Supporting Information

Nickel-catalyzed C–O Activation of Phenol Derivatives with Potassium Heteroaryltrifluoroborates

Gary A. Molander* and Floriane Beaumard

Roy and Diana Vagelos Laboratories, Department of Chemistry

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

gmolandr@sas.upenn.edu

General Considerations	S2
Importance of the solvent in the reaction	
General Experimental Procedure for Nickel-catalyzed C-O activation	

1. Preparation of (naphthalen-1-yl)heteroaryl compounds	
2. Preparation of (naphthalen-1-yl)aryl compounds	
3. Preparation of heteroarylmethanesulfonate compounds	
4. Preparation of (furan-3-yl)heteroaryl compounds	S14-S39
5. Preparation of (substituted phenyl)heteroaryl compounds	S16-S18
NMR Spectra	S18-S90

General Considerations

All commercially obtained reagents were used as received. Both solvents and deionized water were degassed with N₂ each time prior to use. Standard benchtop techniques were employed for handling air-sensitive reagents. Melting points (°C) are uncorrected. NMR spectra were recorded on a 500, 400, or 300 MHz spectrometer. ¹⁹F NMR chemical shifts were referenced to external CFCl₃ (0.0 ppm). ¹¹B NMR spectra were obtained on a spectrometer equipped with the appropriate decoupling accessories. All ¹¹B NMR chemical shifts were referenced to external BF₃·OEt₂ (0.0 ppm) with a negative sign indicating an upfield shift. Data are presented as follows: chemical shift (ppm), multiplicity (*s* = singlet, *d* = doublet, *t* = triplet, *m* = multiplet, *br* = broad), coupling constant *J* (Hz) and integration. Analytical thin-layer chromatography (TLC) was performed on TLC silica gel plates (0.25 mm) precoated with a fluorescent indicator. Standard flash chromatography procedures were followed using 32–63 µm silica gel. Visualization was effected with ultraviolet light.

Importance of the solvent in the reaction

OPiv	+	Ni(COD) ₂ 10 mol % PtBuCy ₂ 20 mol % K ₃ PO ₄ solvent 110 °C, t c		
entry	solvent	с	t	yield ^a
1	$Dioxane/H_2O(1/1)$	0.05	1h	11%
2	$Dioxane/H_2O(6/1)$	0.05	1h	7%
3	$THF/H_{2}O(1/1)$	0.05	1h	/
4	EtOH	0.1	1h	/
5 ^b	$Tol/H_2O(1/1)$	0.05	1h	/
6 ^b	CPME/H ₂ O (1/1)	0.05	1h	/
7 ^b	s-BuOH	0.05	1h	/
8^{b}	<i>i</i> -PrOH	0.05	1h	/
9 ^b	MeOH	0.05	1h	/
10 ^b	t-amyl alcohol	0.05	1h	/
11	t-BuOH	0.1	1h	35%
12 ^b	t-BuOH	0.1	1h	29%
13 ^b	t-BuOH	0.05	1h	25%
14 ^b	<i>t</i> -BuOH/H ₂ O (1/1)	0.05	1h	56%
15 ^b	t-BuOH/H ₂ O (1/1)	0.1	1h	59%
16 ^b	t-BuOH/H ₂ O (1/1)	0.2		30%

^a Relative GC yield using dodecane as an internal standard

^b PCy₃HBF₄

General Experimental Procedure for Nickel-catalyzed C-O Activation (3-(naphthalen-1-yl)furan (2a) is used as an example)

A Biotage microwave vial was charged with K_3PO_4 (1.80 mmol, 382.0 mg), potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol), **1a** (55.5 mg, 0.25 mmol) and Cy₃P'HBF₄ (50 µmol, 18.4 mg). In the glove box, Ni(COD)₂ (25 µmol, 6.9 mg) was added and the test tube was sealed with a cap lined with a disposable Teflon septum. Outside of the glove box, a mixture of *t*-BuOH/H₂O (1.25 mL/1.25 mL) was added under N₂. The reaction mixture was heated to 110 °C for 4 h before cooling to rt. The reaction mixture was extracted with EtOAc (3 x 2 mL) and then dried (MgSO₄). The solvent was removed *in vacuo*, and the crude product was purified by silica gel column chromatography (elution with hexanes/EtOAc 90:10) to yield **2a** in 93% yield (43.0 mg) as a yellow oil. ¹H NMR (300 MHz, acetone-*d*₆) δ 8.17-8.14 (m, 1H), 7.97-7.85 (m, 3H), 7.75 (t, *J* = 1.7 Hz, 1H), 7.56-7.44 (m, 4H), 6.80 (dd, *J* = 1.7, 0.8 Hz, 1H); ¹³C NMR (125 MHz, acetone-*d*₆) δ 144.2, 141.6, 135.0, 132.5, 131.6, 129.3, 128.6, 127.7, 127.1, 126.8, 126.4, 126.2, 125.6, 113.1; FT-IR (neat) 3047, 1510, 1500, 1260 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₄H₁₁O (M+H)⁺ 195.0810, found 195.0806.

1. Preparation of (naphthalen-1-yl)heteroaryl compounds

3-(Naphthalen-1-yl)furan (2a). Following the general procedure, the reaction was also carried out with **1d** (57.0 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **2a** (37.7 mg, 78%) as a yellow oil after silica gel column chromatography (elution with hexanes/EtOAc 90:10).

3-(Naphthalen-1-yl)thiophene (2b). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium thiophen-3-yltrifluoroborate (62.7 mg, 0.33 mmol) to obtain **2b** (47.4 mg, 90%) as a yellow oil after preparative silica gel chromatography (elution with hexanes). ¹H NMR (300 MHz, acetone- d_6) δ 8.04-7.89 (m, 3H), 7.64 (dd, J = 4.9, 3.0 Hz, 1H); 7.56 (dd, J = 3.0, 1.3 Hz, 1H); 7.54-7.46 (m, 4H), 7.34 (dd, J = 4.9, 1.3 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 142.0, 135.8, 135.0, 132.7, 130.4, 129.3, 128.7, 127.8, 127.1, 126.8, 126.7, 126.5, 126.4, 124.5; FT-IR (neat) 3045, 1591, 1505, 1413; HRMS (ESI) *m/z* calcd. for C₁₄H₁₁S (M+H)⁺ 211.0591, found 211.0581.

Following the general procedure, the reaction was also carried out with 1d (57.0 mg, 0.25 mmol) and potassium thiophen-3-yltrifluoroborate (62.7 mg, 0.33 mmol) using Cy₂Pt-Bu (12.7 mg, 50 μ mol) in a mixture of dioxane/H₂O (2.5 mL/2.5 mL) at 110 °C for 1 h to obtain 2b (39.6 mg, 75%) as a yellow oil after preparative silica gel chromatography (elution with hexanes).

