}P[ATP]$ (see Supplementary methods) and analyzed on a denaturing polyacrylamide gel. DNA markers (Lambda *Hin*dIII/ΦX174 *Hae*III) were used. (b,c) IU-**dsRNA suppresses induction of ISGs by both capped and uncapped** *Fluc* mRNA. HeLa cells were mock transfected (M) or co-transfected with 250 ng capped (b) or uncapped (c) *Fluc* mRNA and C or C-IU dsRNAs. RT/qPCR was used to quantify expression of ISGs (*RIG-1, OAS1, IFITM1*) or *β-actin* after 12h (n=4). Fold-change in mRNA levels were calculated relative to mock-transfected cells, and normalized to *GapDH*. Error bars are mean ± s.d.

	dsRNA	Sequence
Full-	GP	ACUGGACA GGUG CUCCGAGG UGACCUGU CCAC GAGGCUCC
dsRNAs	IIUI	ACUGGACA IIUI CUCCGAGG UGACCUGU UUIU GAGGCUCC
Cleaved dsRNAs	Α	ACUGGACA IIUI CUCCGAGG UIU GAGGCUCC
	В	ACUGGACA II UGACCUGU UUIU GAGGCUCC
	С	ACUGGACA IIUI CUCCGAGG UGACCUGU U
	D	UI CUCCGAGG UGACCUGU UUIU GAGGCUCC
	Е	ACUGGACA II UGACCUGU U
	F	UI CUCCGAGG UIU GAGGCUCC

FL 'Cleaved products' GP IIUI С Ε F dsRNA M В D Α IRF3 S396-P PARP **cPARP** Actin 1 2 3 5 6 7 8 9 4

Supplementary Figure 2: ISGs are suppressed by 'cleaved' dsRNAs containing multiple inosines. (a) Full-length' dsRNAs correspond to GP and IIUI. Base pairs that differ between the pair of dsRNAs are in bold. 'Cleaved dsRNAs' correspond to duplexes A-F. These duplexes correspond to potential products arising from cleavage of IIUI dsRNA^{14,15}. (**b**) HeLa cells were co-transfected with poly(IC) and either full-length (control dsRNA (GP) or IU-dsRNA (IIUI)) or 'cleaved' dsRNAs (Duplexes A-F). RT/qPCR was used to quantify expression of β -actin or ISGs (*IFITM1*, OAS1, IP-10) after 12h (n=4). Fold-change in mRNA was calculated relative to that at 6h with GP, and normalized to *GapDH*. Error bars are mean \pm s.d. (c) Following co-transfection of HeLa cells with poly(IC) and either fulllength or 'cleaved' dsRNAs, immunoblotting was used to analyze activation of IRF3 (IRF3 S396-P). Apoptosis was detected by analyzing PARP cleavage (cPARP). Uncleaved PARP was also detected (PARP). Actin was a loading control.

С

Supplementary Figure 3: IRF3 is activated by transfected poly(IC). A simplified view of IRF3 activation following transfection of cells with poly(IC)^{14,15}. Transfected poly(IC) interacts with the cytosolic receptors MDA-5 or RIG-I, which triggers a cascade resulting in phosphorylation, dimerization and nuclear translocation of IRF3. Activated IRF3 interacts with CBP to initiate transcription of genes containing specific IRF3 binding sites (ISREs). We propose that IU-dsRNA suppresses this pathway by preventing activation of MDA-5 or RIG-I, as indicated.

Supplementary Figure 4: poly(IC)-induced activation of IRF3 and apoptosis is inhibited by IU-dsRNA. (a) HeLa cells were mock transfected (M), or transfected with poly(IC) (pIC) or C or C-IU dsRNAs, and lysates prepared after 6–24h. Immunoblotting was used to detect activation of IRF3 (IRF3 S396-P), and apoptosis (cPARP). Uncleaved PARP was also seen (PARP). Actin was a loading control. (b) HeLa cells were co-transfected with poly(IC) (pIC) and GP or 6I dsRNAs. Immunoblotting was used to detect apoptosis after 12h by analyzing PARP cleavage. IRF3 S396-P was used to detect IRF3 activation. Actin was a loading control. (c) Human placental choriocarcinoma (JEG-3) cells were co-transfected with poly(IC) and C or C-IU dsRNAs. Immunoblotting was used to detect apoptosis after 12h by analyzing PARP cleavage. IRF3 S396-P detected IRF3 activation. Actin was a loading control. (RF3 activation. Actin was a loading control.

