SUPPORTING INFORMATION Experimental Evidence for Heavy-Atom Tunneling in the Ring-Opening of Cyclopropylcarbinyl Radical from Intramolecular ¹²C/ ¹³C Kinetic Isotope Effects

Ollie M. Gonzalez-James, Xue Zhang, Ayan Datta, David A. Hrovat, Weston Thatcher Borden* and Daniel A. Singleton*

Department of Chemistry, Texas A&M University, College Station, Texas 77842 and Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203-5017

singleton@mail.chem.tamu.edu

Table of Contents

1
3
3
6
7

A. Experimental Procedures.

General. Oven-dried or flame-dried glassware was cooled under a stream of nitrogen prior to use, and standard syringe-and-septa techniques were employed in all cases. The reaction apparatus was a 100 mL three-necked round-bottomed flask equipped with an internal thermometer and a Vigreaux column connected to a distillation apparatus and Schlenck receiver flask (cooled in a -42 °C bath during the distillation). The system was purged with nitrogen prior to use.

Formation and distillation of 1-butene from the ring-opening of cyclopropylcarbinyl radical, **Example Procedure.** To 5 mL (44 mmol) of 1,2-dichlorobenzene at 22 °C was added 0.97 mL (1.35 g, 10 mmol) of (bromomethyl)cyclopropane by syringe. While stirring the solution, 0.2 mL (0.14 g, 1.4 mmol) of triethylborane was added dropwise to the reaction mixture. Using a syringe pump, 3.25 mL (3.52 g, 12 mmol) of tributyltin hydride was added to the solution over a 1-h period. In order to initiate the reaction, 60 mL of air was bubbled into the solution using a syringe pump over a 1-h period. Until the reaction temperature, and this temperature change was used to judge whether the reaction was complete. In addition, 0.5 mL aliquots of the reaction mixture were analyzed directly by ¹H NMR (applicable only to reactions at or above ambient temperature). The reactions at 22 °C were judged to be complete after the 1-h period. The reaction mixture was then distilled to afford the 1-butene. Deuterated chloroform (approximately 0.5 mL) was then added to the 1-butene and the resulting mixture was sealed in an NMR tube.

Closely analogous processes and reagent amounts were employed in procedures at 80 °C, 0 °C, -78 °C and -100 °C and in replicate procedures. For reactions performed at -78 °C and -100 °C, 5 mL (39 mmol) of methylcyclohexane was used as the solvent in place of the 1,2-dichlorobenzene that was used in the higher temperature reactions. Longer reaction times (2-3 h) were employed for the reactions at -78 °C and -100 °C.

NMR Measurements. All NMR samples were prepared in 5 mm NMR tubes filled to a constant height of 5 cm with CDCl₃. The ¹³C spectra were recorded at 125.81 MHz using inverse gated decoupling, 160 s delays between calibrated $\pi/2$ pulses, and a 5 s acquisition time to collect 347 224 points. Integrations were numerically determined using a constant integration region for each peak that was a constant

multiple of the peak widths at half height. A zero-order baseline correction was generally applied, but to avoid any qualitative manipulation no first-order or higher-order baseline correction is ever applied. Six spectra were recorded for each sample. The complete results from the NMR measurements and the details of the calculation of the ¹³C ratios and KIEs are given in the next section.

NMR Integration Results. All integrations are relative integrations of C3 versus an integration of 1000 for C4. A complication in the numerical interpretation of these integrations is that C4 is subject to one ${}^{1}J$ ${}^{13}C$ - ${}^{13}C$ coupling with satellites not included in the integration range, while C3 is subject to two such satellite couplings. To allow for this, the integrations at C3 were adjusted by the 0.0107(8) natural abundance of ${}^{13}C$ (*Si*). The 95% confidence ranges were calculated in a standard way. (See: http://www.iupac.org/publications/analytical_compendium/Cha02sec3.pdf.)