2-(Naphthalen-1-yl)thiophene (2c). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium thiophen-2-yltrifluoroborate (62.7 mg, 0.33 mmol) to obtain **2c** (33.8 mg, 64%) as a light yellow oil after silica gel chromatography (elution with hexanes). ¹H NMR (500 MHz, acetone- d_6) δ 8.22-8.19 (m, 1H), 8.00-7.94 (m, 2H), 7.61 (dd, J = 5.1, 1.0 Hz, 1H); 7.60-7.52 (m, 4H), 7.30 (dd, J = 3.5, 1.0 Hz, 1H); 7.24 (dd, J = 5.1, 3.5 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 141.2, 140.0, 132.2, 131.6, 128.4, 128.3, 127.9, 127.4, 127.4, 126.5, 126.0, 125.9, 125.2, 125.2; FT-IR (neat) 3049, 1589, 1505, 1389; HRMS (ESI) *m/z* calcd. for C₁₄H₁₁S (M+H)⁺ 211.0574, found 211.0581.

A Biotage microwave vial was charged with K_3PO_4 (382.0 mg, 1.80 mmol), potassium thiophen-2yltrifluoroborate (62.7 mg, 0.33 mmol) and **1d** (57.0 mg, 0.25 mmol). In the glove box, Cy_2Pt -Bu (12.7 mg, 50 µmol) and Ni(COD)₂ (6.9 mg, 25 µmol) were added, and the test tube was sealed with a cap lined with a disposable Teflon septum. Outside of the glove box, a mixture of dioxane/H₂O (2.5 mL/2.5 mL) was added under N₂. The reaction mixture was heated to 110 °C for 1 h before cooling to rt. Dodecane (42.6 mg, 0.25 mmol) was added, and the mixture was filtered through a thin pad of silica with EtOAc. The filtrate was analyzed by gas chromatography using dodecane as the internal standard to afford **2c** in 26% relative yield. H₂O

3-(Naphthalen-1-yl)pyridine (2d). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium pyridin-3-yltrifluoroborate (61.0 mg, 0.33 mmol) to obtain **2d** (41.9 mg, 82%) as a yellow oil after silica gel chromatography (elution with hexanes/EtOAc 80:20). ¹H NMR (300 MHz, acetone- d_6) δ 8.70-8.67 (m, 2H), 8.04-7.99 (m, 2H), 7.90 (dt, J = 7.7, 1.9 Hz, 1H); 7.79 (d, J = 8.2 Hz, 1H), 7.64-7.47 (m, 5H); ¹³C NMR (125 MHz, acetone- d_6) δ 151.2, 149.6, 137.9, 137.3, 137.0, 134.9, 132.3, 129.4, 129.3, 128.3, 127.5, 127.0, 126.4, 125.9, 124.1; FT-IR (neat) 3034, 1605, 1408, 1394; HRMS (ESI) *m/z* calcd. for C₁₅H₁₂N (M+H)⁺ 206.0963, found 206.0970.

Following the general procedure, the reaction was also carried out with 1d (57.0 mg, 0.25 mmol) and potassium pyridin-3-yltrifluoroborate (61.0 mg, 0.33 mmol) to obtain 2d (30.8 mg, 60%) as a yellow oil after silica gel chromatography (elution with hexanes//EtOAc 80:20).

4-(Naphthalen-1-yl)pyridine (2e). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium pyridin-4-yltrifluoroborate (61.0 mg, 0.33 mmol) to obtain 2e (35.2 mg, 69%) as a white solid after silica gel chromatography (elution with hexanes/EtOAc 80:20). mp: 93-95 °C; ¹H NMR (300 MHz, acetone- d_6) δ 8.74-8.72 (m, 2H), 8.03-8.00 (m, 2H), 7.84 (d, J = 8.8 Hz, 1H), 7.62-7.47 (m, 6H); ¹³C NMR (125 MHz, acetone- d_6) δ 150.8, 149.1, 138.3, 134.8, 131.6, 129.7, 129.4, 127.8, 127.6,

127.0, 126.3, 125.8, 125.7; FT-IR (neat) 3059, 1588, 1410; HRMS (ESI) m/z calcd. for C₁₅H₁₂N (M+H)⁺ 206.0962, found 206.0970.

A Biotage microwave vial was charged with K_3PO_4 (382.0 mg, 1.80 mmol), potassium pyridin-4yltrifluoroborate (61.0 mg, 0.33 mmol), 1d (57.0 mg, 0.25 mmol) and Cy₃PHBF₄ (18.4 mg, 50 μmol). In the glove box, Ni(COD)₂ (25 μ mol, 6.9 mg) was added, and the test tube was sealed with a cap lined with a disposable Teflon septum. Outside of the glove box, a mixture of t-BuOH/H₂O (1.25 mL/1.25 mL) was added under N₂. The reaction mixture was heated to 110 °C for 4 h before cooling to rt. Dodecane (42.6 mg, 0.25 mmol) was added and the mixture was filtered through a thin pad of silica with EtOAc. The filtrate was analyzed by gas chromatography using dodecane as the internal standard to afford 2e in 32% relative yield.

Potassium Pyrimidin-5-yltrifluoroborate. To a solution of pyrimidin-5-ylboronic acid (5.0 g, 40.0 mmol) in MeOH (11.5 mL, 3.5 M) under N₂ was added KHF₂ (9.5 g, 121.0 mmol) in one portion at 0 °C. To the suspension was added H₂O dropwise (8.9 mL, 4.5 M) at 0 °C. The ice-₿F₂K water bath was removed, and the reaction was stirred at rt for 1 h. The crude mixture was concentrated and dried overnight in vacuo. The crude solid was purified using continuous Soxhlet extraction (overnight) with acetone (250 mL). The collected solvent was concentrated and then redissolved in a minimal amount of acetone (20 mL). The addition of Et₂O (125 mL) led to the precipitation of the product. The product was filtered, concentrated, and dried in vacuo to afford the pure compound (3.86 g, 52%) as a white solid. mp > 250 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 8.88 (s, 1H), 8.54 (s, 2H); ¹³C NMR (125 MHz, DMSOd₆) δ 159.5, 156.5; ¹⁹F NMR (470.8 MHz, DMSO-d₆) δ -139.3; ¹¹B NMR (128.4 MHz, DMSO-d₆) δ

1.317; FT-IR (KBr) 3036, 1582, 1570, 1441 cm⁻¹; HRMS (ESI) m/z calcd. for C₄H₃BF₃N₂⁻ (M-K)⁻ 147.0341, found 147.0343.