Supplementary Figure 5: poly(IC) induces expression of the ISGs *XAF1* **and** *TRAIL*. HeLa cells were co-transfected with poly(IC) and C or C-IU (I), and lysates prepared after 2– 36h. RT/qPCR was used to quantify expression of *XAF1* and *TRAIL* after 12–36h (n=4). Foldchange in mRNA was relative to that at 2h with C, and normalized to *GapDH*. Error bars are mean ± s.d.

Supplementary Figure 6: C-IU dsRNA inhibits IRF3 activation. (a) Immunoblotting was used to verify equal expression of IRF3 5A and 5D with C or C-IU dsRNAs (see Supplementary methods). (b) Cells were mock transfected, or co-transfected with IRF3 5A or IRF3 5D, along with C or C-IU. RT/qPCR was used to quantify expression of ISGs (*IP10, XAF1, OAS1, IFITM1*) or β -actin after 12h (n=4). Fold-change in mRNA was relative to the mock, and normalized to *GapDH*. Error bars are mean ± s.d.

Supplementary Table 1: Interferon Stimulated Genes

Abbreviation	Full Name		
IFITM1	Interferon-inducible trans-membrane protein 1 (9-27) ¹		
IFIT1	Interferon-induced protein with tetratricopeptide repeats 1 ²		
IP-10	Chemokine (C-X-C motif) ligand 10 ³		
IRF7	Interferon regulatory factor 7 ⁴		
IRF9	Interferon regulatory factor 9 ⁵		
MDA-5	Melanoma-differentiation-associated gene 5 ⁶		
MX1	Interferon-induced myxovirus (influenza virus) resistance protein ⁷		
OAS1	2',5'-oligoadenylate synthetase 1 ⁸		
PKR	Interferon-induced serine/threonine protein kinase9		
STAT1	Signal transducer and activator of transcription 1 ¹⁰		
TRAIL	TNF-related apoptosis inducing ligand ¹¹		
XAF1	X-linked inhibitor of apoptosis -associated factor 1 ¹²		

Gene ID	Fold change	Description	Validated using RT/qPCR
IP-10	3.34	Chemokine (C-X-C motif) ligand 10	X
IFIT2	3.05	Interferon-induced protein with tetratricopeptide repeats 2	x
IFIT3	2.92	Interferon-induced protein with tetratricopeptide repeats 3	x
OASL	2.43	2'-5'-oligoadenylate synthetase-like	
ISG15	2.27	ISG15 ubiquitin-like modifier	
CFB	2.15	Complement factor B	х
IL6	2.05	Interleukin 6	x
IL8	2.04	Interleukin8	х
HERC5	2.02	Hect domain and RLD 5	х
IFITM1	1.99	Interferon induced transmembrane protein 1	х
IFI27	1.98	Interferon, alpha-inducible protein 27	х
IFI6	1.94	Interferon, alpha-inducible protein 6	х
CCL20	1.93	Chemokine (C-C motif) ligand 20	х
ZC3HAV1	1.91	Zinc finger CCCH-type, antiviral 1	х
IFIT1	1.90	Interferon-induced protein with tetratricopeptide repeats 1	х
CCL5	1.89	Chemokine (C-C motif) ligand 5	х
IRF1	1.89	Interferon regulatory factor1	х
OAS2	1.88	2',5'-oligoadenylate synthetase 2	х
UBE2L6	1.87	Ubiquitin-conjugating enzyme E2L 6	х
OAS1	1.85	2',5'-oligoadenylate synthetase 1	х
CXCL11	1.83	Chemokine (C-C motif) ligand 11	х
PRIC285	1.82	Peroxisomal proliferator-activated receptor A interacting complex 285	х
XAF1	1.80	XIAP associated factor 1	х
IL29	1.78	Interleukin 29 (interferon, lambda 1)	х
IFI44	1.73	Interferon-induced protein 44	х
GADD34	1.72	Growth arrest and DNA damage-inducible protein GADD34	х
RIG-I	1.71	Retinoic acid-inducible gene 1	
IRF7	1.71	Interferon regulatory factor 7	х
KLF6	1.70	Kruppel-like factor 6 Nuclear factor of kappa light polypeptide gene enhancer in B-cells	х
NFKBIA	1.69	inhibitor, alpha	х
ZNFX1	1.69	Zinc finger, NFX1-type containing 1	х
GBP1	1.69	Guanylate binding protein 2, interferon-inducible	
TNFAIP3	1.69	Tumor necrosis factor, alpha-induced protein 3	
DDX58	1.66	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	
PLAUR	1.65	Plasminogen activator, urokinase receptor	
ISG20	1.65	Interferon stimulated exonuclease gene 20kDa	х
EFNA1	1.63	Ephrin-A1	
SLC25A28	1.62	Solute carrier family 25, member 28	
MDA-5	1.61	Melanoma-differentiation-associated gene 5	x
NFKBIZ	1.60	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta	
OAS3	1.60	2',5'-oligoadenylate synthetase 3	
ATF3	1.60	Activating transcription factor 3	
CEBPD	1.59	CCAAT/enhancer binding protein (C/EBP), delta	
MX2	1.58	Myxovirus (influenza virus) resistance 2 (mouse)	
ZFP36	1.56	Zinc finger protein 36, C3H type, homolog (mouse)	
TRIM26	1.55	Tripartite motif-containing 26	
MT2A	1.55	Metallothionein 2A	
IFI35	1.55	Interferon-induced protein 35	
G1P3	1.54	Interferon inducible gene 6-16	

