Supporting Online Material for

Quiescent hematopoietic stem cells are activated by IFN γ in response to chronic infection

Megan T. Baldridge, Katherine Y. King, Nathan C. Boles, David C. Weksberg, and Margaret A. Goodell*

*To whom correspondence should be addressed. Email: goodell@bcm.edu

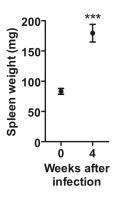
This PDF file includes:

Supplementary Figure 1

Supplementary Figure 2

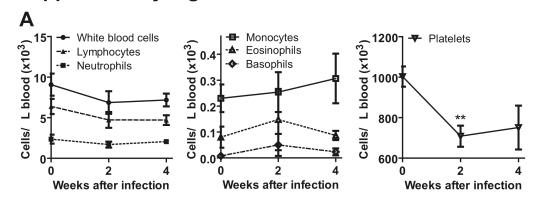
Supplementary Figure 3

Supplementary Figure 4


Supplementary Figure 5

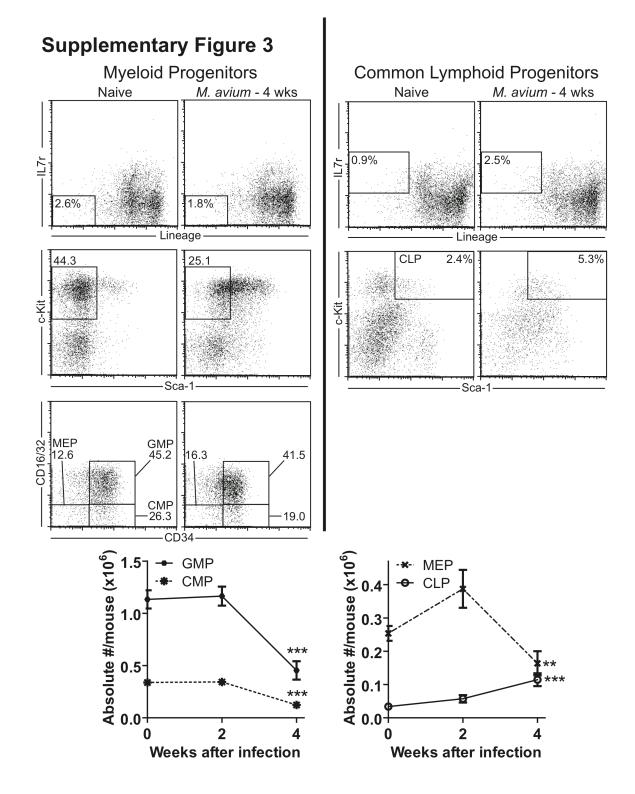
Supplementary Figure 6

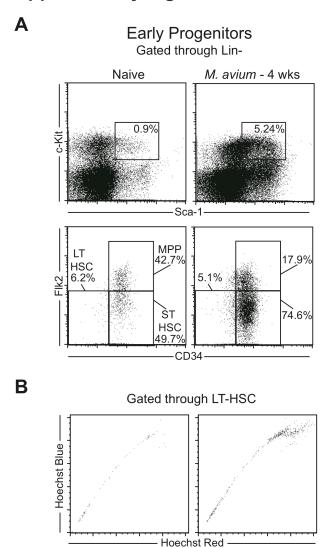
Supplementary Figure 7


Supplementary Figure 8

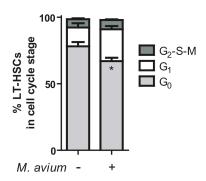
Supplementary Figure 9

Supplementary Figure 1. Spleen weights increase with infection.


Spleen weight was determined 4 weeks after *M. avium* infection of mice. n=4 to 6.

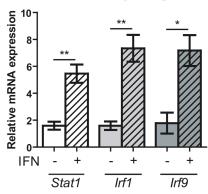

Supplementary Figure 2. Peripheral blood homeostasis is maintained during *M. avium* infection.

(A) Peripheral blood composition, with the exception of platelets, remains stable over 4 weeks of *M. avium* infection. n=3-8. (B) The relative percentage of B cells declines 4 weeks postinfection whereas percentages of CD4+ T-cells and granulocytes increase in mice infected with *M. avium*. n=4 or 5.