5-(Naphthalen-1-yl)pyrimidine (2f). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium pyrimidin-5-yltrifluoroborate (61.4 mg, 0.33 mmol) to obtain 2f (42.9 mg, 83%) as an orange oil after silica gel chromatography (elution with hexanes/EtOAc 80:20). ¹H NMR (300 MHz, acetone- d_6) δ 9.25 (s, 1H), 8.91 (s, 2H), 8.06-8.02 (m, 2H), 7.80-7.77 (s, 1H), 7.67-7.53 (m, 4H); ¹³C NMR (125 MHz, acetone-d₆) δ 158.5, 158.0, 135.1, 134.9, 133.7, 132.2, 130.1, 129.5, 128.8, 127.9, 127.2, 126.4, 125.5; FT-IR (neat) 3043, 1574, 1548, 1418, 1391; HRMS (ESI) *m/z* calcd. for C₁₄H₁₁N (M+H)⁺ 207.0922, found 207.0918.

A Biotage microwave vial was charged with K₃PO₄ (382.0 mg, 1.80 mmol), potassium pyrimidin-5yltrifluoroborate (61.4 mg, 0.33 mmol), 1d (57.0 mg, 0.25 mmol) and Cy_3PHBF_4 (18.4 mg, 50 μ mol). In the glove box, Ni(COD)₂ (25 μ mol, 6.9 mg) was added, and the test tube was sealed with a cap lined with a disposable Teflon septum. Outside of the glove box, a mixture of t-BuOH/H₂O (1.25 mL/1.25 mL) was added under N2. The reaction mixture was heated to 110 °C for 4 h before cooling to rt. Dodecane (42.6 mg, 0.25 mmol) was added and the mixture was filtered through a thin pad of silica with EtOAc. The filtrate was analyzed by gas chromatography using dodecane as the internal standard to afford 2f in 26% relative yield.

2-(Naphthalen-1-yl)furan (2g). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium furan-2-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain 2g (38.2 mg, 79%) as a brown oil after silica gel chromatography (elution with hexanes). ¹H NMR (500 MHz, acetone- d_6) δ 8.42 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 7.6Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.79-7.75 (m, 2H), 7.60-7.53 (m, 3H), 6.85 (d, J = 3.2 Hz, 1H), 6.67 (dd, J = 3.2, 1.7 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 154.2, 143.7, 135.0, 131.1, 129.4, 129.4, 129.4, 127.5, 126.9, 126.9, 126.3, 126.2, 112.4, 110.2; FT-IR (neat) 3043, 1509, 1238; HRMS (ESI) m/z calcd. for $C_{14}H_{10}O(M)^+$ 194.0732, found 194.0738.

3-(Naphthalen-1-yl)quinoline (2h). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium quinolin-3-yltrifluoroborate (77.6 mg, 0.33 mmol) to obtain 2h (60.6 mg, 95%) as a colorless oil after silica gel chromatography (elution with hexanes/EtOAc 80:20). ¹H NMR (300 MHz, acetone- d_6) δ 9.02 (d, J = 2.1 Hz, 1H), 8.39 (d, J = 2.1 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.04-8.01 (m, 3H), 7.86 (d, J = 8.4 Hz, 1H), 7.83-7.80 (m, 1H), 7.68-7.62 (m, 2H), 7.59 (d, J = 6.7 Hz,

1H), 7.54 (d, J = 7.8 Hz, 1H), 7.52-7.49 (m, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 152.5, 148.4, 137.3, 137.3, 136.8, 134.9, 134.5, 132.5, 130.3, 130.1, 129.4, 129.4, 129.1, 128.7, 127.8, 127.5, 127.0, 126.4, 126.0; FT-IR (neat) 3057, 1567, 1508, 1490; HRMS (ESI) m/z calcd. for $C_{19}H_{14}N$ (M+H)⁺ 256.1126, found 256.1115.

2-(Naphthalen-1-yl)benzothiophene (2i). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium benzothiophen-2yltrifluoroborate (79.2 mg, 0.33 mmol) to obtain 2i (27.4 mg, 42%) as a white solid after silica gel chromatography (elution with hexanes). mp: 104-106 °C; ¹H NMR (500 MHz, acetone- d_6) δ 8.31-8.27 (m, 1H), 8.03-7.90 (m, 3H), 7.94 (dd, J = 7.3, 1.7 Hz, 1H), 7.70 (dd, J = 7.1, 1.2 Hz, 1H), 7.61-7.54 (m, 4H), 7.45 (td, J = 7.1, 1.2 Hz, 1H), 7.41 (td, J = 7.1, 1.5 Hz, 1H);¹³C NMR (125 MHz, acetone- d_6) δ 142.6, 141.3, 141.0, 135.0, 133.1, 132.5, 129.9, 129.4, 129.3, 127.7, 127.2, 126.2, 126.2, 125.5, 125.4, 125.2, 124.7, 122.9; FT-IR (neat) 3052, 1504, 1455, 1435, 1390; HRMS (ESI) m/z calcd. for C₁₈H₁₂S (M)⁺ 260.0660, found 260.0658.

2-(Naphthalen-1-yl)benzofuran (2j). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium benzofuran-2-yltrifluoroborate (74.0 mg, 0.33 mmol) to obtain 2j (49.7 mg, 81%) as a light yellow oil after silica gel chromatography (elution with hexanes/EtOAc 80:20). ¹H NMR (500 MHz, acetone- d_6) δ 8.51 (d, J = 8.3 Hz, 1H), 8.03-8.00 (m, 2H), 7.95 (dd, J = 7.2, 0.9 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.65-7.58 (m, 4H), 7.38 (t, J = 8.3 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.28 (s, 1H); ¹³C NMR (125)

MHz, acetone-d₆) δ 156.4, 155.9, 135.0, 131.4, 130.5, 130.0, 129.6, 128.9, 128.2, 127.9, 127.1, 126.3, 126.2, 125.4, 124.0, 122.1, 111.9, 106.9; FT-IR (neat) 3044, 1452, 1258; HRMS (ESI) m/z calcd. for $C_{18}H_{12}O(M)^+$ 244.0888, found 244.0889.

