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Appendix A 142 

 143 

Each of the 12 segments of the subject was assumed to be a rigid segment and modeled 144 

accordingly. The equations that governed the system are show in equation 1. 145 
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Here, F


is a force vector acting on a segment and M


is the moment vector acting on a 147 

segment. The subscripts denote the type of force or moment as being either contact, 148 

distance, or inertia which describes forces or moments due to contact, gravity, and 149 

inertial forces respectively. The inertial forces are further expanded in equation 2 as: 150 
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In equation 2, the inertial moment is taken about the center-of-mass (COM). R is the 152 

rotation matrix, which describes the segment in the lab reference frame, and I is the 153 

inertial matrix in the segment reference frame. Since the inertial matrix dotted with the 154 

rotation matrix generally results in a matrix with non-zero diagonal terms, rotational 155 

dynamic coupling is possible. The mass of the segment is defined by m and the angular 156 

acceleration and velocity of the segment with respect to the lab reference frame is defined 157 

by 


 and 


 respectively. The inertial moments acting on the segment can be expressed 158 

about any point, O, in the lab using equation 3.  159 
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In equation 3, COMOp /
 is the vector from point O in the lab to the COM of the segment, 161 

which is necessary to ensure that summation of the contact, distance, and inertial 162 

moments occur about the same point with respect to the same reference frame.  163 

Equations 1, 2, and 3 can be applied to any body or group of bodies which are selected as 164 

the free body in question.  165 

In order to establish the trunk angular acceleration as a function of the lower extremity 166 

joint moments, joint constraints are applied to the ankle, knee, and hip. The equation used 167 

to do so is given by equation 4. 168 
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Equation 4 relates the acceleration of the distal and proximal segment to one another 170 

since they are connected by a ball and socket joint. dp


 and pp


are the vectors from a 171 

point O in the lab to the COM of the distal and proximal segments, respectively. It is 172 

assumed that the moment acting on the proximal end of the distal segment is equal and 173 

opposite to the moment acting on the distal end of the proximal segment. 174 

The moments acting at the proximal end of each segment (at each joint) are given by the 175 

equations (5). 176 
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Similarly the forces acting on the proximal end of each segment are given by equation 6. 178 
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In the equations 5 and 6 the subscripts F, S, and T reflect the foot, shank, and thigh 180 

segments, respectively. The above equations of motion can be linearly parameterized into 181 

equation 7 which reflects the trunk angular acceleration as a function of the joint 182 

moments.  183 
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For the sake of example, the moment equations for a three-dimensional inverted 185 

pendulum is derived and linearly parameterized to express the angular acceleration of the 186 

pendulum in terms of the moment at the pivot point. The moment equation for an 187 

inverted pendulum is given as: 188 
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This equation can be written in terms of its elements. 190 
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  (9) 191 

In equation 9, the angular acceleration’s sensitivity to the contact moments are the 192 

inverse of the inertia matrix in the laboratory reference frame for a given configuration of 193 

the pendulum.  194 

The sensitivity matrix S (equation 7) is a time varying matrix which is dependant on the 195 

geometry of the model. The constant vector C is also dependant on the geometry of the 196 

model and the scalars x , y , and z  in equation 7 are the angular accelerations of the 197 

trunk about the x, y and z axes, respectively. 198 




