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Cell Cultures. RAW264.7 and HEK-293T cells (American Type
Culture Collection) were maintained in Dullbecco’s modified
Eagle’s medium (DMEM) with 10% FBS, 2 mM L-glutamine, 100
U/mL penicillin, and 100 U/mL streptomycin at 37 °C with a 5%
CO2 atmosphere in a humidified incubator. RAW264.7 grown in
α-MEM (Sigma) were induced to differentiate into osteoclast-like
cells in the presence of 20 ng/mL M-CSF and 20 ng/mL RANKL
(R&D Systems) for 72 h. Sealing zone-like structures were stained
with FITC or TRITC-conjugated phalloidin (Sigma) or detected in
cells stably expressing actin-GFP (20). TRAP-positive multinu-
cleated osteoclasts (>3 nuclei) were identified by using a leukocyte
acid phosphatase kit (Sigma), according to the manufacturer’s
instructions. For the bone resorption assay, RAW264.7 cells were
induced to differentiate on thin slices of bovine tibia for 6 d. Bone
slices were then washed and stained with Coomassie Brilliant Blue
for identification of pit formation, as described (21). Stimulation of
RAW264.7 cells toward macrophage activation was performed
with 100 ng/mL LPS (Sigma) for 24 h. NO levels were determined
by using Griess reagent (Sigma), according to the manufacturer’s
instructions. For Il-1α quantification, cells were stimulated with
LPS for 10 h then fixed and stained with anti IL-1α antibody (R&D
Systems). Viability and proliferation were measured with Ala-
mareBlue metabolic assay (Biosource), according to the manu-
facturer’s instructions.
miR-155misexpressionandknockdownmiR-155weretransiently

transfectedwith amiRVec pMSCV vector (22), or were retrovirally
infected, to generate a miR-155 misexpressing RAW264.7 cell line.
The 2’-O-methyl oligoribonucleotides againstmiR-155 (catalogNo.
AM13058; ABI), siGLO, and RISC-Free siRNA controls (Dhar-
macon) were transfected with Lipofectamine 2000 Reagent (In-
vitrogen), according to the manufacturer’s instructions.

Microscopy, Image Acquisition, and Analysis.Microscopy-based data
were acquired with a DeltaVision system (Applied Precision),
consisting of an inverted IX70 microscope (Olympus), using Re-
solve3D software, and using the Priism software package (http://
www.msg.ucsf.edu/IVE/index.html). Time-lapse and IL-1α+ mac-
rophages images were acquired by using the WiScan autofocus
screening microscope (Idea Bio-Medical) (23). Quantification of
absolute osteoclast number per well, the relative area occupied by

giant multinucleated osteoclast per well, and the relative area
stained with Coomassie Brilliant Blue on 0.5-cm2 sections of bo-
vine bone were marked manually and measured by using NIS-el-
ement software (Nikon).

Affymetrix Array Analysis and Bioinformatics. Total RNA was col-
lected fromRAW264.7cells, stably infectedclonesexpressingmiR-
155, or an empty vector, by using the RNeasy Minikit (QIAGEN),
according to themanufacturer’s instructions.AnAffymetrixMouse
Genome ST 1.0 microarray analysis was then performed by using
pooled RNA from each group, according to manufacturer’s pro-
tocols. Data were analyzed by using Rosetta Resolver Software.
Microarray data were deposited in the GEO database under ac-
cession number GSE16749.

Quantitative PCR for mRNA and miRNA.Extraction of total RNAwas
carried out by using themiRNeasyMini Kit (QIAGEN). Synthesis
of cDNA and PCR was carried out by using the miScript PCR
System (QIAGEN). The primer sequence is shown in Table S2.
miRNA levels were normalized to the expression of the small RNA
U6. mRNA expression was normalized to GAPDH and HPRT
mRNAs

Western Blotting. Protein was isolated from RAW264.7 cells and
used for Western blotting. The following antibodies were used for
Western blotting: rabbit anti-PU.1 (T-21; Santa Cruz Bio-
technology); mouse anti-MITF (a kind gift of David E. Fisher,
Harvard Medical School, Boston) goat anti-GFP (Abcam), and
mouse anti-Tubulin (SIGMA).

Assay of Luciferase Activity. The mouse MITF 3′ UTR target site
(chr6:97969310–97970417) was subcloned into psiCHECK-2 Vec-
tor (Promega) and transfected into HEK293T cells, together with
eithermiR-155 ormiR-133 expressing vectors. Cells were harvested
and assayed for Firefly and Renilla luciferase activity 48 h after
transfection, according to manfacturer’s instructions (Promega).

