dsRNAs containing multiple IU pairs are sufficient to suppress interferon

induction and apoptosis

Patrice Vitali and A.D.] Scadden
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Supplementary Figure 1: (a) In vitro transcription gives rise to incompletely capped
Fluc mRNA. Capped or uncapped Fluc mRNA were treated z#alkaline phosphatase,
radiolabeled using y3?P[ATP] (see Supplementary methods) and analyzed on a denaturing

polyacrylamide gel.

DNA markers (Lambda HindIll/®X174 Haelll) were used. (b,c) IU-

dsRNA suppresses induction of ISGs by both capped and uncapped Fluc mRNA. HelLa
cells were mock transfected (M) or co-transfected with 250 ng capped (b) or uncapped (c)
Fluc mRNA and C or C-IU dsRNAs. RT/qPCR was used to quantify expression of ISGs (RIG-I,
0AS1, IFITM1) or f(-actin after 12h (n=4). Fold-change in mRNA levels were calculated
relative to mock-transfected cells, and normalized to GapDH. Error bars are mean * s.d.
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Supplementary Figure 2: ISGs are suppressed by ‘cleaved’
dsRNAs containing multiple inosines. (a) Full-length’ dsRNAs
correspond to GP and IIUI. Base pairs that differ between the pair of
dsRNAs are in bold. ‘Cleaved dsRNAs’ correspond to duplexes A-F.
These duplexes correspond to potential products arising from
cleavage of ITUI dsRNA'*1>, (b) HelLa cells were co-transfected with
poly(IC) and either full-length (control dsRNA (GP) or IU-dsRNA
(ITUI)) or ‘cleaved’ dsRNAs (Duplexes A-F). RT/qPCR was used to
quantify expression of S-actin or ISGs (IFITM1, 0AS1, IP-10)after 12h
(n=4). Fold-change in mRNA was calculated relative to that at 6h
with GP, and normalized to GapDH. Error bars are mean * s.d. (c)
Following co-transfection of HeLa cells with poly(IC) and either full-
length or ‘cleaved’ dsRNAs, immunoblotting was used to analyze
activation of IRF3 (IRF3 S396-P). Apoptosis was detected by
analyzing PARP cleavage (cPARP). Uncleaved PARP was also
detected (PARP). Actin was a loading control.
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Supplementary Figure 3: IRF3 is
activated by transfected poly(IC). A
simplified view of IRF3 activation
following transfection of cells with
poly(I1C)1415, Transfected poly(IC)
interacts with the cytosolic receptors
MDA-5 or RIG-I, which triggers a
cascade resulting in phosphorylation,
dimerization and nuclear translocation
of IRF3. Activated IRF3 interacts with
CBP to initiate transcription of genes
containing specific IRF3 binding sites
(ISREs).  We propose that IU-dsRNA
suppresses this pathway by preventing
activation of MDA-5 or RIG-I, as
indicated.
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Supplementary Figure 4: poly(IC)-induced activation of IRF3 and apoptosis is inhibited by IU-dsRNA.
(a) HeLa cells were mock transfected (M), or transfected with poly(IC) (pIC) or C or C-IU dsRNAs, and lysates
prepared after 6-24h. Immunoblotting was used to detect activation of IRF3 (IRF3 S396-P), and apoptosis
(cPARP). Uncleaved PARP was also seen (PARP). Actin was a loading control. (b) HeLa cells were co-
transfected with poly(IC) (pIC) and GP or 61 dsRNAs. Immunoblotting was used to detect apoptosis after 12h
by analyzing PARP cleavage. IRF3 S396-P was used to detect IRF3 activation. Actin was a loading control. (c)
Human placental choriocarcinoma (JEG-3) cells were co-transfected with poly(IC) and C or C-IU dsRNAs.
Immunoblotting was used to detect apoptosis after 12h by analyzing PARP cleavage. IRF3 S396-P detected
IRF3 activation. Actin was a loading control.
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Supplementary Figure 5: poly(IC) induces
expression of the ISGs XAF1 and TRAIL.
HeLa cells were co-transfected with poly(IC)
and C or C-IU (I), and lysates prepared after 2-
36h. RT/qPCR was used to quantify expression
of XAF1 and TRAIL after 12-36h (n=4). Fold-
change in mRNA was relative to that at 2h with
C, and normalized to GapDH. Error bars are
mean = s.d.
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Supplementary Figure 6: C-IU dsRNA inhibits IRF3 activation. (a) Inmunoblotting was used to verify equal expression of IRF3
5A and 5D with C or C-IU dsRNAs (see Supplementary methods). (b) Cells were mock transfected, or co-transfected with IRF3 5A
or IRF3 5D, along with C or C-IU. RT/qPCR was used to quantify expression of ISGs (IP10, XAF1, OAS1, IFITM1) or -actin after 12h
(n=4). Fold-change in mRNA was relative to the mock, and normalized to GapDH. Error bars are mean # s.d.