Supplementary Table 2: Genes identified using microarrays

RPPH1	1.54	Ribonuclease P RNA component H1	
CCL2	1.54	Chemokine (C-C motif) ligand 2	
CENTA1	1.53	ArfGAP with dual PH domains	
SAMD9	1.53	Sterile alpha motif domain containing 9	
PARP14	1.53	Poly (ADP-ribose) polymerase family, member 14	
SLC15A3	1.52	Solute carrier family 15, member 3	
TRIM21	1.52	Tripartite motif-containing 21	
CITED4	1.52	CREB binding protein	
WARS	1.52	Tryptophanyl-tRNA synthetase	
TAP1	1.52	Transporter 1, ATP-binding cassette, sub-family B	
STAT1	1.51	Signal transducer and activator of transcription 1	Х
NUAK2	1.50	NUAK family, SNF1-like kinase, 2	

HeLa cells were co-transfected with poly(IC) and C or C-IU dsRNAs, and RNA harvested after 12h. Microarrays were subsequently used to analyze gene expression in the presence of C or C-IU dsRNAs, where fold-change in mRNA with C was calculated relative to that with C-IU (n=3). Expression of 59 genes was \geq 1.5-fold greater with C dsRNA than with C-IU after 12h. Genes validated using RT/qPCR are indicated (**x**).

	NCBI: H. sapiens genes - REFLIST (25431)	C/C-IU array (59)	C/C-IU array (expected)	C/C-IU array (over/under)	C/C-IU array (<i>P</i> value)
Biological Process	· · ·			-	
Interferon-mediated immunity	63	13	0.15	+	6.99E–20
Immunity and defense	1318	27	3.06	+	5.72E-18
Biological process unclassified	11321	10	26.26	_	2.28E-04
Nucleoside, nucleotide and nucleic acid metabolism	3343	21	7.76	+	3.18E–04
Cytokine and chemokine mediated signaling pathway	252	7	0.58	+	4.04E-04
Cytokine/chemokine mediated immunity	125	5	0.29	+	1.67E–03
Apoptosis	531	7	1.23	+	7.07E-03
Ligand-mediated signalling	421	7	0.98	+	1.08E-02
Macrophage-mediated immunity	140	4	0.32	+	4.76E–02
Pathway					
Inflammation mediated by chemokine and cytokine signaling pathway	315	7	0.73	+	1.44E–03
Molecular Function					
Nucleic acid binding	2850	21	6.61	+	2.29E-05
Chemokine	54	5	0.13	+	3.16E-05
Synthetase	96	5	0.22	+	5.21E-04
Nucleotidyltransferase	70	4	0.16	+	3.73E–03
Synthase and synthetase	213	5	0.49	+	4.11E-03
Molecular function unclassified	10934	12	25.37	-	6.40E-03
Helicase	173	5	0.4	+	8.65E-03
Defense/Immunity protein	369	5	0.86	+	4.87E-02

Cells were co-transfected with poly(IC) and either C or C-IU dsRNAs (n=3). Fold-change in gene expression at 12h with C, relative to C-IU, was determined using microarrays. Genes enriched \geq 1.5-fold in the presence of C relative to C-IU were subject to gene ontology analyses using PANTHER¹³. Genes were classified according to Pathway, Molecular Function and Biological Process (P \leq 0.05).