Statistical Analysis.All statistical analyses were performed by using
aMicrosoft Excel statistical software module. Results are given as
mean ± SD. Statistical analyses were performed by means of the
Student’s t test; the null hypothesis was rejected at the 0.05 level.
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Fig. S1. A functional screen suggests miR-155 as a potential inhibitor of osteoclast differentiation. (A) A table showing a list of 15 miRNA genes and their
predicted mRNA target that were misexpressed in RAW264.7 cells (refs. 1–19; see reference list above). The cultures were then induced with RANKL/M-CSF, and
the relative effect of each of these miRNAs on osteoclast differentiation was evaluated in at least eight independent transfections. A minus sign means that the
miRNA did not repress osteoclast differentiation. The number of plus signs (+, ++, +++) shows the estimated magnitude of inhibition endowed by the mis-
expression of a particular miRNA gene. (B) Representative micrograph from the screen described in A, exemplifying the inability of miR-200c to inhibit os-
teoclast differentiation. Quantification of the number of multinucleated osteoclasts per well was performed as described in Results (Fig. 1A) and is shown on
the right (C) Expression levels of miR-223, miR-148, and miR-200c remained unchanged by miR-155 misexpression in RAW264.7 cells. (D) RAW264.7 cell viability
and proliferation, evaluated by a metabolic assay (AlamareBlue) 4 d after misexpression of miR-155 (155 ME), is comparable with scrambled, nontargeting
control oligos (RAW SC). Data from at least six independent experiments, performed in triplicates, are shown as mean ± SD. *P < 0.01.
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Fig. S2. miR-155 misexpression does not affect macrophage activation. Wild-type and miR-155 misexpressing cells were assayed for phagocytic activity by
their ability to engulf fluorescent latex beads 6 h after LPS stimulation. Cytochalasin D, a membrane-permeable, potent inhibitor of actin polymerization,
abrogates phagocytosis altogether and provides a negative control.
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Fig. S3. Actin-GFP expression is not affected by mir-155 misexpression. Actin-GFP protein levels in cells stably expressing actin-GFP alone (RAW) or together
with miR-155 (155 ME). Densitometry quantification of two independent Western blots, shown in relative units (RU).
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Fig. S4. miR-155 levels affect monocyte differentiation capacity when stimulated by conflicting proosteoclastic and inflammatory signals. Macrophage activity
was assessed by nitric oxide (NO) production in cells transfected with scrambled, nontargeting oligonecleotides (RAW SC), cells misexpressing miR-155 (155 ME),
or cells in which miR-155 was knocked down by antisense oligonucleotides (155 KD). Untreated cells (A); cells stimulated with RANKL and M-CSF (B); with LPS
alone (C); and simultaneously, with a mixture of RANKL, M-CSF, and LPS (D). Data from at least three independent experiments, replicated eight times, are
shown as mean ± SD. *P < 0.05; **P < 0.01.
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Fig. S5. Genes that are up-regulated upon RANKL/M-CSF treatment are not preferentially mir-155 predicted targets. Comparison of the number of predicted
targets in a set of 234 up-regulated genes (y axis) vs. 366 down-regulated genes (x axis) for all (4,096) potential 6-mer words reveals that the mir-155 binding
sequences, (“seed”), depicted at the center of the scatter plot by a red circle, do not exemplify any enrichment in the group of up-regulated genes.
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Fig. S6. GPNMB mRNA levels decrease significantly in progenitor cells misexpressing miR-155. A log2-scale scatter plot, presenting unmanipulated cells along
the x axis (RAW) and miR-155 expressing cells (155 ME) along the y axis. GPNMB expression is marked by a red diamond.
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Fig. S7. The specific isoform of MITF and PU.1 3′UTRs expressed in RAW264.7 cells contains miR-155 binding sites. PCR for both MITF and PU.1 3′UTR frag-
ments, flanking the miR-155 binding sites, was conducted both for RAW264.7 cDNA (RAW) and genomic DNA (DNA). A single band in the expected size
suggests that the isoform expressed may be subject to miR-155 regulation.
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Fig. S8. A detailed temporal analysis of miR-155 expression (gray, log10 scale; y axis on the left) and nitric oxide (NO) synthesis (black, linear scale; y axis on the
right) in RAW264.7 cells stimulated with LPS.
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Table S2. Primers used for QRT-PCR analysis

Table S2 (DOC)

Table S1. Gene expression profiles of 500 mRNA in RAW264.7
control cells and cells misexpressing miR-155 during osteoclast
differentiation. Raw data presented in Fig. 4A: Log2 expression
levels of the 500 mRNAs whose expression are most significantly
differentiated, sorted according to the relative difference
between RAW264.7 cells, and RAW264.7 cells in which miR-155 is
misexpressed

Table S1 (DOC)

Movie S1. Cell fusion during osteoclast differentiation. Time-lapse imaging of RAW264.7 control cells after RANKL and M-CSF stimulation. Imaging begins
40 h after addition of cytokines (15 min per frame) and continues for 30 h. Arrows indicate early fusion events. (Scale bar: 100 μm.)

Movie S1

Movie S2. miR-155 misexpression impairs fusion. Time-lapse imaging of RAW264.7 cells misexpressing miR-155 after RANKL and M-CSF stimulation. Imaging
begins 40 h after addition of cytokines (15 min per frame) and continues for 30 h. (Scale bar: 100 μm.)

Movie S2
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