Supplementary Table 1: Interferon Stimulated Genes

Abbreviation | Full Name

IFITM1 Interferon-inducible trans-membrane protein 1 (9-27)1
IFIT1 Interferon-induced protein with tetratricopeptide repeats 12
IP-10 Chemokine (C-X-C motif) ligand 103

IRF7 Interferon regulatory factor 74

IRF9 Interferon regulatory factor 9°

MDA-5 Melanoma-differentiation-associated gene 5¢

MX1 Interferon-induced myxovirus (influenza virus) resistance protein?’
0AS1 2'5'-oligoadenylate synthetase 18

PKR Interferon-induced serine/threonine protein kinase?

STAT1 Signal transducer and activator of transcription 110

TRAIL TNF-related apoptosis inducing ligand!

XAF1 X-linked inhibitor of apoptosis -associated factor 112




Supplementary Table 2: Genes identified using microarrays

Validated

Fold o .

Gene ID change Description using
RT/qPCR
IP-10 3.34 Chemokine (C-X-C moitif) ligand 10 X
IFIT2 3.05 Interferon-induced protein with tetratricopeptide repeats 2 X
IFIT3 2.92 Interferon-induced protein with tetratricopeptide repeats 3 X
OASL 2.43 2'-5'-oligoadenylate synthetase-like
ISG15 2.27 ISG15 ubiquitin-like modifier
CFB 2.15 Complement factor B X
IL6 2.05 Interleukin 6 X
IL8 2.04 Interleukin8 X
HERC5 2.02 Hect domain and RLD 5 X
IFITMA1 1.99 Interferon induced transmembrane protein 1 X
IFI27 1.98 Interferon, alpha-inducible protein 27 X
IFI6 1.94 Interferon, alpha-inducible protein 6 X
CCL20 1.93 Chemokine (C-C motif) ligand 20 X
ZC3HAV1 1.91 Zinc finger CCCH-type, antiviral 1 X
IFIT1 1.90 Interferon-induced protein with tetratricopeptide repeats 1 X
CCL5 1.89 Chemokine (C-C motif) ligand 5 X
IRF1 1.89 Interferon regulatory factor1 X
OAS2 1.88 2'5"-oligoadenylate synthetase 2 X
UBE2L6 1.87 Ubiquitin-conjugating enzyme E2L 6 X
OAS1 1.85 2'5"-oligoadenylate synthetase 1 X
CXCL11 1.83 Chemokine (C-C motif) ligand 11 X
PRIC285 1.82 Peroxisomal proliferator-activated receptor A interacting complex 285 X
XAF1 1.80 XIAP associated factor 1 X
IL29 1.78 Interleukin 29 (interferon, lambda 1) X
IFl44 1.78 Interferon-induced protein 44 X
GADD34 1.72 Growth arrest and DNA damage-inducible protein GADD34 X
RIG-I 1.71 Retinoic acid-inducible gene 1
IRF7 1.71 Interferon regulatory factor 7 X
KLF6 1.70 Kruppel-like factor 6 X
NFKBIA 169 mﬁ%ﬁi:fif;ﬁ;m kappa light polypeptide gene enhancer in B-cells X
ZNFX1 1.69 Zinc finger, NFX1-type containing 1 X
GBP1 1.69 Guanylate binding protein 2, interferon-inducible
TNFAIP3 1.69 Tumor necrosis factor, alpha-induced protein 3
DDX58 1.66 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58
PLAUR 1.65 Plasminogen activator, urokinase receptor
1ISG20 1.65 Interferon stimulated exonuclease gene 20kDa X
EFNA1 1.63 Ephrin-A1
SLC25A28 1.62 Solute carrier family 25, member 28
MDA-5 1.61 Melanoma-differentiation-associated gene 5 X
NFKBIZ 160 _Nu<_:|gar factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, zeta

OAS3 1.60 2'5"-oligoadenylate synthetase 3
ATF3 1.60 Activating transcription factor 3
CEBPD 1.59 CCAAT/enhancer binding protein (C/EBP), delta
MX2 1.58 Myxovirus (influenza virus) resistance 2 (mouse)
ZFP36 1.56 Zinc finger protein 36, C3H type, homolog (mouse)
TRIM26 1.55 Tripartite motif-containing 26
MT2A 1.55 Metallothionein 2A
IFI35 1.55 Interferon-induced protein 35
G1P3 1.54 Interferon inducible gene 6-16