Drimor	Forward
FIIIIEI	Reverse
ß-actin	5'-GTTGCGTTACACCCTTTC
p-actin	5'-GCCATGCCAATCTCATCTT
eIF4G2	5'- CAGAGGCAGTCTATTGCAAGGAC
	5'- ACGGCAACAACCATCAATTACAG
G3RP2	5'- GCCCTGCCATCCATGAAA
GJDF 2	5'- GCTGAATGGCTCTTTGCTCTACT
GanDH	5'-TGCACCACCACCTGCTTAGC
Jahnu	5'-GGCATGGACTGTGGTCATGAG
MacF1	5'-ATGATCCCTGCCGAGCAC
Mach	5'-GAAGATGGTTTGGACCTTCG
RP\$24	5'-TCCAATCTCCAGCTCACTTTT
KI 524	5'-GCCTGTATGAGAAGAAAAAGACC
MDFAD111	5'-TCAAGACGTGGGATCAGAAT
	5'-CTCAACCAAGTAGCGTAGTGT
0002020	5'-GGGTCCTATAACAACTTCTTCA
FFF2R2D	5'-ATCCCTCCGCGTGTCTCT
TRC1D22R	5'-CTCCCTCAACCGGACTAA
IDCID22D	5'-AACCACCACTTGGGAACAC
CCI 20	5'-TCCTGGCTGCTTTGATGT
CCL20	5'-GTTGCTTGCTGCTTCTGATT
CFR	5'-AGTCTCTGTGGCATGGTTT
СГВ	5'-TTGCTTGTGGTAATCGGTA
	5'-TCCTGCTACAGGTGTCTT
GADD34	5'-GTCCTCTCCTGGCTGATA
HFRC.5	5'-TCCTGAAAGTTGGAATGAAAGAG
HERC-J	5'-GGAGGAAGAGGACACTGAAA
IFI6	5'-TACCTGCTGCTCTTCACT
11.10	5'-TCCTTACCCGCATTCTCA
IFI27	5'-CTGTCATTGCGAGGTTCTACT
11127	5'-CCTGGCATGGTTCTCTTCT
IFIAA	5'-CAAGCTAGAGGAAGTCCAAAG
11 144	5'-CCACCGAGATGTCAGAAAG
IFIT1	5'-CCTCCTTGGGTTCGTCTA
	5'-ACTCCAGGGCTTCATTCA
IFIT?	5'-CCTCGACTGGTCTACTATCA
11 1 1 4	5'-CGAAGCCCTGGACTCTTA
ІГІТ?	5'-AGGCCCACATGATGCTGAT
16119	5'-GGAATGGTGGTTATATTGTGAACT

Supplementary Table 4: Primer pairs used for qPCR

IEITM1	5'-AACCTTCACTCAACACTTCCTTC
	5'-TCCTCCTTGTGCATCTTC
шс	5'-TGGGCATTCCTTCTTCTG
11-0	5'-GTGTCCTAACGCTCATAC
11 0	5'-TGCACGGGAGAATATACAA
IL-0	5'-CAAACCCATTCAATTCCTGA
II - 20	5'-CGATGGGAACCTGTGTCT
11-29	5'-GGGCTCAGCGCATAAATAAG
ID-10	5'-GCTCTACTGAGGTGCTATGTTC
II -10	5'-CCCTTGGAAGATGGGAAAGGT
IDF7	5'-AGCGCCAACAGCCTCTAT
	5'-CAGCTTTCTGGAGTTCTCATTA
IDEO	5'-TCATCTGTAAGGGACTAGGAAA
IKI 9	5'-AGGTCAGGGAAGAGGGAA
15620	5'-AACAGCCTGCTTGGACAC
13020	5'-CGGATTCTCTGGGAGATTTGAT
VI F6	5'-ATGCCGTTCTGCACCCTA
KLFU	5'-GCTATGCCGCTTCTTACA
MD4-5	5'-CCACAGTGGCAGAAGAAG
MDA-3	5'-CGAGACCATAACGGATAACA
MY1	5'-TAGTCCGTCTCTGCTTATCC
MAI	5'-ACTGCTCTCACAGCTTCCT
NEKBIA	5'-CCTGGTGTCACTCCTGTT
MIKDIA	5'-GTGAGCTGGTAGGGAGAATA
0451	5'-CTGACTCCTGGCCTTCTATG
01151	5'-GGCTGTGGAGAATGTTATCTATG
0452	5'-TTCCCTTGATGGTCCCTATTC
0432	5'-GGGTTTGCAGTCTTGATTGATT
PRIC285	5'-TCAGAACCAGGAAGGAAAC
1 MC205	5'-CACAGACACCATCCAGAG
PKR	5'-TCGCAAGACTATGGAAAGG
	5'-AGCAGTGTCACATACATGAAGA
STAT1	5'-GATGGGTTTGACAAGGTTCT
	5'-TGCATGATAATATAGTTGTGGTA
TRAIL	5'-TCACACCTGTAATCCCAAC
	5'-GATCTCGTGATCTACCCA
UBE2L6	5'-TCCACGGATGAGTCACAAT
	5'-CAGGAACTGGCAATCTAACA
XAF1	5'-GCAGCCTATGACATTCTGAGGAG
	5'-AAGCTAACCACCGGCATTTCTC
ZC3HAV1	5 - I LAGALAAALATAGCTTUCAAA
	5'-TCTGCTGCACATACCACT
ZNFX1	
	5'-GGATCACACTTGGGATAGG