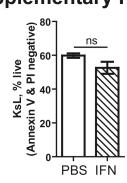

Supplementary Figure 3. Infection stimulates changes in myeloid and lymphoid progenitor compartments.

Whole bone marrow was isolated from naïve and M. avium-infected mice 4 weeks postinfection. Progenitor populations shown were previously gated as live cells. For myeloid progenitor gating, GMPs (granulocyte-macrophage progenitors) are $II7r\alpha^-$, Lin^- , c-kit $^+$, Sca-1 $^-$, CD16/32 $^+$, and CD34 $^+$, CMPs (common myeloid progenitors) are $II7r\alpha^-$, Lin^- , c-kit $^+$, Sca-1 $^-$, CD16/32 $^-$, and CD34 $^+$, and MEPs (macrophage-erythroid progenitors) are $II7r\alpha^-$, Lin^- , c-kit $^+$, Sca-1 $^-$, CD16/32 $^-$, and CD34 $^-$. CLPs (common lymphoid progenitors) are $II7r\alpha^+$, Lin^- , c-kit $^+$, and Sca-1 $^+$. Absolute numbers of progenitor populations are shown below. n=3-7.

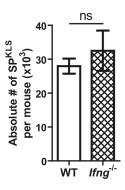
Supplementary Figure 4. Infection stimulates expansion of early progenitor compartments.


(A) Whole bone marrow was isolated from naïve and *M. avium*-infected mice 4 weeks postinfection. Progenitor populations shown were previously gated as Lin- live cells. MPPs (multipotent progenitors) are Lin⁻, c-kit⁺ Sca-1⁺, Flk2⁺, and CD34⁺. ST-HSCs (short-term HSCs) are Lin⁻, c-kit⁺, Sca-1⁺, Flk2⁻, and CD34⁺. LT-HSCs are Lin⁻, c-kit⁺, Sca-1⁺, Flk2⁻, and CD34⁻. (B) LT-HSCs were gated to Hoechst Blue and Red to view the Side Population. n=3-7.

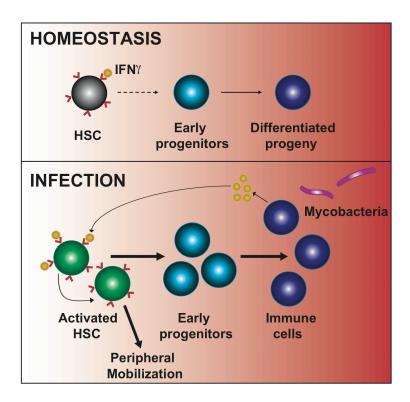
Supplementary Figure 5. *M. avium* infection stimulates increased HSC cycling.


Hoechst and Pyronin Y staining was used to determine the cell cycle status of LT-HSCs

(SP^{KLS}) isolated from uninfected and *M. avium*-infected WT mice. n=3-4.


Supplementary Figure 6. Canonical IFN pathway genes are stimulated in HSCs with IFN γ exposure.

Real-time RT-PCR was used to determine relative expression of *Stat1*, *Irf1*, and *Irf9* mRNA in HSCs (SP^{KLS}) with or without IFN γ treatment. n=2-3 independent samples.


Supplementary Figure 7. IFN γ does not cause increased cell death of hematopoietic progenitors.

The percentage of live KSL cells after 6 hours incubation with PBS or IFN γ was determined using Annexin V and propidium iodide staining. n=5.

Supplementary Figure 8. The absolute number of HSCs is unchanged in *Ifng*-deficient mice.

Absolute numbers of SP^{KLS} from wild-type and *Ifng*^{-/-} mice were determined. n=3-4, data representative of two independent experiments.

Supplementary Figure 9. Model for IFN γ -mediated regulation of hematopoietic stem cells.

Infection triggers HSC proliferation and mobilization via interferon signaling. Under homeostatic conditions, most HSCs are dormant and generate differentiated progeny at a low rate. Basal levels of IFN γ may contribute to HSC cycling. During infection, IFN γ is generated by macrophages, NK cells, and lymphocytes that sense pathogens such as mycobacteria. After circulation through the bloodstream, IFN γ can activate HSCs in the bone marrow, thereby promoting proliferation and mobilization to replenish immune cell populations.