RPPH1 1.54 Ribonuclease P RNA component H1

CCL2 1.54 Chemokine (C-C moitif) ligand 2

CENTA1 1.53 ArfGAP with dual PH domains

SAMD9 1.53 Sterile alpha motif domain containing 9

PARP14 1.53 Poly (ADP-ribose) polymerase family, member 14
SLC15A3 1.52 Solute carrier family 15, member 3

TRIM21 1.52 Tripartite motif-containing 21

CITED4 1.52 CREB binding protein

WARS 1.52 Tryptophanyl-tRNA synthetase

TAP1 1.52 Transporter 1, ATP-binding cassette, sub-family B
STAT1 1.51 Signal transducer and activator of transcription 1 X
NUAK2 1.50 NUAK family, SNF1-like kinase, 2

HeLa cells were co-transfected with poly(IC) and C or C-IU dsRNAs, and RNA harvested
after 12h. Microarrays were subsequently used to analyze gene expression in the
presence of C or C-IU dsRNAs, where fold-change in mRNA with C was calculated
relative to that with C-IU (n=3). Expression of 59 genes was 21.5-fold greater with C
dsRNA than with C-IU after 12h. Genes validated using RT/qPCR are indicated (x).




Supplementary Table 3: Gene Ontology analyses

NCBI: H.
sapiens C/C-IU C/C-lU C/C-IU array C/C-IU
genes - array array array
REFLIST (59) | (expected) | ©Verunden | p o oiue)
(25431)
Biological Process
Interferon-mediated 63 13 0.15 + 6.99E-20
immunity
Immunity and defense 1318 27 3.06 + 5.72E-18
Biological process 11321 10 26.26 - 2.28E-04
unclassified
Nucleoside, nucleotide
and nucleic acid 3343 21 7.76 + 3.18E-04

metabolism

Cytokine and
chemokine mediated 252 7 0.58 + 4.04E-04
signaling pathway

Cytokine/chemokine

. . . 125 5 0.2 1.67E-03
mediated immunity o +
Apoptosis 531 7 1.23 + 7.07E-03
Ligand-mediated 421 7 0.98 + 1.08E~02
signalling
Macrophage-mediated 140 4 0.32 + 4.76E-02
immunity
Pathway
Inflammation mediated
by chemokine and 315 7 0.73 + 1.44E-03
cytokine signaling
pathway
Molecular Function
Nucleic acid binding 2850 21 6.61 + 2.29E-05
Chemokine 54 5 0.13 + 3.16E-05
Synthetase 96 5 0.22 + 5.21E-04
Nucleotidyltransferase 70 4 0.16 + 3.73E-03
Synthase and 213 5 0.49 + 4.11E-03
synthetase
Molecular function 10934 12 25.37 - 6.40E-03
unclassified
Helicase 173 5 0.4 + 8.65E-03
Defense/Immunity 369 5 0.86 + 4.87E-02
protein

Cells were co-transfected with poly(IC) and either C or C-IU dsRNAs (n=3). Fold-change
in gene expression at 12h with C, relative to C-IU, was determined using microarrays.
Genes enriched 21.5-fold in the presence of C relative to C-IU were subject to gene
ontology analyses using PANTHER!3. Genes were classified according to Pathway,
Molecular Function and Biological Process (P < 0.05).



Supplementary Table 4: Primer pairs used for qPCR

. Forward
Primer
Reverse
. 5-GTTGCGTTACACCCTTTC
B-actin
5’-GCCATGCCAATCTCATCTT
eIFAG2 5’- CAGAGGCAGTCTATTGCAAGGAC
5’- ACGGCAACAACCATCAATTACAG
G3BP2 5’- GCCCTGCCATCCATGAAA
5’- GCTGAATGGCTCTTTGCTCTACT
GapDH 5’-TGCACCACCACCTGCTTAGC
5’-GGCATGGACTGTGGTCATGAG
MacF1 5’-ATGATCCCTGCCGAGCAC
5-GAAGATGGTTTGGACCTTCG
RPS24 5’-TCCAATCTCCAGCTCACTTTT
5’-GCCTGTATGAGAAGAAAAAGACC
MRFAP1L1 5’-TCAAGACGTGGGATCAGAAT
5’-CTCAACCAAGTAGCGTAGTGT
PPP2R2D 5’-GGGTCCTATAACAACTTCTTCA
5’-ATCCCTCCGCGTGTCTCT
TBC1D22B 5’-CTCCCTCAACCGGACTAA
5’-AACCACCACTTGGGAACAC
CCL20 5-TCCTGGCTGCTTTGATGT
5-GTTGCTTGCTGCTTCTGATT
CFB 5-AGTCTCTGTGGCATGGTTT
5-TTGCTTGTGGTAATCGGTA
GADD34 5’-TCCTGCTACAGGTGTCTT
5’-GTCCTCTCCTGGCTGATA
HERC-5 5’-TCCTGAAAGTTGGAATGAAAGAG
5’-GGAGGAAGAGGACACTGAAA
IFI6 5’-TACCTGCTGCTCTTCACT
5’-TCCTTACCCGCATTCTCA
IFI27 5-CTGTCATTGCGAGGTTCTACT
5’-CCTGGCATGGTTCTCTTCT
IFl44 5’-CAAGCTAGAGGAAGTCCAAAG
5’-CCACCGAGATGTCAGAAAG
IFIT1 5’-CCTCCTTGGGTTCGTCTA
5’-ACTCCAGGGCTTCATTCA
IFIT2 5’-CCTCGACTGGTCTACTATCA
5’-CGAAGCCCTGGACTCTTA
IFIT3 5’-AGGCCCACATGATGCTGAT