Integrations for 80 °C

1047.42 1055.43	1048.24 1052.93	1047.53 1055.96	1044.53 1052.63	1051.33 1056.07	1045.65 1054.88
		AVE 1051.05 Corrected 1062.296		KIE 1.062 95% Confidenc 0.003	ce
Integrations for 22 °C					
1075 1069.9	1067.68 1066.61	1060.93 1068.6	1064.25 1069.85	1067.98 1066.12	1065.11 1066.99
		AVE 1067.418 Corrected 1078.84		KIE 1.079 95% Confidenc 0.002	ce
Integrations for 0 °C					
1075.16 1068.85	1071.96 1083.04	1072.3 1073.49	1073.46 1076.76	1064.93 1079.98	1067.01 1076.32
		AVE 1073.605 Corrected 1085.093		KIE 1.085 95% Confidenc 0.003	ce

Integrations for -78 °C

	1120.3 1115.68 1124.06	1118.94 1121.18 1117.04	1117.41 1118.49 1122.54	1119.76 1118.42 1119.06	1119.3 1111.12 1123.65	1121.94 1111.7 1124.63
			AVE 1119.179 Corrected 1131.154		KIE 1.131 95% Confidenc 0.002)e
Integrations for	-100 ℃					
	1146.83	1150.08	1156.91	1152.91	1150.61	1147.89
			AVE 1150.872 Corrected 1163.186		KIE 1.163 95% Confidenc 0.004	ce

B. Technical Comments

Notes on the irreversibility of the ring-opening of cyclopropylcarbinyl radical. The experimental rate constant of the reversible process (k_r) is 4.9 x 10³ s⁻¹ at 25 °C (*Sii*). The competing rate constant of the hydrogen abstraction from the tributyltin hydride (k_H) is known to be 2.4 x 10⁶ M⁻¹ s⁻¹ at 25 °C from the literature (*Siii*). Although the tributyltin hydride is added slowly as a precaution, the oxygen-initiation of the reaction occurred with the tributyltin hydride concentration at 1.3 M, making the pseudo-first order rate constant of $k_H 3.1 \times 10^6 \text{ s}^{-1}$ at 25 °C,1000 times faster than k_r .

If there were any significant reversibility of the ring opening, then the isotope effect observed would start to reflect the step transferring a hydrogen from the tin hydride to the butenyl radical. The predicted carbon isotope effect for this step at 25 °C is 1.032. Because the observed isotope effects are much higher, and agree with predictions for the ring-opening step but not the hydrogen transfer step, this weighs against significant reversibility in the reaction.

C. Calculational Procedures

Gaussrate Input File (.dat)	END	
*General	ATO	MS
	1	С
TITLE	2	С
methylcyclopropyl ring opening	3	С
calculation of the CVT and SCT	4	С
Information about stationary points included in the	5	Н
fu5 input file	6	Н
The second se	7	Н