Potassium Isoquinolin-5-yltrifluoroborate. To a solution of isoquinolin-5-ylboronic acid (5.0 g, 28.91 mmol) in MeOH (8.5 mL, 3.5 M) under N₂ was added KHF₂ (6.8 g, 86.7 mmol) in one portion at 0 °C. To the suspension was added H₂O dropwise (6.4 mL,

4.5M) at 0 °C. The ice-water bath was removed, and the reaction was stirred at rt for 1 h. The crude mixture was concentrated and dried overnight *in vacuo*. The crude solid was purified using continuous Soxhlet extraction (overnight) with acetone (200 mL). The collected solvent was concentrated and then redissolved in a minimal amount of acetone (15 mL). The addition of Et₂O (100 mL) led to the precipitation of the product. The product was filtered, concentrated, and dried *in vacuo* to afford the pure compound (2.89 g, 43%) as a white solid. mp > 250 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.13 (s, 1H), 8.32 (d, *J* = 5.9 Hz, 1H), 8.18 (d, *J* = 5.9 Hz, 1H), 7.80-7.76 (m, 2H), 7.48-7.44 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 152.0, 140.8, 138.7, 132.7, 132.7, 128.5, 126.4, 124.8, 122.8; ¹⁹F NMR (470.8 MHz, DMSO-*d*₆) δ -135.8. ¹¹B NMR (128.4 MHz, DMSO-*d*₆) δ 2.435. FT-IR (KBr) 3032, 1613, 1572 cm⁻¹. HRMS (ESI) *m/z* calcd. for C₉H₆OBF₃N⁻ (M-K)⁻ 196.0545, found 196.0536.

5-(Naphthalen-1-yl)isoquinoline (2k). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium isoquinolin-5-yltrifluoroborate (77.6 mg, 0.33 mmol) to obtain **2k** (58.1 mg, 91%) as a white powder after silica gel chromatography (elution with petroleum ether/EtOAc 80:20). mp: 121-123 °C. ¹H NMR (500 MHz, acetone- d_6) δ 9.41 (s, 1H), 8.35 (d, J = 5.9 Hz, 1H), 8.23 (d, J = 8.1 Hz, 1H),

8.06 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.83 (dd, J = 8.1, 7.1 Hz, 1H), 7.77 (dd, J = 7.1, 1.2 Hz, 1H), 7.66 (dd, J = 8.3, 7.1 Hz, 1H), 7.54-7.49 (m, 2H), 7.36-7.33 (m, 1H), 7.27 (d, J = 8.3 Hz, 1H), 7.11 (d, J = 5.9 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 153.8, 144.3, 138.3, 137.5, 135.9, 134.7, 133.4, 132.7, 129.7, 129.3, 129.3, 128.8, 128.4, 127.9, 127.2, 126.9, 126.6, 126.4, 119.3; FT-IR (neat) 3046, 1732, 1616, 1586; HRMS (ESI) *m/z* calcd. for C₁₉H₁₄N (M+H)⁺ 256.1126, found 256.1120.

N-Methyl-5-(naphthalen-1-yl)indole (21). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium *N*-methyl-indol-5-yltrifluoroborate (78.2 mg, 0.33 mmol) to obtain 2l (47.5 mg, 74%) as a colorless oil after silica gel chromatography (elution with hexanes/EtOAc 90:10). ¹H NMR (500 MHz, acetone- d_6) δ 7.99-7.96 (m, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.68-7.67 (m, 1H), 7.58-7.43 (m, 5H), 7.33-7.30 (m, 2H), 6.53 (dd, J = 3.1, 0.7 Hz, 1H), 3.02 (s, 3H); ¹³C NMR (125 MHz,

acetone-d₆) § 142.5, 137.2, 135.0, 133.1, 132.4, 130.7, 129.7, 129.1, 128.0, 127.8, 127.1, 126.6, 126.5,

126.3, 124.4, 122.6, 110.0, 101.7, 33.0; FT-IR (neat) 3042, 1513, 1490, 1394, 1243; HRMS (ESI) m/z calcd. for C₁₉H₁₅N (M)⁺ 257.1204, found 257.1200.

NH 5-(Naphthalen-1-yl)-1*H***-indole (2m). Following the general procedure, the reaction was carried out with 1a** (55.5 mg, 0.25 mmol) and potassium 1*H*-indol-5-yltrifluoroborate (73.6 mg, 0.33 mmol) to obtain **2m** (54.5 mg, 90%) as a yellow oil contaminated with 10% of impurities that cannot be separated after silica gel chromatography (elution with hexanes/CH₂Cl₂ 70:30). ¹H NMR (500 MHz, acetone- d_6) δ 10.38 (br s, 1H, NH), 7.98 (d, *J* = 8.3 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.70-7.69 (m, 1H), 7.59-7.62 (m, 2H), 7.50-7.46 (m, 2H), 7.44-7.40 (m, 2H), 7.25 (dd, *J* = 8.3, 1.7 Hz, 1H), 6.58-6.56 (m, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 142.6, 136.6, 135.0, 133.1, 132.5, 129.2, 129.1, 128.0, 127.7, 127.1, 126.6, 126.4, 126.4, 126.3, 124.5, 122.3, 111.9, 102.7; FT-IR (neat) 3419, 3045, 1574, 1506, 1262; HRMS (ESI) *m*/z calcd. for C₁₈H₁₃N (M)⁺ 243.1048, found 243.1048.

2. Preparation of (naphthalen-1-yl)aryl compounds

1-PhenyInaphthalene (3a). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium phenyltrifluoroborate (60.7 mg, 0.33 mmol) to obtain **3a** (36.1 mg, 71%) as a white solid after silica gel chromatography (elution with hexanes). mp: 40-41 °C (lit. 41-43 °C). ¹H NMR (500 MHz, acetone- d_6) δ 7.97 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.58-7.42 (m, 9H).

¹H NMR is comparable to the literature.¹

1-(*p***-Tolyl)naphthalene (3b).** Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium *p*-tolyltrifluoroborate (65.3 mg, 0.33 mmol) to obtain **3b** (41.4 mg, 76%) as a white solid after silica gel chromatography (elution with hexanes). mp: 51-52 °C (lit. 52-54 °C). ¹H NMR (500 MHz, acetone- d_6) δ 7.96 (d, J = 8.1 Hz, 1H), 7.91-7.88 (m, 2H), 7.56-7.49 (m, 2H), 7.47-7.44 (m, 1H), 7.40 (dd, J = 7.1, 1.2 Hz,

¹ Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422-14423.

1H), 7.37 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 2.43 (s, 3H). ¹H NMR is comparable to the literature.¹

OMe 1-(4-Methoxyphenyl)naphthalene (3c). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium *p*methoxyphenyltrifluoroborate (70.6 mg, 0.33 mmol) to obtain 3c (53.1 mg, 91%) as a white solid after silica gel chromatography (elution with hexanes/EtOAc 80/20). mp: 112-113 °C (lit. 113-115 °C). ¹H NMR (500 MHz, acetone- d_6) δ 7.96 (dd, J = 8.1, 1.5 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.56-7.44 (m, 3H), 7.43-7.39 (m, 3H), 7.11-7.07 (m, 2H), 3.89 (s, 3H). ¹H NMR is comparable to the literature.²

1-(3-Methoxyphenyl)naphthalene (3d). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium *m*-methoxyphenyltrifluoroborate (70.6 mg, 0.33 mmol) to obtain **3d** (57.5 mg, 98%) as a colorless oil after silica gel chromatography (elution with hexanes/EtOAc 80/20). ¹H NMR (500 MHz, acetone- d_6) δ 7.96 (d, J = 8.8 Hz, 1H), 7.91 (dd, J = 8.3, 3.2 Hz,

2H), 7.56-7.50 (m, 2H), 7.48-7.40 (m, 3H), 7.06-7.01 (m, 3H), 3.85 (s, 3H).