5’-GGAATGGTGGTTATATTGTGAACT




5’-AACCTTCACTCAACACTTCCTTC

IFITM1
5-TCCTCCTTGTGCATCTTC
_— 5-TGGGCATTCCTTCTTCTG
5’-GTGTCCTAACGCTCATAC
_ 5-TGCACGGGAGAATATACAA
5-CAAACCCATTCAATTCCTGA
1L.29 5-CGATGGGAACCTGTGTCT
5-GGGCTCAGCGCATAAATAAG
1P-10 5-GCTCTACTGAGGTGCTATGTTC
5-CCCTTGGAAGATGGGAAAGGT
IRF7 5’-AGCGCCAACAGCCTCTAT
5-CAGCTTTCTGGAGTTCTCATTA
IRF9 5-TCATCTGTAAGGGACTAGGAAA
5-AGGTCAGGGAAGAGGGAA
1SG20 5'-AACAGCCTGCTTGGACAC
5-CGGATTCTCTGGGAGATTTGAT
KLF6 5-ATGCCGTTCTGCACCCTA
5-GCTATGCCGCTTCTTACA
MDALS 5'-CCACAGTGGCAGAAGAAG
5-CGAGACCATAACGGATAACA
MX1 5-TAGTCCGTCTCTGCTTATCC
5-ACTGCTCTCACAGCTTCCT
NFKBIA 5-CCTGGTGTCACTCCTGTT
5-GTGAGCTGGTAGGGAGAATA
OAS1 5-CTGACTCCTGGCCTTCTATG
5-GGCTGTGGAGAATGTTATCTATG
OAS2 5-TTCCCTTGATGGTCCCTATTC
5-GGGTTTGCAGTCTTGATTGATT
PRIC285 5-TCAGAACCAGGAAGGAAAC
5’-CACAGACACCATCCAGAG
KR 5-TCGCAAGACTATGGAAAGG
5-AGCAGTGTCACATACATGAAGA
STAT1 5-GATGGGTTTGACAAGGTTCT
5-TGCATGATAATATAGTTGTGGTA
TRAIL 5-TCACACCTGTAATCCCAAC
5-GATCTCGTGATCTACCCA
UBEZL6 5-TCCACGGATGAGTCACAAT
5-CAGGAACTGGCAATCTAACA
CAF1 5'-GCAGCCTATGACATTCTGAGGAG
5-AAGCTAACCACCGGCATTTCTC
ZCIHAV 5'-TCAGACAAACATAGCTTCCAAA
5-TCTGCTGCACATACCACT
INEXL 5-CTGCACTTTGGGATGGTA

5’-GGATCACACTTGGGATAGG




The sequences of all primer pairs (forward and reverse) used in this study. Primers

were designed using RealTimeDesign Software (http://www.biosearchtech.com/).




Supplementary Methods

Transfections with IRF3 5A and 5D. HeLa cells (2 x 10°) were initially transfected with
100 ng IRF3 5A and 5D plasmids!4. After 24h, cells were co-transfected with 120 pmol
dsRNA (80 pmol specific and 40 pmol C) using Lipofectamine-2000 (Invitrogen). RNA
was isolated using TRIzol® (Invitrogen), and lysates were prepared using RIPA buffer.

Protein concentrations were determined by Bradford assays.

Radiolabeling Fluc mRNA. Capped or uncapped Fluc mRNA (1-10 pmol) was treated
with alkaline phosphatase (CIP; NEB) for 1h at 37 °C (total volume 20 pl). RNA was
extracted with phenol/chloroform, and precipitated with ethanol. After resuspending in
water, the RNA was 5’ end-labeled in a total volume of 20 pl using y32P[ATP] and T4
polynucleotide kinase (NEB) (37 °C for 1h). Labeled RNAs were purified using a G-50
column and subsequently analyzed using denaturing polyacrylamide gels (6% (w/v)).
DNA markers (Lambda HindIll/®X174 Haelll) were used to determine the size of the

labeled mRNA.
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