8 H 9 H 10 H 11 H END NOSUPERMOL			6 7 8 9 10 11 END	5.07134811 1.14922776 -5.27242608 -3.03245808 -1.71105599 -0.83380500	-1.15619095 -1.70200656 -0.17187123 -2.28899271 2.20229613 2.41681447	-0.03795250 2.33259882 0.05658396 -1.63726142 1.88369163 -1.31034403
INPUNIT AU			ELEC 2 0.0	0		
*OPTIMIZATION			END			
OPTMIN OHOOK			SPEC	IES NONLIN	RP	
OPTTS OHOOK			*STAF	RT		
*SECOND			STAT	US 2		
HESSCAL HHOOK			# Geom GEON	etry in a.u. A		
*REACT1			1	3.05242727	-0.08674629	-0.20729437
			2	0.72976208	0.06206769	0.98778592
STATUS 2			3	-1.55003501	1.3083/203	-0.05359849
			4	-2.1955/92/	-1.2880/25/	-0.00394324
# Geometry in a.u.			5	3.33783930	0.74399342	-2.00000182
GEUM 1 2 08068545	0 00030000	0 21000608	07	4.00203034	-1.14990034	0.01200073
1 2.90000345 2 0.51335606		-0.31999008	8	-3 3006800/	-0.04526054	2.90904980
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.00013/1/	0.90390442	0 0	-3.30900004	-2.430/1190	0.02000210
	-1.41320401 1 /1210697	-0.2039/892	9	-1./1190495	-2.0/04010/	-2.40000394
4 -1./3100002 5 3 12468201	1.41319007	-0.20323240	10	-2./551450/	2.51220150	1.329/4/43
5 5.15408501 6 4.71080531	0.00180321	-2.30039373		-1.1/519/55	2.59099997	-1.0/185311
0 4./1000531	-0.00228037	0.//59184/	END			
/ 0.55410135 8 2.00672020	-0.00079480	2.95957008	FIFC			
0 -2.990/3029 0 1 20259524	-2.40551404	1.01509070		n		
9 -1.39230324 10 2.00676175	-2.30010004	-2.03943899	2 U. END	U		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4022/9/1	1.01/19114	END			
END	2.30734770	-2.03013000	SPEC	IES NONLIN'	TS	
ELEC			# end of	f start section		
2 0.0						
END			*PATH	[
SPECIES NONLIN	RP		SCAL	EMASS 1.00		
*PROD1			RODS			
			INTM	U 3		
STATUS 2			SSTE	P 0.001		
			INH	10		
# Geometry in a.u.			<u> </u>	CT		
GEOM	0.000000000	0	SRAN	GE		
1 3.38485810	-0.08325268	-0.50964307	SLP	1.25		
2 1.23486247	-0.35460982	0.77536320	SLM	-1.25		
3 -1.18799482	1.05232388	0.23154238	END			
4 -3.34055839	-0.65902742	-0.43031897				
5 3.54365484	1.23059104	-2.08440191	RPM	pagem		

SIGN REACTANT	
	FORWAR
IDIRECT 1	
	SIGMAF
COORD curv3	CVT
INTDEF	ТЕМР
2-4 1-2-4 2-4-3 1-2-4-3 4-2-3	100.
2-1 3-2 4-3 5-1 6-1 7-2 8-4	102.
9-4 10-3 11-3 3-2-1 4-3-2 5-1-2 6-1-2	104.
7-2-3 8-4-3 9-4-3 10-3-2 11-3-2 4-3-2-1 5-1-2-3	110.
6-1-2-3 7-2-3-4 8-4-3-2 9-4-3-2 10-3-2-1 11-3-2-1	120.
END	123.
	125.
PRPATH	127.
COORD 2 4	130.
INTERVAL 1	140.
XMOL	148.
END	150.
	152.
EXFIRST	160.
EXPROD	170.
EXNSTEP 200	173.
EXSTEP 0.005	175.
END	1//.
EXSECOND	190.
EXREACT	200.
EXNSTEP 200	202.
EXSTEP 0.005	210.
END	220.
	223.
SPECSTOP	225.
CURVE vag	227.
POINT savegrid	230.
PERCENTDOWN 95.	240.
END	248.
	250.
*TUNNEL	252.
	260.
QUAD	270.
NUE 30 Noth 20	280.
NUTH 30	290.
END	296.
С.Т.	298. 200
501	JUU. FND
*R & TF	LIND

1

D. Gaussrate Calculated Rates.

Calculated rates for the ring-opening of cyclopropylcarbinyl radical **1** to the 3-butenyl radical **2**. Rates of a 13 C at position C3 and C4 are shown for CVT and CVT+SCT at temperatures ranging from 100 to 353 K.