¹H NMR is comparable to the literature.²

1-(2-Methoxyphenyl)naphthalene (3e). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium *o*-methoxyphenyltrifluoroborate (70.6 mg, 0.33 mmol) to obtain **3e** (49.8 mg, 85%) as a yellow powder after silica gel chromatography (elution with hexanes/EtOAc 80/20). mp: 96-98 °C (lit. 98-99 °C). ¹H NMR (500 MHz, acetone- d_6) δ 7.93 (d, J = 8.3 Hz,

1H), 7.90 (d, J = 8.3 Hz, 1H), 7.55-7.25 (m, 2H), 7.49-7.43 (m, 2H), 7.41-7.36 (m, 2H), 7.25 (dd, J = 7.3, 1.7 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 7.09 (td, J = 7.3, 1.0 Hz, 1H), 3.66 (s, 3H). ¹H NMR is comparable to the literature.³

² Cella, R.; Cunha, R.; Reis, A. E. S.; Pimenta, D. C.; Klitzke, C. F.; Stefani, H. A. J. Org. Chem. 2006, 71, 244-250.

³ Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844-9845.

1-(4-Fluorophenyl)naphthalene (3f). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium p-fluorophenyltrifluoroborate (66.7 mg, 0.33 mmol) to obtain **3f** (49.9 mg, 90%) as a white powder after preparative silica gel chromatography (elution with hexanes). mp: 71-72 °C (lit. 71-72 °C). ¹H NMR (500 MHz, acetone- d_6) δ 7.97 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 8.3 Hz, 1H), 7.57-7.45 (m, 5H), 7.41 (dd, J = 7.1 Hz J = 1.2 Hz, 1H), 7.31-7.26 (m, 2H).

¹H NMR is comparable to the literature.⁴

1-(4-(Trifluoromethyl)phenyl)naphthalene (3g). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium ptrifluorophenyltrifluoroborate (83.2 mg, 0.33 mmol) to obtain **3g** (48.6 mg, 71%) as a white powder after preparative silica gel chromatography (elution with hexanes/EtOAc 95/5). mp: 45-46 °C (lit. 47-49 °C). ¹H NMR (500 MHz, acetone- d_6) δ 8.01-7.97 (m, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 7.60-7.53 (m, 2H), 7.51-7.46 (m, 2H).

¹H NMR is comparable to the literature.¹

CHO 4-(Naphthalen-1-yl)benzaldehyde (3h). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium *p*formylphenyltrifluoroborate (70.0 mg, 0.33 mmol) to obtain **3h** (12.3 mg, 21%) as a yellow powder after preparative silica gel chromatography (elution with hexanes/EtOAc 80/20). mp: 79-81 °C (lit. 84 °C). ¹H NMR (500 MHz, acetone- d_6) δ 10.16 (s, 1H), 8.08 (d, *J* = 8.3 Hz, 2H), 8.02-7.98 (m, 2H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.62-7.54 (m, 2H), 7.52-7.49 (m, 2H).

¹H NMR is comparable to the literature.⁵

1-(4-(Naphthalen-1-yl)phenyl)ethanone (3i). Following the general procedure, the reaction was carried out with **1a** (55.5 mg, 0.25 mmol) and potassium pacetylphenyltrifluoroborate (74.6 mg, 0.33 mmol) to obtain 3i (57.6 mg, 94%) as a white powder after preparative silica gel chromatography (elution with hexanes/EtOAc 80/20). mp: 103-104 °C (lit. 102-103 °C). ¹H NMR (500 MHz, acetone- d_6) δ 8.13 (d, J = 8.3 Hz,

⁴ Glass, A. C.; Morris, B. B.; Zakharov, L. N.; Liu, S. Y. Org. Lett. 2008, 10, 4855-4857.

⁵ Saha, D.; Chattopadhyay, K.; Ranu, B. C. *Tetrahedron Lett.* 2009, 50, 1003-1006.

2H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.60-7.52 (m, 2H), 7.50-7.44 (m, 2H), 2.66 (s, 3H). ¹H NMR is comparable to the literature.⁶

CN 4-(Naphthalen-1-yl)benzonitrile (3j). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium *p*-cyanophenyltrifluoroborate (69.0 mg, 0.33 mmol) to obtain 3j (40.5 mg, 71%) as a colorless oil after preparative silica gel chromatography (elution with hexanes/EtOAc 95/5). ¹H NMR (500 MHz, acetone- d_6) δ 8.03-8.00 (m, 2H), 7.95 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 8.6 Hz, 2H), 7.63-7.55 (m, 2H), 7.54-7.48 (m, 2H).

¹H NMR is comparable to the literature.⁷

Methyl 3-(Naphthalen-1-yl)benzoate (3k). Following the general procedure, the reaction was carried out with 1a (55.5 mg, 0.25 mmol) and potassium *m*-methoxycarbonylphenyltrifluoroborate (79.9 mg, 0.33 mmol) to obtain 3k (30.2 mg, 46%) as a yellow powder after preparative silica gel chromatography (elution with hexanes/EtOAc 80/20). mp: 69-71 °C (lit. 70-70.5 °C). ¹H NMR (500 MHz,

acetone- d_6) δ 8.12-8.10 (m, 2H), 8.00 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.75 (dt, J = 7.6, 1.5 Hz, 1H), 7.70-7.66 (m, 1H), 7.61-7.53 (m, 2H), 7.51-7.46 (m, 2H), 3.91 (s, 3H). ¹H NMR is comparable to the literature.⁸

3. Preparation of heteroarylmethanesulfonate compounds

2-Methylpyridin-3-yl Methanesulfonate (4b). To a stirred solution of 2-methylpyridin-3ol (360.0 mg, 3.3 mmol) in 0.5 mL of 2,6-lutidine and 4.5 mL of CHCl₃ at 0 °C was slowly added CH₃SO₂Cl (378.0 mg, 3.3 mmol). The reaction mixture was allowed to warm to rt and then refluxed overnight before cooling down. The reaction mixture was washed with

⁶ So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795-2798.

⁷ Kuroda, J. I.; Inamoto, K.; Hiroya, K.; Doi, T. Eur. J. Org. Chem. 2009, 2251-2261.