The sequences of all primer pairs (forward and reverse) used in this study. Primers were designed using RealTimeDesign Software (<u>http://www.biosearchtech.com/</u>).

Supplementary Methods

Transfections with IRF3 5A and 5D. HeLa cells (2 × 10⁵) were initially transfected with 100 ng IRF3 5A and 5D plasmids¹⁴. After 24h, cells were co-transfected with 120 pmol dsRNA (80 pmol specific and 40 pmol C) using Lipofectamine-2000 (Invitrogen). RNA was isolated using TRIzol[®] (Invitrogen), and lysates were prepared using RIPA buffer. Protein concentrations were determined by Bradford assays.

Radiolabeling *Fluc* **mRNA**. Capped or uncapped *Fluc* mRNA (1–10 pmol) was treated with alkaline phosphatase (CIP; NEB) for 1h at 37 °C (total volume 20 µl). RNA was extracted with phenol/chloroform, and precipitated with ethanol. After resuspending in water, the RNA was 5' end-labeled in a total volume of 20 µl using $\gamma^{32}P[ATP]$ and T4 polynucleotide kinase (NEB) (37 °C for 1h). Labeled RNAs were purified using a G-50 column and subsequently analyzed using denaturing polyacrylamide gels (6% (w/v)). DNA markers (Lambda *Hin*dIII/ Φ X174 *Hae*III) were used to determine the size of the labeled mRNA.

Supplementary references

- 1. Deblandre, G.A. et al. Expression Cloning of an Interferon-inducible 17-kDa Membrane Protein Implicated in the Control of Cell Growth. *J. Biol. Chem.* **270**, 23860-23866 (1995).
- 2. Terenzi, F., Hui, D.J., Merrick, W.C. & Sen, G.C. Distinct Induction Patterns and Functions of Two Closely Related Interferon-inducible Human Genes, ISG54 and ISG56. *J. Biol. Chem.* **281**, 34064-34071 (2006).
- 3. Lewis, F.N., Guenther, M. & Omar, B. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. *Cytokine & growth factor reviews* **8**, 207-219 (1997).
- 4. Zhang, L. & Pagano, J.S. Review: Structure and Function of IRF-7. *Journal of Interferon & Cytokine Research* **22**, 95 (2002).
- 5. Veals, S.A. et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. *Mol. Cell. Biol.* **12**, 3315-3324 (1992).
- 6. Kang, D.-c. et al. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 637-642 (2002).
- 7. Kochs, G., Haener, M., Aebi, U. & Haller, O. Self-assembly of Human MxA GTPase into Highly Ordered Dynamin-like Oligomers. *J. Biol. Chem.* **277**, 14172-14176 (2002).
- 8. Hovnanian, A. et al. The Human 2',5'-Oligoadenylate Synthetase Locus Is Composed of Three Distinct Genes Clustered on Chromosome 12q24.2 Encoding the 100-, 69-, and 40-kDa Forms. *Genomics* **52**, 267-277 (1998).
- 9. Williams, B.R.G. PKR; a sentinel kinase for cellular stress. *Oncogene* **18**, 6112-6120 (1999).
- 10. Levy, D.E. & Darnell, J.E. STATs: transcriptional control and biological impact. *Nat Rev Mol Cell Biol* **3**, 651-662 (2002).
- 11. Kirshner, J.R., Karpova, A.Y., Kops, M. & Howley, P.M. Identification of TRAIL as an Interferon Regulatory Factor 3 Transcriptional Target. *J. Virol.* **79**, 9320-9324 (2005).
- 12. Leaman, D.W. et al. Identification of X-linked Inhibitor of Apoptosis-associated Factor-1 as an Interferon-stimulated Gene That Augments TRAIL Apo2L-induced Apoptosis. *J. Biol. Chem.* **277**, 28504-28511 (2002).
- 13. Thomas, P.D. et al. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. *Genome Research* **13**, 2129-2141 (2003).
- Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation. *Mol. Cell. Biol.* 18, 2986-2996 (1998).