\sim	、 •		C4	C2
	>			C1
	1		C.J 1	
	L CV	r	ے +CVT	SCT
Temp	130 et 00	¹³ 0 - 1 0 (¹³ O et O0	130 04
(K)				
100	3.9876E-05	3.3235E-05	1.4196E-01	2.31/0E-01
102	8.5898E-05	7.1801E-05	1.7097E-01	2.7719E-01
104	1.7968E-04	1.5086E-04	2.0867E-01	3.3552E-01
110	1.4008E-03	1.18/9E-03	4.0959E-01	6.3709E-01
120	2.7257E-02	2.3450E-02	1.5511E+00	2.24/3E+00
123	6.0465E-02	5.2221E-02	2.3917E+00	3.3913E+00
125	1.0069E-01	8.7180E-02	3.2077E+00	4.485/E+00
127	1.6503E-01	1.4322E-01	4.3131E+00	5.9516E+00
130	3.3656E-01	2.9310E-01	6.7423E+00	9.1302E+00
140	2.9066E+00	2.55/9E+00	2.95/5E+01	3.8016E+01
148	1.3236E+01	1.1/34E+01	9.211/E+01	1.14/8E+02
150	1.8856E+01	1.6/45E+01	1.2124E+02	1.5007E+02
152	2.6613E+01	2.36/4E+01	1.5893E+02	1.9550E+02
170	4.1155E+02	3.7098E+02	1.4991E+03	1./6/6E+03
1/3	7.9733E+02	7.2103E+02	2.6315E+03	3.0/61E+03
180	1.4894E+03	1.3509E+03	4.5055E+03	5.2263E+03
195	8.0210E+03	7.3347E+03	1.9696E+04	2.2419E+04
200	1.3298E+04	1.2190E+04	3.08/6E+04	3.4960E+04
202	1.6166E+04	1.4833E+04	3.6/59E+04	4.1539E+04
210	3.4028E+04	3.1333E+04	7.1709E+04	8.0446E+04
220	8.0011E+04	7.3977E+04	1.5553E+05	1./310E+05
223	1.0189E+05	9.4311E+04	1.9382E+05	2.1525E+05
225	1.1928E+05	1.1049E+05	2.2378E+05	2.4818E+05
227	1.3925E+05	1.2909E+05	2.5779E+05	2.8550E+05
230	1.7479E+05	1.6221E+05	3.1739E+05	3.5083E+05
240	3.5802E+05	3.3339E+05	6.1345E+05	6.7398E+05
248	6.0977E+05	5.6926E+05	1.0033E+06	1.0975E+06
250	6.9294E+05	6.4730E+05	1.1295E+06	1.2343E+06
252	7.8588E+05	7.3455E+05	1.2693E+06	1.3857E+06
260	1.2756E+06	1.1950E+06	1.9909E+06	2.1656E+06
273	2.6399E+06	2.4816E+06	3.9261E+06	4.2468E+06
280	3.7993E+06	3.5774E+06	5.5226E+06	5.9576E+06
290	6.2020E+06	5.8532E+06	8.7535E+06	9.4093E+06
296	8.1928E+06	7.7420E+06	1.1379E+07	1.2207E+07
298	8.9674E+06	8.4775E+06	1.2391E+07	1.3285E+07
300	9.8036E+06	9.2718E+06	1.3479E+07	1.4442E+07
353	7.2446E+07	6.9137E+07	9.0104E+07	9.5231E+07

E. References, and Complete References 12 and 13

Complete Reference 11. J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A. Fernandez Ramos, B. A. Ellingson, B. J. Lynch, J. Zheng, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu, T. V. Albu, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G. Truhlar, POLYRATE–version 9.7, University of Minnesota, Minneapolis, 2007.

Complete Reference 12. Gaussian 03, Revision E.01,

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
- M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
- K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
- V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
- G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
- R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
- H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
- V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
- O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
- P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
- V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
- O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
- J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
- J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
- I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
- C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
- B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Wallingford CT, 2004.

- Si De Laeter, J. R.; Böhlke, J. K.; De Biévre, P.; Hidaka, H. Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P. *Pure Appl. Chem.* **2000**, *75*, 683-800.
- Sii Griller, D.; Ingold, K. U. Arc. Chem. Res. 1980, 13, 317.
- Siii Johnston, L. J.; Lusztyk, J.; Wayner, D. D. M.; Abeywickreyma, A. N.; Beckwith, A. L. J.; Scaiano, J. C.; Ingold, K. U. *J. Am. Chem. Soc.* **1985**, *107*, 4594-4596.