⁸ House, H. O.; Bashe, R. W. J. Org. Chem. 1967, 32, 784-791.

H₂O (3 x 3 mL) and then dried (MgSO₄). The solvent was concentrated and the residue fractionated under vacuum, yielding **4b** as a brown oil (400 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (dd, J = 4.9, 1.5 Hz, 1H), 7.65 (dd, J = 8.1, 1.5 Hz, 1H), 7.21 dd, J = 8.1, 4.9 Hz, 1H), 3.24 (s, 3H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 147.7, 144.5, 130.2, 122.4, 38.7, 19.9; FT-IR (neat) 3636, 3034, 1598, 1499, 1470, 1361, 1179; HRMS (ESI) *m/z* calcd. for C₇H₁₀NO₃S (M+H)⁺ 188.0381, found 188.0380.

H₃C S Quinolin-8-yl Methanesulfonate (4d). To a stirred solution of quinolin-8-ol (363.0 mg, 2.50 mmol) in 2.5 mL of CH₂Cl₂ was added Et₃N (507 μL, 3.75 mmol). The reaction mixture was cooled to 0 °C and CH₃SO₂Cl (378.0 mg, 3.3 mmol) was slowly added. The reaction mixture was allowed to warm to rt for 1 h and then quenched with H₂O (3 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 3 mL) and then dried (MgSO₄). The solvent was concentrated and the product was purified by silica gel column chromatography (elution with hexanes/EtOAc 70:30) to yield 4d in 94% yield (524.3 mg) as a yellow powder. mp: 46-48 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.99 (dd, J = 4.2, 1.7 Hz, 1H), 8.22 (dd, J = 8.3, 1.5 Hz, 1H), 7.81 (dd, J = 8.3, 1.2 Hz, 1H), 7.73 (dd, J = 7.6, 1.5 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.50 (dd, J = 8.3, 4.2 Hz, 1H), 3.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 150.9, 145.5, 141.3, 136.1, 129.7, 127.1, 126.3, 123.7, 122.0, 39.1; FT-IR (neat) 3635, 3034, 1744, 1598, 1499, 1471, 1362, 1180; HRMS (ESI) *m/z* calcd. for C₁₀H₁₀NO₃S (M+H)⁺ 224.0381, found 224.0386.

H₃C, O H₃C, C H₄C, C H₄

1*H***-Indol-5-yl Methanesulfonate (4g).** To a stirred solution of 1*H*-indol-5-ol (166.0 mg, 1.25 mmol) in 1.25 mL of CH_2Cl_2 was added Et_3N (186 μ L, 1.37 mmol). The reaction mixture was cooled to 0 °C and CH_3SO_2Cl (178.0 mg, 1.56

mmol) was slowly added. The reaction mixture was allowed to warm to rt for 1 h and then quenched with H₂O (1.5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 3 mL) and then dried (MgSO₄). The solvent was concentrated and the product was purified by silica gel column chromatography (elution with hexanes/EtOAc 70:30) to yield **4g** in 83% yield (219.3 mg) as an off-white powder. mp: 96-98 °C. ¹H NMR (500 MHz, acetone- d_6) δ 10.47 (br s, 1H), 7.56 (d, J = 2.2 Hz, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 2.7 Hz, 1H), (dd, J = 8.8, 2.2 Hz, 1H), 6.55-6.54 (m, 1H), 3.21 (s, 3H); ¹³C NMR (125 MHz, acetone- d_6) δ 144.3, 135.7, 129.2, 127.9, 116.6, 114.1, 112.9, 103.0, 37.0; FT-IR (neat) 3397, 3038, 1622, 1576, 1374, 1171; HRMS (ESI) *m/z* calcd. for C₉H₁₀NO₃S (M+H)⁺ 212.0381, found 212.0387.

4. Preparation of (furan-3-yl)heteroaryl compounds

3-(Furan-3-yl)pyridine (5a). Following the general procedure, the reaction was carried out with **4a** (43.3 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5a** (28.9 mg, 80%) as a yellow oil after silica gel chromatography (elution with hexanes/EtOAc 50:50). ¹H NMR (500 MHz, CDCl₃) δ 8.75 (d, *J* = 2.2 Hz, 1H), 8.49 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.77 (s, 1H), 7.74 (dt, *J* = 7.8, 2.2 Hz, 1H), 7.51 (s, 1H), 7.30-7.26 (m, 1H), 6.71-6.70 (m, 1H).

¹H NMR is comparable to the literature.⁹

3-(Furan-3-yl)-2-methylpyridine (5b). Following the general procedure, the reaction was carried out with **4b** (46.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5b** (27.7 mg, 70%) as a brown oil after silica gel chromatography (elution with hexanes/EtOAc 65:35). ¹H NMR (500 MHz, CDCl₃) δ 8.44-8.43 (m, 1H), 7.59 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.55 (s, 1H), 7.51-7.50 (m, 1H), 7.14 (dd, *J* = 7.6, 4.9 Hz, 1H), 6.58 (s 1H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 147.8, 143.2, 140.4, 136.7, 127.9, 124.0, 121.3, 111.2, 24.1; FT-IR (neat) 3401, 3050, 1578, 1505, 1434; HRMS (ESI) *m/z* calcd. for C₁₀H₉NO (M)⁺ 159.0684, found 159.0685.

⁹ Bhayana, B.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2009, 11, 3954-3957.

6-(Furan-3-yl)quinoline (5c). Following the general procedure, the reaction was carried out with **4c** (55.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5c** (48.1 mg, 99%) as a yellow powder after silica

gel chromatography (elution with hexanes/EtOAc 60:40). mp: 88-90 °C. ¹H NMR (500 MHz, acetone- d_6) δ 8.86 (dd, J = 4.2, 1.5 Hz, 1H), 8.27 (dd, J = 8.3, 1.5 Hz, 1H), 8.20-8.19 (m, 1H), 8.13 (d, J = 2.0 Hz, 1H), 8.06-8.00 (m, 2H), 7.70 (t, J = 1.7 Hz, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 7.04 (dd, J = 2.0, 1.0 Hz, 1H).

¹H NMR is comparable to the literature.⁹

8-(Furan-3-yl)quinoline (5d). Following the general procedure, the reaction was carried out with 4d (55.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain 5d (44.9 mg, 92%) as a brown oil after silica gel chromatography (elution with hexanes/EtOAc 85:15). ¹H NMR (500 MHz, acetone-*d*₆) δ 9.00 (dd, *J* = 4.2, 2.0 Hz, 1H), 8.83-8.82 (m, 1H), 8.34 (dd, *J* = 8.3, 2.0 Hz, 1H), 8.05 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.84 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.67 (t, *J* = 1.7 Hz, 1H), 7.60 (dd, *J* = 8.3, 7.3 Hz, 1H), 7.54 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.18 (dd, *J* = 2.0, 0.7 Hz, 1H); ¹³C NMR (125 MHz, acetone-*d*₆) δ 150.6, 146.4, 144.6, 143.2, 137.4, 132.1, 129.8, 128.3, 127.8, 127.3, 123.7, 122.2, 111.0; FT-IR (neat) 3047, 1732, 1614, 1597, 1514; HRMS (ESI) *m/z* calcd. for C₁₃H₉NO (M)⁺ 195.0684, found 195.0689.

5-(Furan-3-yl)isoquinoline (5e). Following the general procedure, the reaction was carried out with **4e** (55.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5e** (42.4 mg, 87%) as a yellow oil after silica gel chromatography (elution with hexanes/EtOAc 85:15). ¹H NMR (500 MHz, acetone- d_6) δ 9.33 (s, 1H), 8.53 (d, J = 5.9 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 5.9 Hz, 1H), 7.95-7.94 (m, 1H), 7.79-7.77 (m, 2H), 7.69 (dd, J = 8.1, 7.1 Hz, 1H), 6.85 (dd, J = 1.7, 0.7 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 153.8, 144.6, 144.5, 141.8, 134.7, 131.4, 130.6, 130.0, 128.0, 127.9, 124.3, 118.7, 112.6; FT-IR (neat) 3418, 3031, 1732, 1615, 1602, 1505; HRMS (ESI) *m/z* calcd. for C₁₃H₁₀NO (M+H)⁺ 196.0762, found 196.0765.

5-(Furan-3-yl)-2-methylbenzo[d]thiazole (5f). Following the general procedure, the reaction was carried out with **4f** (60.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5f** (41.2 mg,

77%) as a white powder after silica gel chromatography (elution with hexanes/EtOAc 70:30). mp: 105-106 °C; ¹H NMR (500 MHz, acetone- d_6) δ 8.12-8.11 (m, 2H), 7.93 (d, J = 8.3 Hz, 1H), 7.67 (t, J = 1.7 Hz, 1H), 7.63 (dd, J = 8.3, 1.7 Hz, 1H), 6.99 (dd, J = 2.0, 1.0 Hz, 1H), 2.79 (s, 3H); ¹³C NMR (125 MHz, acetone- d_6) δ 168.2, 155.3, 145.0, 140.1, 135.1, 131.5, 127.1, 123.6, 122.7, 119.9, 109.7, 20.0; FT-IR (neat) 3049, 1749, 1590, 1543, 1530; HRMS (ESI) *m*/*z* calcd. for C₁₂H₉NO (M)⁺ 215.0405, found 215.0400.

5-(Furan-3-yl)-1*H***-indole (5g).** Following the general procedure, the reaction was carried out with **4g** (52.8 mg, 0.25 mmol) and potassium furan-3-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **5g** (20.1 mg, 44%) as an off-white powder after silica gel chromatography (elution with hexanes/EtOAc 70:30). mp: 89-91 °C; ¹H

NMR (500 MHz, acetone- d_6) δ 10.24 (br s, 1H), 7.91-7.90 (m, 1H), 7.79-7.78 (m, 1H), 7.59 (t, J = 1.7 Hz, 1H), 7.43 (td, J = 8.3, 0.7 Hz, 1H), 7.36 (dd, J = 8.3, 1.7 Hz, 1H), 7.33 (t, J = 2.7 Hz, 1H), 6.88 (dd, J = 1.7, 0.7 Hz, 1H), 6.48-6.46 (m, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ 144.4, 138.5, 136.6, 129.5, 128.7, 126.2, 124.5, 120.8, 118.2, 112.5, 109.9, 102.5; FT-IR (neat) 3426, 3023, 1728, 1469; HRMS (ESI) m/z calcd. for C₁₂H₁₀NO (M+H)⁺ 184.0762, found 184.0761.

5. Preparation of (substituted phenyl)heteroaryl compounds

3-Phenylquinoline (6a). Following the general procedure, the reaction was carried out with phenyl methanesulfonate (43.0 mg, 0.25 mmol) and potassium quinolin-3-yltrifluoroborate (77.6 mg, 0.33 mmol) to obtain **6a** (38.4 mg, 75%) as a brown oil after silica gel chromatography (elution with hexanes/EtOAc 80:20). ¹H NMR (500 MHz, acetone- d_6) δ 9.22 (d, J = 2.4 Hz, 1H), 8.51 (d, J = 2.4 Hz, 1H), 8.09 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.85-7.83 (m, 2H), 7.77-7.73 (m, 1H), 7.64-7.60 (m, 1H), 7.57-7.53 (m, 2H), 7.47-7.43

(m, 1H).

¹H NMR is comparable to the literature.¹⁰

¹⁰ Wang, Y.; Xin, X.; Liang, Y. J.; Lin, Y. J.; Zhang, R.; Dong, D. W. Eur. J. Org. Chem. 2009, 4165-4169.

4-(Thiophen-3-yl)benzonitrile (6b). Following the general procedure, the reaction was carried out with 4-cyanophenyl methanesulfonate (49.3 mg, 0.25 mmol) and potassium thiophen-3-yltrifluoroborate (62.0 mg, 0.33 mmol) to obtain **6b** (31.2 mg, 68%) as a white solid after silica gel chromatography (elution with hexanes/EtOAc 80:20). mp: 106-108 °C (lit. 100-101 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 4H), 7.57 (dd, *J* = 2.9, 1.5 Hz, 1H), 7.44 (dd, *J* = 5.1, 2.9 Hz, 1H), 7.40 (dd, *J* = 5.1, 1.5 Hz, 1H).

¹H NMR is comparable to the literature.¹¹

2-(4-Methoxyphenyl)benzofuran (6c). Following the general procedure, the reaction was carried out with 4-methoxyphenyl methanesulfonate (50.5 mg, 0.25 mmol) and potassium benzofuran-2-yltrifluoroborate (74.0 mg, 0.33 mmol) to obtain **6c** (39.0 mg, 70%) as a white solid after silica gel chromatography (elution with hexanes/EtOAc 80:20). mp: 149-151 °C (lit. 148-150 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.8 Hz, 2H), 7.93 (dd, *J* = 7.3, 1.0 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.65-7.57 (m, 2H), 7.35 (d, *J* = 8.8 Hz, 2H), 7.26 (s, 1H), 4.23 (s,

¹H NMR is comparable to the literature.¹²

4.9 Hz, 1H), 2.65 (s, 3H).

¹H NMR is comparable to the literature.¹³

¹¹ Molander, G. A.; Canturk, B.; Kennedy, L. E. J. Org. Chem. 2009, 74, 973-980.

¹² Geary, L. M.; Hultin, P. G. Org. Lett. **2009**, *11*, 5478-5481.

¹³ Cioffi, C. L.; Spencer, W. T.; Richards, J. J.; Herr, R. J. J. Org. Chem. 2004, 69, 2210-2212.

Methyl 4-(Furan-2-yl)benzoate (6e). Following the general procedure, the reaction was carried out with methyl 4-((methylsulfonyl)oxy)benzoate (57.5 mg, 0.25 mmol) and potassium furan-2-yltrifluoroborate (57.4 mg, 0.33 mmol) to obtain **6e** (41.1 mg, 81%) as an orange powder after silica gel chromatography (elution with hexanes/EtOAc 85:15). mp:

 \dot{CO}_2 Me 117-118 °C (lit. 116-117 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.6 Hz, 2H), 7.72 (d, J = 8.6 Hz, 2H), 7.51 (dd, J = 1.7, 0.5 Hz, 1H), 6.78 (d, J = 3.4 Hz, 1H), 6.50 (dd, J = 3.4, 1.7 Hz, 1H), 3.92 (s, 3H).

¹H NMR is comparable to the literature.¹¹

5-(2,4-Dimethylphenyl)isoquinoline (6f). Following the general procedure, the reaction was carried out with 2,4-dimethylphenyl methanesulfonate (50.0 mg, 0.25 mmol) and potassium isoquinolin-5-yltrifluoroborate (77.6 mg, 0.33 mmol) to obtain **6f** (22.9 mg, 39%) as a colorless oil after silica gel chromatography (elution with hexanes/EtOAc 85:15). ¹H NMR (500 MHz, acetone- d_6) δ 9.34 (s, 1H), 8.43 (d, J = 5.9 Hz, 1H), 8.12

(dd, J = 8.3, 1.0 Hz, 1H), 7.74 (dd, J = 8.3, 7.1 Hz, 1H), 7.59 (dd, J = 7.1, 1.2 Hz, 1H), 7.23 (dd, J = 5.9, 1.0 Hz, 1H), 7.21-7.20 (m, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 2.40 (s, 3H), 1.96 (s, 3H); ¹³C NMR (125 MHz, acetone- d_6) δ 152.7, 143.3, 138.7, 137.5, 136.0, 135.5, 134.3, 130.7, 130.7, 129.9, 128.7, 126.8, 126.4, 118.1, 20.2, 19.0; FT-IR (neat) 3008, 1615, 1587; HRMS (ESI) m/z calcd. for C₁₇H₁₅N (M)⁺ 233.1204, found 233.1200.

NMR Spectra

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 3-(naphthalen-1-yl)thiophene **2b** (Table 2, entry 2)

S27

S29

¹⁹F NMR (471 MHz, DMSO-*d*₆) Spectrum of potassium pyrimidin-5-yltrifluoroborate

¹¹B NMR (128 MHz, DMSO-*d*₆) Spectrum of potassium pyrimidin-5-yltrifluoroborate

¹H NMR (300 MHz, C₃D₆O) Spectrum of 5-(naphthalen-1-yl)pyrimidine **2f** (Table 2, entry 6)

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 5-(naphthalen-1-yl)pyrimidine **2f** (Table 2, entry 6)

S37

S39

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 2-(naphthalen-1-yl)benzothiophene **2i** (Table 2, entry 9)

S42

¹H NMR (500 MHz, DMSO-*d*₆) Spectrum of potassium isoquinolin-5-yltrifluoroborate

¹³C NMR (125 MHz, DMSO-*d*₆) Spectrum of potassium isoquinolin-5-yltrifluoroborate

S45

¹H NMR (500 MHz, C₃D₆O) Spectrum of 5-(naphthalen-1-yl)isoquinoline **2k** (Table 2, entry 11)

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 5-(naphthalen-1-yl)isoquinoline **2k** (Table 2, entry 11)

¹H NMR (500 MHz, C₃D₆O) Spectrum of *N*-methyl-5-(naphthalen-1-yl)indole **2l** (Table 2, entry 12)

S50

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-phenylnaphthalene **3a** (Table 3, entry 1)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-(3-methoxyphenyl)naphthalene **3d** (Table 3, entry 4)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-(2-methoxyphenyl)naphthalene **3e** (Table 3, entry 5)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-(4-fluorophenyl)naphthalene **3f** (Table 3, entry 6)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-(4-(trifluoromethyl)phenyl)naphthalene **3g** (Table 3, entry 7)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1-(4-(naphthalen-1-yl)phenyl)ethanone **3i** (Table 3, entry 9)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 4-(naphthalen-1-yl)benzonitrile **3j** (Table 3, entry 10)

¹H NMR (500 MHz, C₃D₆O) Spectrum of methyl 3-(naphthalen-1-yl)benzoate **3k** (Table 3, entry 11)

¹H NMR (500 MHz, CDCl₃) Spectrum of 2-methylpyridin-3-yl methanesulfonate **4b** (Table 4, entry 2)

¹³C NMR (125 MHz, CDCl₃) Spectrum of 2-methylpyridin-3-yl methanesulfonate **4b** (Table 4, entry 2)

¹H NMR (500 MHz, CDCl₃) Spectrum of quinolin-8-yl methanesulfonate **4d** (Table 4, entry 4)

¹³C NMR (125 MHz, CDCl₃) Spectrum of quinolin-8-yl methanesulfonate **4d** (Table 4, entry 4)

¹H NMR (500 MHz, CDCl₃) Spectrum of isoquinolin-5-yl methanesulfonate **4e** (Table 4, entry 5)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 1*H*-indol-5-yl methanesulfonate **4g** (Table 4, entry 7)

¹H NMR (500 MHz, C₃D₆O) Spectrum of 8-(furan-3-yl)quinoline **5d** (Table 4, entry 4)

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 8-(furan-3-yl)quinoline **5d** (Table 4, entry 4)

S79

¹H NMR (500 MHz, C₃D₆O) Spectrum of 5-(furan-3-yl)-2-methylbenzo[d]thiazole **5f** (Table 4, entry 6)

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 5-(furan-3-yl)-2-methylbenzo[d]thiazole **5f** (Table 4, entry 6)

¹H NMR (500 MHz, CDCl₃) Spectrum of 1-(4-(pyridin-3-yl)phenyl)ethanone **6d** (Table 5, entry 4)

S88

¹H NMR (500 MHz, C₃D₆O) Spectrum of 5-(2,4-dimethylphenyl)isoquinoline **6f** (Table 5, entry 6)

¹³C NMR (125 MHz, C₃D₆O) Spectrum of 5-(2,4-dimethylphenyl)isoquinoline **6f** (Table 5, entry 6)